The present application relates to tools adapted to apply torque to a work piece. More particularly, the present application relates to electronic torque wrenches that include shock absorption characteristics.
Electronic torque wrenches are commonly used in automotive and industrial applications to apply a predetermined amount of torque to a work piece, such as a threaded fastener. For example, a fastening system may require tightening components such as a nut and bolt to a desired amount of torque or within a desired torque range. Securing the fastening components at a desired torque setting allows for secure attachment of the components and structures related thereto without under-tightening or over-tightening the components. Under-tightening the components could result in unintended disengagement of the components. Over-tightening the components could make disengaging the components difficult or could damage the components or fasteners. To prevent under-tightening or over-tightening a torque measurement can be made while tightening the components, for example, a nut to a bolt, to meet a target torque setting or to apply a torque within a desired torque range, such as a torque wrench.
Such torque wrenches are calibrated on a regular basis and have internal components that may be subject to damage if the wrench is accidentally dropped or impacted against another item. However, since torque wrenches are commonly used in automotive or industrial applications, accidental dropping or impacting the wrench occurs frequently, typically resulting in damage to wrench components or aversely affecting calibration.
The present application discloses a tool, for example, a torque wrench, that includes one or more shock absorption components disposed in the tool to protect various components of the tool in the event the tool is dropped or otherwise sustains an impact force. In an embodiment, the tool includes shock absorption foam disposed above and below an electronic display or liquid-crystal display (LCD). The tool may also include another shock absorption component disposed under an end cap of the tool to absorb a shock or impact force to the tool when the tool is dropped on the end cap. These shock absorption components may also serve to separate and protect electronic components of the tool and increase the life of the tool.
In an embodiment, a tool includes a drive head adapted to apply an amount of torque to a work piece, a control housing extending from the drive head, and a handle portion extending from the control housing. A display is disposed in the control housing, and a shock absorption component is disposed above the display between the display and the control housing. A second shock absorption component may also be disposed below the display between the display and a controller of the tool.
In another embodiment, a tool includes a drive head adapted to apply an amount of torque to a work piece, a control housing extending from the drive head, and a handle portion extending from the control housing to a first end. A flange is disposed in the handle portion proximate to the first end, and a battery tray is disposed in the handle portion and has an end proximal the first end. A shock absorption component is disposed between the end of the battery tray and the flange. An end cap is coupled to the end of the battery tray. The battery tray and the end cap are adapted to slide within the handle portion and the shock absorption component is adapted to compress upon application of an impact force to the end cap.
For the purpose of facilitating an understanding of the subject matter sought to be protected, there are illustrated in the accompanying drawings embodiments thereof, from an inspection of which, when considered in connection with the following description, the subject matter sought to be protected, its construction and operation, and many of its advantages should be readily understood and appreciated.
It should be understood that the comments included in the notes as well as the materials, dimensions and tolerances discussed therein are simply proposals such that one skilled in the art would be able to modify the proposals within the scope of the present application.
While this invention is susceptible of embodiments in many different forms, there is illustrated in the drawings, and herein described in detail, an embodiment of the invention with the understanding that the present disclosure is to be considered as an exemplification of the principles of the invention and is not intended to limit the broad aspect of the invention to embodiments illustrated.
The present application discloses an electronic torque tool that includes one or more shock absorption components disposed in the tool and adapted to protect various components of the tool in the event the tool is dropped or otherwise sustains an impact force. In an embodiment, the tool includes shock absorption foam disposed above and below an electronic display or liquid-crystal display (LCD), thereby protecting the display. The tool may also include a shock absorption component disposed under an end cap of the tool to absorb a shock or impact force to the tool when the tool is dropped on or adjacent to the end cap. These shock absorption components may also serve to separate and protect various electronic components of the tool and increase the operable life of the tool.
As illustrated in
The drive head 104 of the tool 100 can include a receiving area or drive lug 112 that, directly or indirectly, applies torque to a work piece. For example, the drive head 104 can be coupled to a socket adapted to couple to a hex-bolt fastener to apply torque to the fastener in a well-known manner. The drive head 104 can also include a reversing lever 114 and a pivot joint 116. The reversing lever 114 may be connected to a pawl (not shown) to selectively operate the tool 100 in a predetermined drive direction in a well-known manner. The pivot joint 116 couples the drive head 104 to the neck portion 108 and may allow the handle 102 to pivot relative to the drive head 104 to make usability easier for certain fasteners located in hard to reach areas, for example.
The control housing 106 be disposed in or fixedly attached to the handle 102. The control housing 106 may house a controller, such as controller 118 illustrated in
The user input interface 122 allows the user to input information, data, and/or commands into the tool 100. By way of example, the user input interface 122 can include a keyboard, mouse, touch screen, audio recorder, audio transmitter, member pad, or other device that allows for the entry of information from a user. As illustrated in
In an illustrative embodiment, the display 120 can display various information for the user to view and interpret, for example, text or graphics, or information entered into the user input interface 122. By way of example, the display 120 can include a liquid crystal display (LCD), organic light emitting diode (OLED) display, plasma screen, or other kind of black and white or color display that allows the user to view and interpret information.
As illustrated in
A controller 118 is disposed in the control housing between the first housing portion 124 and the second housing portion 126, and is operatively connected to the display 120 and the input interface 122, for example, through the use of contact pads 134. In an embodiment, the controller 118 is a printed circuit board (PCB) and is carried by the second housing portion 126. The second housing portion 126 may isolate the fasteners 128 from the controller 118.
In an embodiment, a first shock absorption component 136 is disposed between the display 120 and the controller 118. A second shock absorption component 138 may also be disposed between the display 120 and the first housing portion 124. As illustrated, the second shock absorption component 138 includes an aperture 140 adapted to allow the display 120 to be unobstructed and viewable through the second shock absorption component 138.
The shock absorption components 136 and 138 may serve to protect the electronic components, for example, the display 120 and the controller 118 from impact forces that may result from the tool 100 being dropped, falling, or otherwise sustaining an impact force. This allows the tool 100 to be more durable and have an increased operable life when compared to prior art tools.
The controller 118 may include circuitry of known construction to sense and record an amount of torque applied by the tool 100 to a work piece during a particular torque application. The controller 118 may also include a volatile or re-writeable memory for storing input and recorded torque amounts for later retrieval and/or transmission to other devices.
A protrusion 150 may extend into the control housing 106 and mate with a slot 152 in a first end 154 of the battery tray 146 and retain the battery tray 146 within the handle portion 102. The slot 152 may be sized larger than the protrusion 150 to allow the battery tray 146 to slide within the handle portion 102. A second end 156 opposite the first end 154 of the battery tray 146 is located at the end 144 of the handle portion 102. The handle portion 102 may also include a flange 158 that radially extends into the handle portion 102. A third shock absorption component 160 may be disposed in the end 144 of the handle portion 102 between the flange 158 and the second end 156 of the battery tray 146.
As illustrated, the end cap 142 threadingly mates with the second end 156 of the battery tray 146. A small gap 162 is present between the end cap 142 and the end 144 of the handle portion 102. Additionally, the slot 152 provides a gap to allow the battery tray 146 to slide within the handle portion 102. These gaps may be a result of the third shock absorption component 160 being disposed between the flange 158 and the second end 156 of the battery tray 146. This allows the end cap 142 and the battery tray 146 to slide into the handle portion 102 and compress the third shock absorption component 160 when a force is applied to the end cap 142. For example, when the tool 100 is dropped on the end cap 142, the end cap 142 and battery tray 146 shift further into the handle portion 102 and the third shock absorption component 160 compresses to absorb the shock. This allows the force of the shock to be absorbed by the third shock absorption component 160 and the battery tray 146 and not transferred to the electronics, for example, the controller 118, display 120, and user input interface 122 of the tool 100.
The shock absorption components described above allow the tool 100 to absorb impact forces and minimize the transfer of such impact forces to the electronics of the tool 100. This can increase the operable life of the tool 100. The shock absorption components may be a foam, for example, made of a polymer, such as polyethylene, polyethane, polyurethane, and other materials capable of absorbing an impact force or shock.
As discussed above, the tools are electronic torque wrenches. However, the tools can be other tools or mechanisms that may be subject to dropping or impact forces without departing from the spirit and scope of the present application.
The controller 118 may also include one or more of a processor for controlling operations of the controller 118, a memory for storing data and/or computer programs, a torque sensor to measure and sense a torque applied by the tool 100, and an interface for transmitting and/or receiving data relating to the tool 100 to external sources. The above components of the controller 118 can be operably coupled together, directly or indirectly, by hardwired connections, wireless connections and/or other known coupling means.
The processor may facilitate communication between the various components of the tool 100 and control operation of the electrical components of the tool 100. The processor can be a special purpose or general type of processor or multiple processors, for example, a microprocessor, a single-core or a multi-core processor. In an illustrative embodiment, the processor is configured to provide feedback to the user when a desired amount of torque or set amount of torque is reached, for example, through visual, audible or tactile well-known means.
In an illustrative embodiment, the memory can store data or computer programs for use in the tool 100. For example, the memory can store calibration factors, torque target values, and other such data. The memory can also store an operating system for the controller 118 or other software or data that may be necessary for the tool 100 to function. Without limitation, the memory can include non-transitory computer-readable recording medium, such as a hard drive, DVD, CD, flash drive, volatile or non-volatile memory, RAM, or other type of data storage.
The torque sensor measures a magnitude of torque applied by the tool 100. The torque sensor may be a known mechanism capable of measuring torque. For example, the torque sensor may be a strain gauge or load cell attached to a torsion rod.
The interface can be a device capable of transmitting data from the tool 100 or capable of receiving data within the tool 100 from an external data source. By way of example, the interface can be a hard wire connection, such as an insulated copper wire or optical fiber, or a radio transmission antenna, cellular antenna, infrared, acoustic, radio frequency (RF), or other type of wired or wireless interface capable of communicating with an external device.
The matter set forth in the foregoing description and accompanying drawings is offered by way of illustration only and not as a limitation. While particular embodiments have been illustrated and described, it should be apparent to those skilled in the art that changes and modifications may be made without departing from the broader aspects of applicants' contribution. The actual scope of the protection sought is intended to be defined in the following claims when viewed in their proper perspective based on the prior art.
Number | Name | Date | Kind |
---|---|---|---|
4800973 | Angel | Jan 1989 | A |
7082865 | Reynertson, Jr. | Aug 2006 | B2 |
7107884 | Cutler | Sep 2006 | B2 |
7157882 | Johnson | Jan 2007 | B2 |
7649337 | Uehlein-Proctor | Jan 2010 | B2 |
9085072 | Anjanappa | Jul 2015 | B2 |
9308633 | Gharib | Apr 2016 | B2 |
20020007676 | Ward | Jan 2002 | A1 |
20030094081 | Becker et al. | May 2003 | A1 |
20030154829 | Lin Wu | Aug 2003 | A1 |
20040040388 | Hsien | Mar 2004 | A1 |
20040255733 | Reynertson, Jr. | Dec 2004 | A1 |
20060011023 | Hsieh | Jan 2006 | A1 |
20080006130 | Hsieh | Jan 2008 | A1 |
20080173139 | Miyazaki | Jul 2008 | A1 |
20080314209 | Chen | Dec 2008 | A1 |
20090178519 | Hsieh | Jul 2009 | A1 |
20120111159 | Wu | May 2012 | A1 |
20120111160 | Wu | May 2012 | A1 |
20140260837 | Gauthier | Sep 2014 | A1 |
Number | Date | Country |
---|---|---|
2283552 | Oct 2001 | CA |
101825928 | Sep 2010 | CN |
202318090 | Jul 2012 | CN |
325900 | Jan 2008 | TW |
2012134469 | Oct 2012 | WO |
Entry |
---|
Combined Search and Examination Report, dated Nov. 17, 2014; 7 pgs. |
United Kingdom Intellectual Property Office, Combined Search and Examination Report dated Dec. 7, 2015; 5 pages. |
English Translation of Taiwan Intellectual Property Office, Office Action dated Nov. 23, 2015; 2 pages. |
Taiwan Search Report, completed on Nov. 3, 2015; 1 page. |
State Intellectual Property Office of P.R. China, First Office Action dated Jul. 27, 2015; 10 pages. |
Australian Government Patent Examination Report No. 1, dated Jun. 9, 2015; 3 pages. |
State Intellectual Property Office of P.R. China, Second Office Action dated Apr. 12, 2016; 9 pages. |
Number | Date | Country | |
---|---|---|---|
20150007699 A1 | Jan 2015 | US |