The present invention relates to a wrench and, more particular, to a torque wrench.
U.S. Pat. No. 10,821,580 discloses an electronic torque wrench with sensing structure, which includes a tubular body, a working head and at least one sensing element. The working head further includes a head section and a connection section secured in the front end of the tubular body. The head section is positioned at the front end of the tubular body. The sensing element is disposed on an outer circumference of the tubular body.
In general, the operation method of the electronic torque wrench is to set the strain gauge in the wrench handle tube or other components, and use the strain gauge to obtain the torque value output by the wrench through a specific formula conversion. The above torque wrench is to set the sensing element on the outer circumference of the tubular body. However, when measuring the strain value of the torque wrench tubular body or other components that provide structural rigidity, errors are likely to occur, and it is not easy to obtain accurate torque values.
An objective of the present invention is to provide a torque wrench, which includes a body and a measuring device. The body includes a head portion and a rod portion. An end of the rod portion is connected with the head portion. The measuring device includes a strain gauge seat and a strain gauge. The strain gauge seat is arranged in the rod portion and is provided with a first recess and a deformation portion adjacent to the first recess. The strain gauge is connected to the deformation portion.
The present invention will become clearer in light of the following detailed description of illustrative embodiments of this invention described in connection with the drawings.
The body 20 includes a head portion 21 and a rod portion 22. An end of the rod portion 22 is connected with the head portion 21.
The measuring device 30 includes a strain gauge seat 31 and a strain gauge 32. The strain gauge seat 31 is arranged in the rod portion 22 and is provided with a first recess 311 and a deformation portion 33 adjacent to the first recess 311. An inner periphery of the first recess 311 is provided with a first face 312 and a second face 313 faced to the first face 312. A side of the deformation portion 33 adjacent to the first recess 311 is provided with a third face 331 arranged between the first face 312 and the second face 313. The strain gauge 32 is connected to the deformation portion 33.
The strain gauge seat 31 is provided with a second recess 314 and a third recess 315. The second recess 314 is arranged between the first face 312 and the third face 331 so that the first face 312 and the third face 331 are not connected with each other. The second recess 314 communicates with the first recess 311. The third recess 315 is arranged between the second face 313 and the third face 331 so that the second face 313 and the third face 331 are not connected with each other. The third recess 315 communicates with the first recess 311.
The strain gauge seat 31 is provided with an abutting portion 316, and the abutting portion 316 has a raised structure with a convex arc surface.
The strain gauge seat 31 is provided with a first leg 34 and a second leg 35. The first recess 311 is arranged between the first leg 34 and the second leg 35. The first leg 34 and the second leg 35 are respectively integrally connected to the deformation portion 33 as a monolithic structure. The first face 312 is arranged at a side of the first leg 34 adjacent to the first recess 311. The second face 313 is arranged at a side of the second leg 35 adjacent to the first recess 311.
The body 20 is provided with a tripping mechanism 23 and an elastic member 24. The elastic member 24 is arranged at a side of the tripping mechanism 23 opposite to the head portion 21. A side of the first leg 34 opposite to the deformation portion 33 and a side of the second leg 35 opposite to the deformation portion 33 are respectively abutted against the elastic member 24. The strain gauge 32 is connected to the third face 331 and is faced to the elastic member 24. A side of the strain gauge seat 31 opposite to the elastic member 24 is abutted against the tripping mechanism 23.
The tripping mechanism 23 is provided with a receiving slot 231. The abutting portion 316 is arranged at a side of the deformation portion 33 opposite to the strain gauge 32. The abutting portion 316 includes a containing slot 317 and an abutting member 318. The containing slot 317 is recessed in the deformation portion 33. In the embodiment, the abutting member 318 is spherical, and the abutting member 318 is arranged in the receiving slot 231 and the containing slot 317. The abutting member 318 simultaneously abuts against an inner surface of the receiving slot 231 and an inner surface of the containing slot 317 in a surface contact manner.
In the embodiment, the tripping mechanism 23 is an unidirectional tripping mechanism.
Thus, the torque wrench 10 can make the torque value measured by the measuring device 30 accurate. The shape and structure of the strain gauge seat 31 can produce regular micro-deformation when subjected to force, thereby reducing the error of the measurement data of the strain gauge 32 to improve the accuracy of the torque value measured by the measuring device 30.
The adjustable mechanism 25a is provided with a receiving slot 251a. The abutting portion 316a is arranged at a side of the first leg 34a opposite to the first recess 311a. In the embodiment, the abutting portion 316a has a spherical surface and is arranged in the receiving slot 251a. The abutting portion 316a abuts against an inner surface of the receiving slot 251a in a surface contact manner.
The tripping mechanism 23b is provided with a receiving slot 231b. The abutting portion 316b is arranged at a side of the deformation portion 33b opposite to the strain gauge 32b. In the embodiment, the abutting portion 316b has a spherical surface and is arranged in the receiving slot 231b. The abutting portion 316b abuts against an inner surface of the receiving slot 231b in a surface contact manner.
The tripping mechanism 23f is provided with a receiving slot 231f. The abutting portion 316f is arranged at a side of the first leg 34f opposite to the first recess 311f. In the embodiment, the abutting portion 316f has a spherical surface and is arranged in the receiving slot 231f. The abutting portion 316f abuts against an inner surface of the receiving slot 231f in a surface contact manner.
The body 20q is provided with a tripping mechanism 23q and an elastic member 24q. The elastic member 24q is arranged at a side of the tripping mechanism 23q opposite to the head portion 21q. The first leg 34q is abutted against the tripping mechanism 23q. The second leg 35q is abutted against the elastic member 24q. The strain gauge 32q is connected to a side of the deformation portion 33q opposite to the third face 331q and is faced to an inner periphery of the rod portion 22q. The third face 331q is a concave arc surface.
The tripping mechanism 23q is provided with a receiving slot 231q. The abutting portion 316q is arranged at a side of the first leg 34q opposite to the first recess 311q. In the embodiment, the abutting portion 316q has a spherical surface and is arranged in the receiving slot 231q. The abutting portion 316q abuts against an inner surface of the receiving slot 231q in a surface contact manner.
The adjustable mechanism 25r is provided with a receiving slot 251r. The abutting portion 316r is arranged at a side of the first leg 34r opposite to the first recess 311r. In the embodiment, the abutting portion 316r has a spherical surface and is arranged in the receiving slot 251r. The abutting portion 316r abuts against an inner surface of the receiving slot 251r in a surface contact manner.
Although specific embodiments have been illustrated and described, numerous modifications and variations are still possible without departing from the scope of the invention. The scope of the invention is limited by the accompanying claims.
Number | Date | Country | Kind |
---|---|---|---|
110109723 | Mar 2021 | TW | national |
111105474 | Feb 2022 | TW | national |
Number | Name | Date | Kind |
---|---|---|---|
6928885 | Shiao et al. | Aug 2005 | B1 |
7503228 | Hsieh | Mar 2009 | B1 |
7540220 | Shiao | Jun 2009 | B2 |
8264374 | Obatake et al. | Sep 2012 | B2 |
10625405 | Silha et al. | Apr 2020 | B2 |
10821580 | Hsieh | Nov 2020 | B2 |
20050072278 | Cutler et al. | Apr 2005 | A1 |
20080127748 | Liao | Jun 2008 | A1 |
20120132042 | Bruce | May 2012 | A1 |
20140047957 | Wu | Feb 2014 | A1 |
20140338419 | Hsieh | Nov 2014 | A1 |
20160288304 | Shiao | Oct 2016 | A1 |
20180149533 | Hu et al. | May 2018 | A1 |
Number | Date | Country |
---|---|---|
2495989 | Aug 2005 | CA |
2984320 | May 2010 | CA |
102241004 | Nov 2011 | CN |
103624729 | Nov 2015 | CN |
104723260 | Apr 2017 | CN |
110861025 | Mar 2020 | CN |
2636385 | Sep 2013 | EP |
M280892 | Nov 2005 | TW |
200607612 | Mar 2006 | TW |
I276516 | Mar 2007 | TW |
I277494 | Apr 2007 | TW |
I280182 | May 2007 | TW |
200800511 | Jan 2008 | TW |
M325901 | Jan 2008 | TW |
M341585 | Oct 2008 | TW |
M406497 | Jul 2011 | TW |
I364351 | May 2012 | TW |
Number | Date | Country | |
---|---|---|---|
20220297268 A1 | Sep 2022 | US |