Torqueable soft tip medical device and method of usage

Information

  • Patent Grant
  • 8449526
  • Patent Number
    8,449,526
  • Date Filed
    Thursday, December 6, 2007
    17 years ago
  • Date Issued
    Tuesday, May 28, 2013
    11 years ago
Abstract
A medical device or intravascular device, and methods of use. The devices may be tubular and may have a flexible polymer tip. The body may be nitinol and may have cuts part way through along its length to facilitate bending. The device may have a liner which may extend through the tip or form the tip. The device may have markers readily visible on an X-ray viewer during insertion. The tip may have an anti-collapsing structure and may be shaped before use to perform a medical procedure such as treating an aneurysm. The device may have a strong fiber through it for complete removal. The method may include selecting the device, bending the tip, setting the shape, and inserting the device into the patient's anatomy. The shape of the tip may be set by heating with steam and then removing a mandrel.
Description
FIELD OF INVENTION

This invention relates generally to flexible medical devices and methods of using them.


BACKGROUND OF THE INVENTION

Medical devices such as endovascular or intravascular devices have been used for many years for purposes such as performing medical procedures, including treating aneurysms. A medical device such as an intravascular device may be introduced into a patient's anatomy or vasculature at a relatively accessible location, and guided through the patient's anatomy to the desired location. X-ray fluoroscopy has been used to observe the tip of the medical device and the device has been rotated at bifurcations in the anatomy or vasculature before being pushed further to guide the device to the desired location. Medical devices of this type may be solid, for example, a guide wire, or may be hollow and tubular, for example, a catheter. Guide wires may be used to guide one or more tubular intravascular devices to a particular location, and catheters may be used, for instance, to deliver fluids, extract fluids, or deliver various objects, agents, or devices to the particular location.


In many applications it is desirable that a medical device or intravascular device bend easily in order to allow it to make the various bends and turns that are necessary to navigate through the anatomy or vasculature, and in some cases also to minimize trauma to the anatomy or vasculature. However, in many applications it is desirable that the medical device be relatively stiff in torsion in order to allow precise control of rotation in order to guide the device through bifurcations in vasculature or around obstacles. Accordingly, medical and intravascular devices have been described that contain numerous cuts along their length to obtain the desired flexibility in bending while maintaining relative stiffness in torsion. Examples of such devices are described in U.S. Pat. Nos. 5,690,120 and 5,833,632, both of which are incorporated herein by reference in their entirety. An example of a method of making such devices is described in U.S. Pat. No. 6,260,485 B1, which is also incorporated herein by reference in its entirety.


In many applications, it is desirable that the tip of a medical device be soft and bendable so as to minimize trauma to the patient's anatomy and further facilitate negotiating bends and turns in the anatomy or vasculature. Thus, a need exists for such a soft and bendable tip. In addition, the tip of a medical device may be bent or curved so that when the device approaches a bifurcation, or other location where direction needs to be selected, the device may be steered in the correct direction. In the past, tips were bent or curved during initial fabrication of the device. However, in at least some applications, a greater or lesser curvature may be desirable. Accordingly, a need exists for a device wherein the angle or radius of bending or curvature of the tip may be selected by the operator of the medical device, for instance, by the medical doctor performing a medical procedure with the medical device.


Furthermore, in many applications, it is desirable and important that the entire device be removed after the procedure is completed. Thus, it is desirable that the device have a strong and reliable tensile strength throughout its length so that it does not come apart when pulled out of the patient's anatomy or vasculature. Accordingly, a need exists to improve and provide redundancy in the tensile strength of a medical device to assure complete removal of the device.


SUMMARY OF THE INVENTION

The present invention provides medical devices including intravascular devices and methods of using medical devices and intravascular devices. Medical devices in accordance with the present invention may be, for example, a guide wire that may be hollow. Features and objects of various embodiments of the present invention include that the devices are flexible in bending, the devices and methods minimize trauma to the patient's anatomy, and the devices and methods assure complete removal of the medical device.


Accordingly, in at least partial fulfillment of these objects, an exemplary embodiment of the present invention includes a medical device that may be an intravascular device, that has a body with a proximal end and a distal end. The body may have a plurality of cuts part way through. The device may also have a tip extending from the distal end of the body, which may be substantially made of a non-metallic material. The tip may be more flexible in bending than the body, and may be configured to be custom shaped by the person who will operate the device. The body may be substantially comprised of metal, which may be super-elastic nitinol. The body may be substantially tubular, and may have at least one substantially tubular liner. The liner may extend from the proximal end of the body to the distal end of the body, and may further extend distal to the body. In some embodiments, the liner may be inside the body and extend through the body, and in some embodiments may further extend through the tip. In some embodiments, the tip may be essentially the distal end of the liner. In other embodiments, the tip may further have a tubular end sleeve, which may be substantially comprised of polymer. The tip may also have an anti-collapsing structure, which may be a groove, a coil, or a braid. The device may also have at least one marker. Some embodiments of the present invention include a fiber extending through the body, which may be configured to increase the device's tensile strength. The fiber may be substantially comprised of a high-strength material, and may zigzag between the body and the liner.


A further exemplary embodiment of the present invention includes a method of treating a patient with a medical device. The method may include the steps of selecting a medical device, which may have a flexible tip; shaping the tip, for instance by bending it; and inserting the device into the anatomy or vasculature. The step of inserting the device may include axially translating the device, rotating the device, and monitoring the distal end or tip. The tip may be made of a non-metallic material and may have at least one marker to facilitate monitoring by observing it, for instance, with X-ray fluoroscopy. The method may also have the step, after the step of shaping, of setting the shape of the tip, for example, by heating the tip. The device may be substantially tubular, and the method may also include the step, after the step of shaping, of removing a mandrel from the tip that had been previously inserted. After the device is inserted into the anatomy or vasculature, the method may include the step of performing a medical procedure using the device, for example, treating an aneurysm. The method may further include the step of removing the device, which may involve using a fiber running substantially through the device. The fiber may accordingly be configured to assure complete removal of the device.





BRIEF DESCRIPTION OF THE DRAWINGS

The figures in this document illustrate various exemplary embodiments of the present invention. Embodiments of the present invention may include part or all of the features shown in one of these drawings, or may include features from two or more figures. Embodiments of the present invention may also include features described in the specification, or limitations to features described in the specification. Furthermore, embodiments of the present invention may include features that would be familiar to a person of ordinary skill in the art having studied this document.



FIG. 1 is a side view illustrating an embodiment of a medical device in accordance with the present invention;



FIG. 2 is a detail isometric view illustrating a portion of the body and liner of the medical device illustrated in FIG. 1;



FIG. 3 is a detail isometric view illustrating another portion of the body and liner of the medical device illustrated in FIG. 1;



FIG. 4 is an isometric view showing an exemplary embodiment of the tip of a medical device in accordance with the present invention;



FIG. 5 is a sectional side view further illustrating the exemplary embodiment of the tip of the medical device shown in FIG. 4, illustrating the tip substantially comprising the liner;



FIG. 6 is an isometric view showing another exemplary embodiment of the tip of a medical device in accordance with the present invention;



FIG. 7 is a sectional side view further illustrating the exemplary embodiment of the tip of the medical device shown in FIG. 6, illustrating, among other things, an end sleeve;



FIG. 8 is an isometric view showing additional features that may be part of the tip of the medical device shown in FIG. 6, including a fiber;



FIG. 9 is a sectional side view further illustrating the additional features shown in FIG. 8;



FIG. 10 is an isometric view showing an exemplary embodiment of an anti-collapsing structure and markers that may be part of the tip of a medical device in accordance with the present invention;



FIG. 11 is an isometric view showing another exemplary embodiment of an anti-collapsing structure and markers that may be part of the tip of a medical device in accordance with the present invention;



FIG. 12 is a sectional side view further illustrating the anti-collapsing structure and markers shown in FIG. 11;



FIG. 13 is an isometric view showing another exemplary embodiment of an anti-collapsing structure and markers that may be part of the tip of a medical device in accordance with the present invention;



FIG. 14 is a side view illustrating an embodiment of markers in accordance with the present invention;



FIG. 15 is a side view illustrating another embodiment of markers in accordance with the present invention;



FIG. 16 is a detail sectional side view showing the embodiment of markers illustrated in FIG. 14;



FIG. 17 is a detail sectional side view showing the embodiment of markers illustrated in FIG. 15;



FIG. 18 is a side view illustrating setting the tip of an exemplary embodiment of the present invention;



FIG. 19 is a cut-a-way side view illustrating using the bend in the tip of a medical device in accordance with an exemplary embodiment of the present invention to facilitate navigation through a bifurcation in vasculature;



FIG. 20 is a cut-a-way side view illustrating using the bend in the tip of a medical device in accordance with an exemplary embodiment of the present invention to treat an aneurysm; and



FIG. 21 is a flow chart illustrating steps of an exemplary embodiment of a method in accordance with the present invention.





DETAILED DESCRIPTION

The present invention provides medical devices and intravascular devices such as hollow guide wires, and methods of using medical devices and intravascular devices. Exemplary embodiments of medical devices in accordance with the present invention may be flexible in bending, minimize trauma to the patient's anatomy or vasculature, assure complete removal of the medical device, or provide a combination of these features. Other features may also be provided.


Accordingly, FIG. 1 illustrates an embodiment of a medical device 100 in accordance with the present invention that includes a body 105 that has a proximal end 107, a distal end 109, and an axis (longitudinal axis) extending through the proximal end 107 and the distal end 109. Medical device 100 may be, for example, an endovascular or intravascular device. The body 105 may have a plurality of cuts 110 (one of which is labeled 110 on FIG. 1) part way through the body 105, and the cuts 110 may be approximately or substantially perpendicular to the axis. The body 105 may have a portion 112 without any cuts 110, a portion 113 with cuts 110 relatively far apart, and a portion 114 with cuts 110 relatively close together. Exemplary embodiments of portions 113, and 114, and cuts 110 are illustrated in more detail in FIGS. 2 and 3. Cuts 110 may be saw cut, notched, laser cut, ground, EDMed, etched, forged, molded, or formed by another method suitable for shaping the material from which body 105 is made. The geometry of cuts 110 may be as shown, or in various embodiments may be of other geometries forming openings through the wall of body 105. Returning to FIG. 1, the spacing of cuts 110 may vary gradually from portion 113 to portion 114, or the spacing may vary discreetly. In some embodiments, the spacing of cuts 110 may be substantially uniform throughout all or part of body 105. In some embodiments, the geometry of cuts 110 may vary, for example, in width (in the direction of the axis of body 105) or depth.


Still referring to FIG. 1, medical device 100 may further include a tip 120 on the distal end of medical device 100, which may extend from the distal end 109 of body 105. As will be described in further detail below, tip 120 may substantially comprise one or more non-metallic materials, for example, a polymer material. Due in some embodiments to the properties of the material from which it is made, its dimensions, or both, tip 120 may be more flexible in bending than body 105. In other words, tip 120 may be a flexible tip. In addition, as will be described in more detail below, tip 120 may be configured to be custom shaped by the person who will operate the device 100, for example, to perform a medical procedure. Tip 120 may have its own distal end 111, for example on the far distal end of device 100. Tip 120 may be marked, for example, on the distal end 111 of tip 120, for example, with a marker band, or other indication. The presence of this marking or indication may be checked upon removal of device 100 from the patient to verify that all of device 100 has been completely removed. Tip 120 may be flared at distal end 111, for example, on the inside, or may be rounded, for example to minimize trauma to the anatomy or vasculature.


Referring to FIGS. 2 and 3, body 105 may be substantially comprised of metal, which may be a nickel-titanium alloy (nitinol). The nitinol may be a super-elastic nitinol, meaning its transition temperature may be below the use temperature. In many embodiments of the present invention, the use temperature may be human body temperature or room temperature. In other embodiments, body 105 may be a polymer material or stainless steel, or another material suitable for the application. Body 105 may be substantially tubular as shown, or in some embodiments, may be solid. Medical device 100 may further comprise a substantially tubular liner 203, which may extend the length of body 105, for example from proximal end 107 at least to distal end 109. Liner 203 may be located inside body 105 (as shown) or may be located outside body 105. Liner 203 may be located inside body 105, for example, to make the inside of device 100 smoother to reduce friction or abrasiveness, for example, for passing objects through the interior of device 100. Liner 203 may be located outside body 105, for example, to make the outside of device 100 smoother to reduce friction, abrasiveness, and trauma to the anatomy or vasculature. Some embodiments of the present invention may have two liners 203, one inside body 105 and one outside body 105.


Liner 203 may lack many or all of the cuts 110 of body 105, thus forming a barrier that may reduce or eliminate leakage between the interior and exterior of body 105. In other words, liner 203 may seal cuts 110. Liner 203 may be made of an elastomeric material. Liner 203 may be made of a polymer, such as a polyethylene blend, or PTFE. Liner 203 may further extend distal to body 105 (for example beyond distal end 109), for example, through tip 120, and, as illustrated best in FIG. 5, in some embodiments, may substantially comprise or form tip 120. As used herein, tip 120 substantially comprises liner 203 in embodiments where tip 120 is comprised of part of liner 203, but tip 120 does not include a separate end sleeve 726 (illustrated in FIG. 7). As used herein, the statement that tip 120 substantially comprises liner 203 does not mean that tip 120 does not have markers 122 and 123, or an anti-collapsing structure (e.g. coil 1032 or braid 1333) (described below).


End sleeve 726 may be substantially tubular and is illustrated in FIGS. 6-13, and is a component of some embodiments of medical device 100. End sleeve 726 may have the same or a similar inside and outside diameter as distal end 109 of body 105 (illustrated best in FIG. 7), and may substantially comprise a polymer material. End Sleeve 726 may, for example, be a lamination of PEBAX, for instance, and may have a durometer hardness of 85 A. Various hardnesses may be preferred for various applications and embodiments. End sleeve 726 may, in some embodiments, be attached to body 105, for example, with an adhesive. In some embodiments of tip 120, liner 203 and end sleeve 726 may be attached to each other, for example with an adhesive (e.g. cyanoacrylate), or may not be attached to each other, e.g. to promote flexibility of tip 120. Embodiments having two liners 203 (for example, a first liner 203 inside the body and a second liner 203 outside the body) may have an end sleeve 726 disposed between the two liners 203. In embodiments with either one or more liners, the end sleeve 726 may extend beyond (distal to) the end or ends of one or more liners 203. In other words, one or more liners 203 may terminate substantially proximal to the distal end 711 of end sleeve 726. As used here, substantially proximal means at least 10 percent of the length of tip 120 from the distal end 711 of end sleeve 726.


As illustrated in FIGS. 10-13, tip 120 of medical device 100 may further comprise an anti-collapsing structure, which may be coil 1032 as illustrated in FIGS. 10-12 or braid 1333 as illustrated in FIG. 13. The anti-collapsing structure (e.g. coil 1032 or braid 1333) may be located between liner 203 and end sleeve 726 a illustrated best in FIG. 12. In some embodiments, the anti-collapsing structure may be one or more grooves 1035 as illustrated in FIG. 12. Groove 1035 may be a helical groove (shown), or may be a plurality of circular grooves, for example circumferential to the axis of body 105 or medical device 100. Groove 1035 may be cut in part of tip 120, for example, liner 203 or end sleeve 726 (shown). Groove 1035 may be cut on the inside (shown) or the outside, depending on the embodiment. As would be apparent to a person skilled in the art, the outside may be more accessible for cutting groove 1035, particularly in smaller diameter embodiments of device 100. Coil 1032 may be located inside groove 1035 (for example, where groove 1035 is helical). In other embodiments, groove 1035 may be hollow or may contain another component or material. For example, in embodiments having a plurality of circumferential grooves 1035, rings may be disposed in grooves 1035, e.g. rings comprised of a metal or polymer, which may have a substantially higher stiffness (e.g., modulus of elasticity) than liner 203 or end sleeve 726.


Medical device 100 may comprise at least one tip marker 122 or 123 as illustrated in FIGS. 1 and 4-20. As illustrated, many embodiments include two markers, marker 122 at the distal end 111 of tip 120 and marker 123 at the base of tip 120, for example, near distal end 109 of body 105. As used herein, the statement that tip 120 substantially comprises a non-metallic material means, for example, that liner 203 and exterior portion 726 (in embodiments where provided) are not made of metal, but markers 122 and 123, and anti-collapsing structure (e.g. coil 1032 or braid 1333) may be any material including a metal. Markers 122 and 123 may be made of a material such as platinum that is readily distinguishable with X-ray fluoroscopy. Markers 122 and 123 may be short tubular sleeves or bands as illustrated in FIGS. 4-10, 13, 14, and 16, or may be coils as illustrated in FIGS. 11, 12, 15, and 17. In some embodiments having an anti-collapsing structure that is a coil 1032, markers 122, 123, or both, may be formed from the same wire as coil 1032, and may be integral therewith. For illustration, see FIG. 11. In other embodiments, markers 122 and 123 may be coils but may be separate components from coil 1032. The coils of markers 122 and 123 may be closer together (i.e. in the axial direction) than the coils of coil 1032 as shown. The coils of markers 122 and 123 may, in fact, be touching each other or nearly touching. The markers 122 and 123 may be located between liner 203 and end sleeve 726 as illustrated best in FIGS. 7, 9, and 12. Markers 122 and 123 may be covered all or in part by a material 528 (as illustrated best in FIG. 5 for marker 123) that may be smooth, soft, slippery, or some combination thereof to minimize trauma to the patient's anatomy or vasculature 1990. Material 528 may be an adhesive, for example, a UV adhesive. In some embodiments, for example, not having an end sleeve 726, markers 122 and 123 may be located inside liner 203 (as illustrated in FIG. 5 for marker 122).


There may be an interference fit between marker 122 or 123 and liner 203. And, there may be an interference fit between marker 122 or 123 and end sleeve 726. Such interference fits may hold markers 122 and 123 in place. Markers 122 and 123 may also be held in place with an adhesive, or may be thermally fused, i.e. by melting a polymer such as a thermal plastic around marker 122 or 123. Material 528 shown in FIG. 5, for example, may be an adhesive or a polymer. In some embodiments, markers 122, 123, or both may be recessed in a groove 1651 as illustrated in FIGS. 14-17. Groove 1651 may be cut, for example, in body 105 as shown, but may alternatively be cut in liner 203 or end sleeve 726, for further example. Markers 122 and 123 may be short cylinders or sleeves as illustrated in FIGS. 14 and 16, which may be crimped or swaged into groove 1651. In another embodiment, illustrated in FIGS. 15 and 17, markers 122 and 123 may be coils, which may be expanded to install them in groove 1651. Markers 122 and 123 may be covered with a material 528 as described above and as illustrated in FIGS. 15 and 17 to help hold markers 122 and 123 in place or to minimize trauma to the patient's anatomy or vasculature 1990.


As illustrated in FIGS. 8-13, medical device 100 may have a fiber 840 extending through body 105. Fiber 840 may be configured to provide tensile strength (for example, redundant tensile strength) to medical device 100 or increase its tensile strength, for example, to assure complete removal of device 100 from the patient. As used herein, being configured to increase the tensile strength of device 100 includes increasing device 100's ultimate tensile strength, and providing redundancy in the tensile strength of device 100, for example, in case body 105, liner 203, or another component or joint has less tensile strength than anticipated. Thus, in some embodiments, fiber 840 may have a greater tensile strength than the remainder of medical device 100, but in other embodiments fiber 840 may have a lower tensile strength than a properly manufactured and undamaged device 100. Fiber 840 may substantially comprise a material selected for its high tensile strength. Fiber 840 may be a polymer, a metal, a carbon fiber, a ceramic fiber, or a combination of fibers. Fiber 840 may be formed from a composite material, and the fibers of the composite material may be substantially aligned in the axial direction of fiber 840. Fiber 840 may, for example, be made of KEVLAR.


Fiber 840 may be located between body 105 and liner 203, and may bend back and forth or zigzag, for example in a somewhat sinusoidal pattern, be bunched, or wound in a spiral, so as to avoid or minimize increasing the bending stiffness of medical device 100 or maintain symmetrical bending properties of medical device 100 around its longitudinal axis. For example, fiber may zigzag back and forth over approximately ½ of the diameter of device 100. This zigzag pattern may, for instance, continue along one side of device 100, or may gradually spiral around device 100. Fiber 840 may wind (for example winds 842) around at least part of the components of tip 120, for instance, to help secure tip 120 to fiber 840. For example, fiber 840 may wind (winds 842) around liner 203 (shown) or end sleeve 726. Fiber 840 may be secured, for instance, to tip 120, for example, by being glued, twisted, or tied. Some embodiments may have a plurality of fibers 840. For example, in one embodiment device 100 may have two fibers 840 that may zigzag, for example, on opposite sides, or may spiral in opposite directions.


Various dimensions of tip 120 may be desirable for various embodiments of the present invention. Specifically, in various embodiments, tip 120 may be from as little as 1 millimeter in length to as long as 1500 millimeters in length. Other embodiments may even be outside of this range. Shorter lengths (e.g. as short as 1 millimeter long) may, for example, provide a soft tip 120 for medical device 100, which may reduce trauma to the patient's anatomy, for example, compared with having no tip 120 at all. Longer tips 120 may offer the other advantages described herein. Some embodiments of the present invention may have a tip 120 that is 10 to 40 millimeters long. For instance, embodiments of the present invention may have a tip 120 that is 31 millimeters long, and markers 122 and 123 may be 30 millimeters apart on embodiments having such markers. Such lengths may offer the various features and advantages described herein.


In addition, various outside diameters of medical device 100 may be desirable for various embodiments of the present invention. Generally, body 105 may have an outside diameter in the range of 0.010 to 0.500 inches. Other embodiments may even be outside of this range. For instance, some embodiments may be larger in diameter. However, within the range identified, some embodiments of the present invention may have a body with an outside diameter in the range of 0.030 to 0.040 inches. For example, embodiments of the present invention may have a body 105 with an outside diameter of 0.033 inches. Other embodiments may have a body with an outside diameter in the range of 0.020 to 0.040 inches. Still other embodiments may have a body with an outside diameter in the range of 0.015 to 0.040 inches. In some embodiments, the diameter of body 105 may vary along its length, for example, with the largest diameter at the proximal end 107 and the smallest diameter at the distal end 109. The outside diameter of tip 120 may be similar or less than the outside diameter of body 105, for instance, 0.033 inches.


Furthermore, various lengths of medical device 100 may be desirable for various embodiments of the present invention. Medical device 100 may be, for example, 155 centimeters long. Referring to FIG. 1, portions 112 and 113 with cuts 110, and tip 120, may total, for example, 48 centimeters long.


Turning now to methods of using, for example, medical device 100, FIG. 18 illustrates how tip 120 of medical device 100 may be set in shape with steam 1848 and mandrel 1840 prior to using medical device 100. FIG. 19 illustrates how the shape or curvature of tip 120 may be used to navigate medical device 100 through a bifurcation 1995 in the patient's anatomy or vasculature 1990. FIG. 20 further illustrates how the shape or curvature of tip 120 may be used to treat an aneurysm 2092 in the patient's vasculature 1990. Even further, FIG. 21 illustrates various steps of an exemplary embodiment of a method in accordance with the present invention, method 2100.


Method 2100 illustrates a method of treating a patient with a medical device (e.g. device 100). First, the physician, for example, may examine the patient (step 2161) to determine what the problem is (e.g. an aneurysm) and plan the procedure (step 2163), for example, to correct the problem. Method 2100 then generally includes the step of selecting a medical device (step 2166), which may have various attributes of medical device 100, described above such as having a tip 120 or cuts 110. Selecting medical device 100 may include, for example, choosing the desired diameter and length of device 100. Various other features may be selected, including those features and embodiments described herein. Method 2100 also includes shaping (step 2171) tip 120, which may comprise bending tip 120; and inserting (step 2178) medical device 100 into anatomy or vasculature 1990. Then the physician or operator may guide (step 2181) the device 100 through the anatomy or vasculature (e.g. 1990). Inserting (step 2178) or guiding (step 2181) may comprise axially translating medical device 100, rotating medical device 100, and monitoring the distal end 109 or tip 120 (e.g. distal end 111) of medical device 100. For example, as illustrated in FIG. 19, when medical device 100 approaches a bifurcation 1995, for instance, in vasculature 1990, the operator may rotate the proximal end 107 (shown in FIG. 1) of device 100 while monitoring or observing marker 122 on distal end 111 of tip 120, and possibly also marker 123, for example, with an X-ray viewer. When marker 122, and thus distal end of device 100 and tip 120 (distal end 111), is pointed toward the desired passageway of vasculature 1990, the operator may then push medical device 100 further into vasculature 1990 so that tip 120 goes into the desired passageway.


Method 2100 may further comprise the-step, after shaping tip 120 (step 2171), of setting (step 2173) the shape of tip 120. Setting (step 2173) the shape may comprise heating tip 120, as illustrated in FIG. 18. Medical device 100 may be substantially tubular, and method 2100 may further comprise the step, after shaping tip 120 (step 2171), of removing (step 2176) a mandrel 1840 from tip 120. Thus, tip 120 may be shaped (step 2171) by bending tip 120 while a mandrel 1840 is inside tip 120. The mandrel 1840, which may be wire, for example, stainless steel, will then hold the shape of tip 120 while tip 120 is heated, for instance, with steam 1848 produced by steam source 1845. Thus, the operator or physician who is about to perform the medical procedure (step 2183) with medical device 100, may bend (step 2171) tip 120 based on the shape needed for the particular procedure and the patient's particular anatomy. The physician may then set the shape (step 2173) by heating tip 120 with a steam source 1845 that may be readily available. Then the physician may remove mandrel 1840 (step 2176), leaving tip 120 with the desired shape, but flexible. Mandrel 1840 may have been inserted (step 2168) by the physician, or may have been inserted by the manufacturer of device 100 before shipment to the physician.


Method 2100 may further comprise the step, after inserting medical device 100 into the anatomy or vasculature 1990 (step 2178), of performing a medical procedure step 2183) using medical device 100. The medical procedure (of step 2183) may be, for example, treatment of aneurisms, AVMs, bleeds, tumors, embolisms, embolic stroke thrombolysis, and thrombolectomy. In an exemplary embodiment, the procedure (of step 2183) may include treating an aneurysm 2092 as illustrated in FIG. 20, for example, a cerebral or brain aneurysm Such a treatment may involve, for example, introduction of an agent such as a glue material through device 100, stenting, installation of a graft, or balloon immobilization. Other procedures (of step 2183) may include obtaining access to the uterus, fallopian tubes, urinary tract, sinuses, esophagus, lungs, vertebroplasty, and gastroenterology. A gradual curvature of tip 120 is shown in FIG. 20, however, tip 120 may be shaped in radial bends, for example from 5 degrees to 120 degrees or in other complex shapes as needed by the physician. The length of tip 120 extending distal to the bend may be selected based on the size of the aneurysm 2092, the size of the vasculature 1990, and other factors.


Method 2100, may further comprise the step of removing medical device 100 (step 2186). This may involve using fiber 840 described above, for example, running substantially through medical device 100. To remove medial device 100, the operator or physician may pull on the proximal end 107 of medical device 100. If medical device 100 should pull apart or break, for example, tip 120 should separate from body 105, then fiber 840 may be utilized to facilitate or assure complete removal of medical device 100, including tip 120. To do so, the operator or physician may continue pulling on proximal end 107. After the slack is taken up from fiber 840, fiber 840 will then pull on tip 120. Accordingly, Fiber 840 may be configured to facilitate or assure complete removal of medical device 100. The physician may also provide post-procedure care (step 2188) to the patient, for example, verifying that the problem is corrected and that no complications have developed.


The above embodiments are illustrative of the present invention, but are not intended to limit its scope. Numerous modifications and alternative arrangements may be devised by those skilled in the art without departing from the spirit and scope of the present invention, and the appended claims are intended to cover such modifications and arrangements.

Claims
  • 1. A catheter, comprising: an elongate shaft having a proximal section and a distal section;wherein the shaft includes an inner surface defining a lumen;wherein a plurality of slots are formed in the distal section;an elongate liner disposed in the shaft along the inner surface, wherein a distal portion of the liner extends distally from the distal section of the shaft; andwherein the distal portion of the liner deflects radially outward to define a flared tip with an enlarged section that includes a radiopaque marker band.
  • 2. The catheter of claim 1, further comprising a second liner disposed on an outer surface of the shaft.
  • 3. The catheter of claim 1, wherein the slots extend part way through the shaft.
  • 4. The catheter of claim 1, wherein the tip member is shapeable.
  • 5. The catheter of claim 1, wherein the distal portion of the liner has a length and wherein the tip member extends along the entire length of the distal portion.
  • 6. The catheter of claim 1, wherein the tip member is more flexible in bending than the distal section of the shaft.
CROSS REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. application Ser. No. 10/188,929, filed Jul. 3, 2002; now abandoned which claims priority to U.S. Provisional Application Ser. No. 60/302,685, filed Jul. 5, 2001, the entire disclosures of which are incorporated herein by reference.

US Referenced Citations (350)
Number Name Date Kind
1553227 Feyk et al. Sep 1925 A
1866888 Hawley Jul 1932 A
2275827 Plensler Mar 1942 A
2413805 Vickers Jan 1947 A
2441166 Raspert May 1948 A
2561890 Stoddard Jul 1951 A
2722614 Fryklund Nov 1955 A
2857536 Light Oct 1958 A
2864017 Waltscheff Dec 1958 A
2871793 Michie et al. Feb 1959 A
3249776 Anderson et al. May 1966 A
3322984 Anderson May 1967 A
3334253 Hill Aug 1967 A
3363470 Yavne Jan 1968 A
3452227 Welch Jun 1969 A
3452742 Muller Jul 1969 A
3463953 Maxwell Aug 1969 A
3512019 Durand May 1970 A
3544868 Bates Dec 1970 A
3625200 Muller Dec 1971 A
3686990 Margolien Aug 1972 A
3841308 Tate Oct 1974 A
3890977 Wilson Jun 1975 A
3906938 Fleischhacker Sep 1975 A
4000672 Sitterer et al. Jan 1977 A
4003369 Heilman et al. Jan 1977 A
4020829 Willson et al. May 1977 A
4142119 Madey Feb 1979 A
4215703 Willson Aug 1980 A
4330725 Hintz May 1982 A
4425919 Alston, Jr. et al. Jan 1984 A
4476754 Ducret Oct 1984 A
4482828 Vergues et al. Nov 1984 A
4545390 Leary Oct 1985 A
4563181 Wijayarathna et al. Jan 1986 A
4574670 Johnson Mar 1986 A
4580551 Siegmund et al. Apr 1986 A
4583404 Bernard et al. Apr 1986 A
4635270 Gürs Jan 1987 A
4665906 Jervis May 1987 A
4676249 Arenas et al. Jun 1987 A
4721117 Mar et al. Jan 1988 A
4737153 Shimamura et al. Apr 1988 A
4763647 Gambale Aug 1988 A
4774949 Fogarty Oct 1988 A
4781092 Gaiser Nov 1988 A
4781186 Simpson et al. Nov 1988 A
4786220 Fildes et al. Nov 1988 A
4790331 Okada et al. Dec 1988 A
4800890 Cramer Jan 1989 A
4811743 Stevens Mar 1989 A
4827941 Taylor et al. May 1989 A
4831858 Yoshizawa May 1989 A
4832047 Sepetka et al. May 1989 A
4846186 Box et al. Jul 1989 A
4846193 Tremulis et al. Jul 1989 A
4867173 Leoni Sep 1989 A
4875489 Messner et al. Oct 1989 A
4884579 Engelson Dec 1989 A
4911148 Sosnowski et al. Mar 1990 A
4917102 Miller et al. Apr 1990 A
4922164 Jacobsen et al. May 1990 A
4922777 Kawabata May 1990 A
4932959 Horzewski et al. Jun 1990 A
4934380 Toledo Jun 1990 A
4953553 Tremulis Sep 1990 A
4954022 Underwood et al. Sep 1990 A
4955384 Taylor et al. Sep 1990 A
4955862 Sepetka Sep 1990 A
4960410 Pinchuk Oct 1990 A
4964409 Tremulis Oct 1990 A
4966163 Kraus et al. Oct 1990 A
4968306 Huss et al. Nov 1990 A
4985022 Fearnot et al. Jan 1991 A
4989608 Ratner Feb 1991 A
4990143 Sheridan Feb 1991 A
4994069 Ritchart et al. Feb 1991 A
4998923 Samson et al. Mar 1991 A
5007434 Doyle et al. Apr 1991 A
5009137 Dannatt Apr 1991 A
5040543 Badera et al. Aug 1991 A
5050606 Tremulis Sep 1991 A
5052404 Hodgson Oct 1991 A
5059177 Towne et al. Oct 1991 A
5063935 Gamble Nov 1991 A
5065769 De Toledo Nov 1991 A
5095915 Engelson Mar 1992 A
5106455 Jacobsen et al. Apr 1992 A
5109830 Cho May 1992 A
5125395 Adair Jun 1992 A
5135531 Shiber Aug 1992 A
5144959 Gambale et al. Sep 1992 A
5147317 Shank et al. Sep 1992 A
5181668 Tsuji et al. Jan 1993 A
5205830 Dassa et al. Apr 1993 A
5211183 Wilson May 1993 A
5228441 Lundquist Jul 1993 A
5238004 Sahatjian et al. Aug 1993 A
5242759 Hall Sep 1993 A
5243996 Hall Sep 1993 A
5250069 Nobuyoshi et al. Oct 1993 A
5254106 Feaster Oct 1993 A
5254107 Soltesz Oct 1993 A
5256144 Kraus et al. Oct 1993 A
5257974 Cox Nov 1993 A
5259393 Corso, Jr. et al. Nov 1993 A
5267979 Appling et al. Dec 1993 A
5267982 Sylvanowicz Dec 1993 A
5279562 Sirhan et al. Jan 1994 A
5284128 Hart Feb 1994 A
5300032 Hibbs et al. Apr 1994 A
5304131 Paskar Apr 1994 A
5306252 Yutori et al. Apr 1994 A
5308435 Ruggles et al. May 1994 A
5315906 Ferenczi et al. May 1994 A
5315996 Lundquist May 1994 A
5318529 Kontos Jun 1994 A
5322064 Lundquist Jun 1994 A
5329923 Lundquist Jul 1994 A
5333620 Moutafis et al. Aug 1994 A
5334145 Lundquist et al. Aug 1994 A
5336205 Zenzen et al. Aug 1994 A
5341818 Abrams et al. Aug 1994 A
5345937 Middleman et al. Sep 1994 A
5345945 Hodgson et al. Sep 1994 A
5354623 Hall Oct 1994 A
5358493 Schweich et al. Oct 1994 A
5358796 Nakamura et al. Oct 1994 A
5365942 Shank Nov 1994 A
5365943 Jansen Nov 1994 A
5368564 Savage Nov 1994 A
5368661 Nakamura et al. Nov 1994 A
5376084 Bacich et al. Dec 1994 A
5381782 DeLaRama et al. Jan 1995 A
5406960 Corso, Jr. Apr 1995 A
5411476 Abrams May 1995 A
5437288 Schwartz et al. Aug 1995 A
5438993 Lynch et al. Aug 1995 A
5439000 Gunderson et al. Aug 1995 A
5441483 Avitall Aug 1995 A
5441489 Utsumi et al. Aug 1995 A
5447812 Fukuda et al. Sep 1995 A
5454787 Lundquist Oct 1995 A
5460187 Daigle et al. Oct 1995 A
5470330 Goldenberg et al. Nov 1995 A
5476701 Berger Dec 1995 A
5477856 Lundquist Dec 1995 A
5496294 Hergenrother et al. Mar 1996 A
5497785 Viera Mar 1996 A
5507301 Wasicek et al. Apr 1996 A
5507729 Lindenberg et al. Apr 1996 A
5507751 Goode et al. Apr 1996 A
5507766 Kugo et al. Apr 1996 A
5514128 Hillsman et al. May 1996 A
5520194 Miyata et al. May 1996 A
5520645 Imran et al. May 1996 A
5531719 Takahashi Jul 1996 A
5533985 Wang Jul 1996 A
5546958 Thorud et al. Aug 1996 A
5551444 Finlayson Sep 1996 A
5554139 Okajima Sep 1996 A
5562619 Mirarchi et al. Oct 1996 A
5569197 Helmus et al. Oct 1996 A
5569200 Umeno et al. Oct 1996 A
5569218 Berg Oct 1996 A
5571073 Castillo Nov 1996 A
5573520 Schwartz et al. Nov 1996 A
5584821 Hobbs et al. Dec 1996 A
5599326 Carter Feb 1997 A
5599492 Engelson Feb 1997 A
5601539 Corso, Jr. Feb 1997 A
5605162 Mirzaee et al. Feb 1997 A
5622184 Ashby et al. Apr 1997 A
5630806 Inagaki et al. May 1997 A
5637089 Abrams et al. Jun 1997 A
5653697 Quiachon et al. Aug 1997 A
5656011 Uihlein et al. Aug 1997 A
5658264 Samson et al. Aug 1997 A
5666968 Imran et al. Sep 1997 A
5666969 Urick et al. Sep 1997 A
5669926 Aust et al. Sep 1997 A
5676659 McGurk Oct 1997 A
5676697 McDonald Oct 1997 A
5682894 Orr et al. Nov 1997 A
5690120 Jacobsen et al. Nov 1997 A
5720300 Fagan et al. Feb 1998 A
5722609 Murakami Mar 1998 A
5728063 Preissman et al. Mar 1998 A
5741429 Donadio, III et al. Apr 1998 A
5746701 Noone May 1998 A
5769830 Parker Jun 1998 A
5772609 Nguyen et al. Jun 1998 A
5782809 Umeno et al. Jul 1998 A
5788653 Lorenzo Aug 1998 A
5788654 Schwager Aug 1998 A
5788707 Del Toro et al. Aug 1998 A
5792124 Horrigan et al. Aug 1998 A
5797856 Frisbie et al. Aug 1998 A
5800454 Jacobsen et al. Sep 1998 A
5807075 Jacobsen et al. Sep 1998 A
5807249 Qin et al. Sep 1998 A
5810885 Zinger Sep 1998 A
5813996 St. Germain et al. Sep 1998 A
5827225 Ma Schwab Oct 1998 A
5827242 Follmer et al. Oct 1998 A
5833632 Jacobsen et al. Nov 1998 A
5836926 Peterson et al. Nov 1998 A
5843050 Jones et al. Dec 1998 A
5843244 Pelton et al. Dec 1998 A
5851203 van Muiden Dec 1998 A
5895378 Nita Apr 1999 A
5897537 Berg et al. Apr 1999 A
5902254 Magram May 1999 A
5902290 Peacock, III et al. May 1999 A
5904657 Unsworth et al. May 1999 A
5906618 Larson, III May 1999 A
5911715 Berg et al. Jun 1999 A
5911717 Jacobsen et al. Jun 1999 A
5916177 Schwager Jun 1999 A
5916178 Noone Jun 1999 A
5916194 Jacobsen et al. Jun 1999 A
5931830 Jacobsen et al. Aug 1999 A
5935108 Katoh et al. Aug 1999 A
5947940 Beisel Sep 1999 A
5951539 Nita et al. Sep 1999 A
5971975 Mills et al. Oct 1999 A
5980471 Jafari Nov 1999 A
6001068 Uchino et al. Dec 1999 A
6004279 Crowley et al. Dec 1999 A
6014919 Jacobsen et al. Jan 2000 A
6017319 Jacobsen et al. Jan 2000 A
6022343 Johnson et al. Feb 2000 A
6022369 Jacobsen et al. Feb 2000 A
6024730 Pagan Feb 2000 A
6027461 Walker et al. Feb 2000 A
6042553 Solar et al. Mar 2000 A
6045547 Ren et al. Apr 2000 A
6048339 Zirps et al. Apr 2000 A
6056702 Lorenzo May 2000 A
6063101 Jacobsen et al. May 2000 A
6063200 Jacobsen et al. May 2000 A
6066361 Jacobsen et al. May 2000 A
6106485 McMahon Aug 2000 A
6106488 Fleming et al. Aug 2000 A
6139510 Palermo Oct 2000 A
6159187 Park et al. Dec 2000 A
6165292 Abrams et al. Dec 2000 A
6171295 Garabedian et al. Jan 2001 B1
6171296 Chow Jan 2001 B1
6183410 Jacobsen et al. Feb 2001 B1
6193686 Estrada et al. Feb 2001 B1
6197014 Samson et al. Mar 2001 B1
6203485 Urick Mar 2001 B1
RE37148 Shank Apr 2001 E
6210396 MacDonald et al. Apr 2001 B1
6214042 Jacobsen et al. Apr 2001 B1
6228073 Noone et al. May 2001 B1
6248082 Jafari Jun 2001 B1
6251092 Qin et al. Jun 2001 B1
6254549 Ramzipoor Jul 2001 B1
6260458 Jacobsen et al. Jul 2001 B1
6273404 Holman et al. Aug 2001 B1
6273876 Klima et al. Aug 2001 B1
6273879 Keith et al. Aug 2001 B1
6290656 Boyle et al. Sep 2001 B1
6296616 McMahon Oct 2001 B1
6296631 Chow Oct 2001 B2
6302870 Jacobsen et al. Oct 2001 B1
6325790 Trotta Dec 2001 B1
6338725 Hermann et al. Jan 2002 B1
6346091 Jacobsen et al. Feb 2002 B1
6352515 Anderson et al. Mar 2002 B1
6355005 Powell et al. Mar 2002 B1
6355027 Le et al. Mar 2002 B1
6368315 Gillis et al. Apr 2002 B1
6368316 Jansen et al. Apr 2002 B1
6375628 Zadno-Azizi et al. Apr 2002 B1
6375774 Lunn et al. Apr 2002 B1
6379369 Abrams et al. Apr 2002 B1
6390993 Cornish et al. May 2002 B1
6398758 Jacobsen et al. Jun 2002 B1
6428489 Jacobsen et al. Aug 2002 B1
6428512 Anderson et al. Aug 2002 B1
6431039 Jacobsen et al. Aug 2002 B1
6440088 Jacobsen Aug 2002 B1
6478778 Jacobsen et al. Nov 2002 B1
6488637 Eder et al. Dec 2002 B1
6491648 Cornish et al. Dec 2002 B1
6491671 Larson, III et al. Dec 2002 B1
6503244 Hayman Jan 2003 B2
6508803 Horikawa et al. Jan 2003 B1
6524301 Wilson et al. Feb 2003 B1
6530934 Jacobsen et al. Mar 2003 B1
6547779 Levine et al. Apr 2003 B2
6553880 Jacobsen et al. Apr 2003 B2
6556873 Smits Apr 2003 B1
6579246 Jacobsen et al. Jun 2003 B2
6602207 Mann et al. Aug 2003 B1
6602280 Chobotov Aug 2003 B2
6610046 Usami et al. Aug 2003 B1
6623448 Slater Sep 2003 B2
6636758 Sanchez et al. Oct 2003 B2
6638266 Wilson et al. Oct 2003 B2
6652508 Griffin et al. Nov 2003 B2
6682493 Mirigian Jan 2004 B2
6689120 Gerdts Feb 2004 B1
6702762 Jafari et al. Mar 2004 B2
6712826 Lui Mar 2004 B2
6730095 Olson, Jr. et al. May 2004 B2
6749560 Konstorum et al. Jun 2004 B1
6766720 Jacobsen et al. Jul 2004 B1
6777644 Peacock, III et al. Aug 2004 B2
6811544 Schaer Nov 2004 B2
6837898 Boyle et al. Jan 2005 B2
6866642 Kellerman et al. Mar 2005 B2
6887235 O'Connor et al. May 2005 B2
6918882 Skujins et al. Jul 2005 B2
6997937 Jacobsen et al. Feb 2006 B2
7001369 Griffin et al. Feb 2006 B2
7074197 Reynolds et al. Jul 2006 B2
7153277 Skujins et al. Dec 2006 B2
7182735 Shireman et al. Feb 2007 B2
20020013540 Jacobsen et al. Jan 2002 A1
20020019599 Rooney et al. Feb 2002 A1
20030009208 Snyder et al. Jan 2003 A1
20030060732 Jacobsen et al. Mar 2003 A1
20030069522 Jacobsen et al. Apr 2003 A1
20030216668 Howland et al. Nov 2003 A1
20040116831 Vrba Jun 2004 A1
20040142643 Miller et al. Jul 2004 A1
20040167436 Reynolds et al. Aug 2004 A1
20040167437 Sharrow et al. Aug 2004 A1
20040167441 Reynolds et al. Aug 2004 A1
20040181174 Davis et al. Sep 2004 A2
20040181176 Jafari et al. Sep 2004 A1
20060121218 Obara et al. Jun 2006 A1
20060122537 Reynolds et al. Jun 2006 A1
20060189896 Davis et al. Aug 2006 A1
20060264904 Kerby et al. Nov 2006 A1
20080021347 Jacobsen et al. Jan 2008 A1
20080021348 Jacobsen et al. Jan 2008 A1
20080021400 Jacobsen et al. Jan 2008 A1
20080021401 Jacobsen et al. Jan 2008 A1
20080021402 Jacobsen et al. Jan 2008 A1
20080021403 Jacobsen et al. Jan 2008 A1
20080021404 Jacobsen et al. Jan 2008 A1
20080021405 Jacobsen et al. Jan 2008 A1
20080021406 Jacobsen et al. Jan 2008 A1
20080021407 Jacobsen et al. Jan 2008 A1
20080021408 Jacobsen et al. Jan 2008 A1
Foreign Referenced Citations (129)
Number Date Country
723040 Dec 1997 AU
733966 Apr 1998 AU
PI 9712829 Jan 2000 BR
2266685 May 2006 CA
2255781 Mar 2007 CA
1230914 Oct 1999 CN
2539191 Mar 1976 DE
285514 Dec 1990 DE
0 045 931 Feb 1982 EP
0 069 522 Jan 1983 EP
0 087 933 Sep 1983 EP
0 111 044 Jun 1984 EP
0 181 174 May 1986 EP
0 377 453 Jul 1990 EP
0 565 065 Jun 1996 EP
0 778 038 Jun 1997 EP
0 778 039 Jun 1997 EP
0 778 040 Jun 1997 EP
0 812 599 Dec 1997 EP
0 865 772 Sep 1998 EP
0 865 773 Sep 1998 EP
0 521 595 May 1999 EP
0 917 885 May 1999 EP
0 937 481 Aug 1999 EP
0 790 066 Apr 2000 EP
0 608 853 Apr 2003 EP
0 935 947 Dec 2004 EP
0 934 141 Nov 2005 EP
2214354 Aug 1989 GB
2257269 Jan 1993 GB
58-8522 Jan 1983 JP
60091858 May 1985 JP
61022752 Jan 1986 JP
62023361 Jan 1987 JP
62089470 Apr 1987 JP
62299277 Dec 1987 JP
6393516 Apr 1988 JP
63-181774 Jul 1988 JP
63217966 Sep 1988 JP
1089956 Apr 1989 JP
1135363 May 1989 JP
1158936 Jun 1989 JP
2107268 Apr 1990 JP
3081831 Apr 1991 JP
03-122850 Dec 1991 JP
4061840 Feb 1992 JP
4099963 Mar 1992 JP
4213069 Aug 1992 JP
4213070 Aug 1992 JP
4236965 Aug 1992 JP
5149969 Jun 1993 JP
5-506806 Oct 1993 JP
5-309159 Nov 1993 JP
5-507857 Nov 1993 JP
6-501179 Feb 1994 JP
631749 Apr 1994 JP
6169996 Jun 1994 JP
6-63224 Sep 1994 JP
6312313 Nov 1994 JP
728562 May 1995 JP
7124164 May 1995 JP
7124263 May 1995 JP
7136280 May 1995 JP
7148264 Jun 1995 JP
7505561 Jun 1995 JP
7037199 Jul 1995 JP
7185009 Jul 1995 JP
7255855 Oct 1995 JP
7275366 Oct 1995 JP
751067 Nov 1995 JP
8-229888 Sep 1996 JP
8509141 Oct 1996 JP
8317988 Dec 1996 JP
9000164 Apr 1997 JP
9-276413 Oct 1997 JP
9276413 Oct 1997 JP
9-294813 Nov 1997 JP
9294813 Nov 1997 JP
10-118193 May 1998 JP
10328191 Dec 1998 JP
11-267224 Oct 1999 JP
2000-197704 Jul 2000 JP
2000-510722 Aug 2000 JP
2000-511083 Aug 2000 JP
2001-500808 Jan 2001 JP
3325828 Jul 2002 JP
2002-529137 Sep 2002 JP
2002-542901 Dec 2002 JP
2002-543896 Dec 2002 JP
2003-517893 Jun 2003 JP
3649604 Feb 2005 JP
2005-534407 Nov 2005 JP
712908 Jan 1980 SU
758421 Aug 1980 SU
1529365 Dec 1989 SU
WO 9002520 Mar 1990 WO
WO 9113364 Sep 1991 WO
WO 9204072 Mar 1992 WO
WO 9207619 May 1992 WO
WO 9304722 Mar 1993 WO
WO 9311313 Jun 1993 WO
WO 9524236 Sep 1995 WO
WO 9619255 Jun 1996 WO
WO 9710022 Mar 1997 WO
WO 9725914 Jul 1997 WO
WO 9743949 Nov 1997 WO
WO 9744083 Nov 1997 WO
WO 9744086 Nov 1997 WO
WO 9810694 Mar 1998 WO
WO 9904847 Feb 1999 WO
WO 9911313 Mar 1999 WO
WO 0027303 May 2000 WO
WO 0030710 Jun 2000 WO
WO 0048645 Aug 2000 WO
WO 0057943 Oct 2000 WO
WO 0066199 Nov 2000 WO
WO 0067845 Nov 2000 WO
WO 0072907 Dec 2000 WO
WO 0128620 Apr 2001 WO
WO 0136034 May 2001 WO
0145912 Jun 2001 WO
WO 0145773 Jun 2001 WO
WO 0193920 Dec 2001 WO
WO 0213682 Feb 2002 WO
WO 02062540 Aug 2002 WO
WO 03004086 Jan 2003 WO
WO 03008148 Jan 2003 WO
WO 2004012804 Feb 2004 WO
2004047899 Jun 2004 WO
Non-Patent Literature Citations (1)
Entry
“Mechanical Design and Systems Handbook”, H.A. Rothbart, 1964, p. 33-13 (one sheet).
Related Publications (1)
Number Date Country
20080077119 A1 Mar 2008 US
Provisional Applications (1)
Number Date Country
60302685 Jul 2001 US
Continuations (1)
Number Date Country
Parent 10188929 Jul 2002 US
Child 11951975 US