This invention relates generally to flexible medical devices and methods of using them.
Medical devices such as endovascular or intravascular devices have been used for many years for purposes such as performing medical procedures, including treating aneurysms. A medical device such as an intravascular device may be introduced into a patient's anatomy or vasculature at a relatively accessible location, and guided through the patient's anatomy to the desired location. X-ray fluoroscopy has been used to observe the tip of the medical device and the device has been rotated at bifurcations in the anatomy or vasculature before being pushed further to guide the device to the desired location. Medical devices of this type may be solid, for example, a guide wire, or may be hollow and tubular, for example, a catheter. Guide wires may be used to guide one or more tubular intravascular devices to a particular location, and catheters may be used, for instance, to deliver fluids, extract fluids, or deliver various objects, agents, or devices to the particular location.
In many applications it is desirable that a medical device or intravascular device bend easily in order to allow it to make the various bends and turns that are necessary to navigate through the anatomy or vasculature, and in some cases also to minimize trauma to the anatomy or vasculature. However, in many applications it is desirable that the medical device be relatively stiff in torsion in order to allow precise control of rotation in order to guide the device through bifurcations in vasculature or around obstacles. Accordingly, medical and intravascular devices have been described that contain numerous cuts along their length to obtain the desired flexibility in bending while maintaining relative stiffness in torsion. Examples of such devices are described in U.S. Pat. Nos. 5,690,120 and 5,833,632, both of which are incorporated herein by reference in their entirety. An example of a method of making such devices is described in U.S. Pat. No. 6,260,485 B1, which is also incorporated herein by reference in its entirety.
In many applications, it is desirable that the tip of a medical device be soft and bendable so as to minimize trauma to the patient's anatomy and further facilitate negotiating bends and turns in the anatomy or vasculature. Thus, a need exists for such a soft and bendable tip. In addition, the tip of a medical device may be bent or curved so that when the device approaches a bifurcation, or other location where direction needs to be selected, the device may be steered in the correct direction. In the past, tips were bent or curved during initial fabrication of the device. However, in at least some applications, a greater or lesser curvature may be desirable. Accordingly, a need exists for a device wherein the angle or radius of bending or curvature of the tip may be selected by the operator of the medical device, for instance, by the medical doctor performing a medical procedure with the medical device.
Furthermore, in many applications, it is desirable and important that the entire device be removed after the procedure is completed. Thus, it is desirable that the device have a strong and reliable tensile strength throughout its length so that it does not come apart when pulled out of the patient's anatomy or vasculature. Accordingly, a need exists to improve and provide redundancy in the tensile strength of a medical device to assure complete removal of the device.
The present invention provides medical devices including intravascular devices and methods of using medical devices and intravascular devices. Medical devices in accordance with the present invention may be, for example, a guide wire that may be hollow. Features and objects of various embodiments of the present invention include that the devices are flexible in bending, the devices and methods minimize trauma to the patient's anatomy, and the devices and methods assure complete removal of the medical device.
Accordingly, in at least partial fulfillment of these objects, an exemplary embodiment of the present invention includes a medical device that may be an intravascular device, that has a body with a proximal end and a distal end. The body may have a plurality of cuts part way through. The device may also have a tip extending from the distal end of the body, which may be substantially made of a non-metallic material. The tip may be more flexible in bending than the body, and may be configured to be custom shaped by the person who will operate the device. The body may be substantially comprised of metal, which may be super-elastic nitinol. The body may be substantially tubular, and may have at least one substantially tubular liner. The liner may extend from the proximal end of the body to the distal end of the body, and may further extend distal to the body. In some embodiments, the liner may be inside the body and extend through the body, and in some embodiments may further extend through the tip. In some embodiments, the tip may be essentially the distal end of the liner. In other embodiments, the tip may further have a tubular end sleeve, which may be substantially comprised of polymer. The tip may also have an anti-collapsing structure, which may be a groove, a coil, or a braid. The device may also have at least one marker. Some embodiments of the present invention include a fiber extending through the body, which may be configured to increase the device's tensile strength. The fiber may be substantially comprised of a high-strength material, and may zigzag between the body and the liner.
A further exemplary embodiment of the present invention includes a method of treating a patient with a medical device. The method may include the steps of selecting a medical device, which may have a flexible tip; shaping the tip, for instance by bending it; and inserting the device into the anatomy or vasculature. The step of inserting the device may include axially translating the device, rotating the device, and monitoring the distal end or tip. The tip may be made of a non-metallic material and may have at least one marker to facilitate monitoring by observing it, for instance, with X-ray fluoroscopy. The method may also have the step, after the step of shaping, of setting the shape of the tip, for example, by heating the tip. The device may be substantially tubular, and the method may also include the step, after the step of shaping, of removing a mandrel from the tip that had been previously inserted. After the device is inserted into the anatomy or vasculature, the method may include the step of performing a medical procedure using the device, for example, treating an aneurysm. The method may further include the step of removing the device, which may involve using a fiber running substantially through the device. The fiber may accordingly be configured to assure complete removal of the device.
The figures in this document illustrate various exemplary embodiments of the present invention. Embodiments of the present invention may include part or all of the features shown in one of these drawings, or may include features from two or more figures. Embodiments of the present invention may also include features described in the specification, or limitations to features described in the specification. Furthermore, embodiments of the present invention may include features that would be familiar to a person of ordinary skill in the art having studied this document.
The present invention provides medical devices and intravascular devices such as hollow guide wires, and methods of using medical devices and intravascular devices. Exemplary embodiments of medical devices in accordance with the present invention may be flexible in bending, minimize trauma to the patient's anatomy or vasculature, assure complete removal of the medical device, or provide a combination of these features. Other features may also be provided.
Accordingly,
Still referring to
Referring to
Liner 203 may lack many or all of the cuts 110 of body 105, thus forming a barrier that may reduce or eliminate leakage between the interior and exterior of body 105. In other words, liner 203 may seal cuts 110. Liner 203 may be made of an elastomeric material. Liner 203 may be made of a polymer, such as a polyethylene blend, or PTFE. Liner 203 may further extend distal to body 105 (for example beyond distal end 109), for example, through tip 120, and, as illustrated best in
End sleeve 726 may be substantially tubular and is illustrated in
As illustrated in
Medical device 100 may comprise at least one tip marker 122 or 123 as illustrated in FIGS. 1 and 4-20. As illustrated, many embodiments include two markers, marker 122 at the distal end 111 of tip 120 and marker 123 at the base of tip 120, for example, near distal end 109 of body 105. As used herein, the statement that tip 120 substantially comprises a non-metallic material means, for example, that liner 203 and exterior portion 726 (in embodiments where provided) are not made of metal, but markers 122 and 123, and anti-collapsing structure (e.g. coil 1032 or braid 1333) may be any material including a metal. Markers 122 and 123 may be made of a material such as platinum that is readily distinguishable with X-ray fluoroscopy. Markers 122 and 123 may be short tubular sleeves or bands as illustrated in
There may be an interference fit between marker 122 or 123 and liner 203. And, there may be an interference fit between marker 122 or 123 and end sleeve 726. Such interference fits may hold markers 122 and 123 in place. Markers 122 and 123 may also be held in place with an adhesive, or may be thermally fused, i.e. by melting a polymer such as a thermal plastic around marker 122 or 123. Material 528 shown in
As illustrated in
Fiber 840 may be located between body 105 and liner 203, and may bend back and forth or zigzag, for example in a somewhat sinusoidal pattern, be bunched, or wound in a spiral, so as to avoid or minimize increasing the bending stiffness of medical device 100 or maintain symmetrical bending properties of medical device 100 around its longitudinal axis. For example, fiber may zigzag back and forth over approximately ½ of the diameter of device 100. This zigzag pattern may, for instance, continue along one side of device 100, or may gradually spiral around device 100. Fiber 840 may wind (for example winds 842) around at least part of the components of tip 120, for instance, to help secure tip 120 to fiber 840. For example, fiber 840 may wind (winds 842) around liner 203 (shown) or end sleeve 726. Fiber 840 may be secured, for instance, to tip 120, for example, by being glued, twisted, or tied. Some embodiments may have a plurality of fibers 840. For example, in one embodiment device 100 may have two fibers 840 that may zigzag, for example, on opposite sides, or may spiral in opposite directions.
Various dimensions of tip 120 may be desirable for various embodiments of the present invention. Specifically, in various embodiments, tip 120 may be from as little as 1 millimeter in length to as long as 1500 millimeters in length. Other embodiments may even be outside of this range. Shorter lengths (e.g. as short as 1 millimeter long) may, for example, provide a soft tip 120 for medical device 100, which may reduce trauma to the patient's anatomy, for example, compared with having no tip 120 at all. Longer tips 120 may offer the other advantages described herein. Some embodiments of the present invention may have a tip 120 that is 10 to 40 millimeters long. For instance, embodiments of the present invention may have a tip 120 that is 31 millimeters long, and markers 122 and 123 may be 30 millimeters apart on embodiments having such markers. Such lengths may offer the various features and advantages described herein.
In addition, various outside diameters of medical device 100 may be desirable for various embodiments of the present invention. Generally, body 105 may have an outside diameter in the range of 0.010 to 0.500 inches. Other embodiments may even be outside of this range. For instance, some embodiments may be larger in diameter. However, within the range identified, some embodiments of the present invention may have a body with an outside diameter in the range of 0.030 to 0.040 inches. For example, embodiments of the present invention may have a body 105 with an outside diameter of 0.033 inches. Other embodiments may have a body with an outside diameter in the range of 0.020 to 0.040 inches. Still other embodiments may have a body with an outside diameter in the range of 0.015 to 0.040 inches. In some embodiments, the diameter of body 105 may vary along its length, for example, with the largest diameter at the proximal end 107 and the smallest diameter at the distal end 109. The outside diameter of tip 120 may be similar or less than the outside diameter of body 105, for instance, 0.033 inches.
Furthermore, various lengths of medical device 100 may be desirable for various embodiments of the present invention. Medical device 100 may be, for example, 155 centimeters long. Referring to
Turning now to methods of using, for example, medical device 100,
Method 2100 illustrates a method of treating a patient with a medical device (e.g. device 100). First, the physician, for example, may examine the patient (step 2161) to determine what the problem is (e.g. an aneurysm) and plan the procedure (step 2163), for example, to correct the problem. Method 2100 then generally includes the step of selecting a medical device (step 2166), which may have various attributes of medical device 100, described above such as having a tip 120 or cuts 110. Selecting medical device 100 may include, for example, choosing the desired diameter and length of device 100. Various other features may be selected, including those features and embodiments described herein. Method 2100 also includes shaping (step 2171) tip 120, which may comprise bending tip 120; and inserting (step 2178) medical device 100 into anatomy or vasculature 1990. Then the physician or operator may guide (step 2181) the device 100 through the anatomy or vasculature (e.g. 1990). Inserting (step 2178) or guiding (step 2181) may comprise axially translating medical device 100, rotating medical device 100, and monitoring the distal end 109 or tip 120 (e.g. distal end 111) of medical device 100. For example, as illustrated in
Method 2100 may further comprise the-step, after shaping tip 120 (step 2171), of setting (step 2173) the shape of tip 120. Setting (step 2173) the shape may comprise heating tip 120, as illustrated in
Method 2100 may further comprise the step, after inserting medical device 100 into the anatomy or vasculature 1990 (step 2178), of performing a medical procedure step 2183) using medical device 100. The medical procedure (of step 2183) may be, for example, treatment of aneurisms, AVMs, bleeds, tumors, embolisms, embolic stroke thrombolysis, and thrombolectomy. In an exemplary embodiment, the procedure (of step 2183) may include treating an aneurysm 2092 as illustrated in
Method 2100, may further comprise the step of removing medical device 100 (step 2186). This may involve using fiber 840 described above, for example, running substantially through medical device 100. To remove medial device 100, the operator or physician may pull on the proximal end 107 of medical device 100. If medical device 100 should pull apart or break, for example, tip 120 should separate from body 105, then fiber 840 may be utilized to facilitate or assure complete removal of medical device 100, including tip 120. To do so, the operator or physician may continue pulling on proximal end 107. After the slack is taken up from fiber 840, fiber 840 will then pull on tip 120. Accordingly, Fiber 840 may be configured to facilitate or assure complete removal of medical device 100. The physician may also provide post-procedure care (step 2188) to the patient, for example, verifying that the problem is corrected and that no complications have developed.
The above embodiments are illustrative of the present invention, but are not intended to limit its scope. Numerous modifications and alternative arrangements may be devised by those skilled in the art without departing from the spirit and scope of the present invention, and the appended claims are intended to cover such modifications and arrangements.
This application is a continuation of U.S. application Ser. No. 10/188,929, filed Jul. 3, 2002; now abandoned which claims priority to U.S. Provisional Application Ser. No. 60/302,685, filed Jul. 5, 2001, the entire disclosures of which are incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
1553227 | Feyk et al. | Sep 1925 | A |
1866888 | Hawley | Jul 1932 | A |
2275827 | Plensler | Mar 1942 | A |
2413805 | Vickers | Jan 1947 | A |
2441166 | Raspert | May 1948 | A |
2561890 | Stoddard | Jul 1951 | A |
2722614 | Fryklund | Nov 1955 | A |
2857536 | Light | Oct 1958 | A |
2864017 | Waltscheff | Dec 1958 | A |
2871793 | Michie et al. | Feb 1959 | A |
3249776 | Anderson et al. | May 1966 | A |
3322984 | Anderson | May 1967 | A |
3334253 | Hill | Aug 1967 | A |
3363470 | Yavne | Jan 1968 | A |
3452227 | Welch | Jun 1969 | A |
3452742 | Muller | Jul 1969 | A |
3463953 | Maxwell | Aug 1969 | A |
3512019 | Durand | May 1970 | A |
3544868 | Bates | Dec 1970 | A |
3625200 | Muller | Dec 1971 | A |
3686990 | Margolien | Aug 1972 | A |
3841308 | Tate | Oct 1974 | A |
3890977 | Wilson | Jun 1975 | A |
3906938 | Fleischhacker | Sep 1975 | A |
4000672 | Sitterer et al. | Jan 1977 | A |
4003369 | Heilman et al. | Jan 1977 | A |
4020829 | Willson et al. | May 1977 | A |
4142119 | Madey | Feb 1979 | A |
4215703 | Willson | Aug 1980 | A |
4330725 | Hintz | May 1982 | A |
4425919 | Alston, Jr. et al. | Jan 1984 | A |
4476754 | Ducret | Oct 1984 | A |
4482828 | Vergues et al. | Nov 1984 | A |
4545390 | Leary | Oct 1985 | A |
4563181 | Wijayarathna et al. | Jan 1986 | A |
4574670 | Johnson | Mar 1986 | A |
4580551 | Siegmund et al. | Apr 1986 | A |
4583404 | Bernard et al. | Apr 1986 | A |
4635270 | Gürs | Jan 1987 | A |
4665906 | Jervis | May 1987 | A |
4676249 | Arenas et al. | Jun 1987 | A |
4721117 | Mar et al. | Jan 1988 | A |
4737153 | Shimamura et al. | Apr 1988 | A |
4763647 | Gambale | Aug 1988 | A |
4774949 | Fogarty | Oct 1988 | A |
4781092 | Gaiser | Nov 1988 | A |
4781186 | Simpson et al. | Nov 1988 | A |
4786220 | Fildes et al. | Nov 1988 | A |
4790331 | Okada et al. | Dec 1988 | A |
4800890 | Cramer | Jan 1989 | A |
4811743 | Stevens | Mar 1989 | A |
4827941 | Taylor et al. | May 1989 | A |
4831858 | Yoshizawa | May 1989 | A |
4832047 | Sepetka et al. | May 1989 | A |
4846186 | Box et al. | Jul 1989 | A |
4846193 | Tremulis et al. | Jul 1989 | A |
4867173 | Leoni | Sep 1989 | A |
4875489 | Messner et al. | Oct 1989 | A |
4884579 | Engelson | Dec 1989 | A |
4911148 | Sosnowski et al. | Mar 1990 | A |
4917102 | Miller et al. | Apr 1990 | A |
4922164 | Jacobsen et al. | May 1990 | A |
4922777 | Kawabata | May 1990 | A |
4932959 | Horzewski et al. | Jun 1990 | A |
4934380 | Toledo | Jun 1990 | A |
4953553 | Tremulis | Sep 1990 | A |
4954022 | Underwood et al. | Sep 1990 | A |
4955384 | Taylor et al. | Sep 1990 | A |
4955862 | Sepetka | Sep 1990 | A |
4960410 | Pinchuk | Oct 1990 | A |
4964409 | Tremulis | Oct 1990 | A |
4966163 | Kraus et al. | Oct 1990 | A |
4968306 | Huss et al. | Nov 1990 | A |
4985022 | Fearnot et al. | Jan 1991 | A |
4989608 | Ratner | Feb 1991 | A |
4990143 | Sheridan | Feb 1991 | A |
4994069 | Ritchart et al. | Feb 1991 | A |
4998923 | Samson et al. | Mar 1991 | A |
5007434 | Doyle et al. | Apr 1991 | A |
5009137 | Dannatt | Apr 1991 | A |
5040543 | Badera et al. | Aug 1991 | A |
5050606 | Tremulis | Sep 1991 | A |
5052404 | Hodgson | Oct 1991 | A |
5059177 | Towne et al. | Oct 1991 | A |
5063935 | Gamble | Nov 1991 | A |
5065769 | De Toledo | Nov 1991 | A |
5095915 | Engelson | Mar 1992 | A |
5106455 | Jacobsen et al. | Apr 1992 | A |
5109830 | Cho | May 1992 | A |
5125395 | Adair | Jun 1992 | A |
5135531 | Shiber | Aug 1992 | A |
5144959 | Gambale et al. | Sep 1992 | A |
5147317 | Shank et al. | Sep 1992 | A |
5181668 | Tsuji et al. | Jan 1993 | A |
5205830 | Dassa et al. | Apr 1993 | A |
5211183 | Wilson | May 1993 | A |
5228441 | Lundquist | Jul 1993 | A |
5238004 | Sahatjian et al. | Aug 1993 | A |
5242759 | Hall | Sep 1993 | A |
5243996 | Hall | Sep 1993 | A |
5250069 | Nobuyoshi et al. | Oct 1993 | A |
5254106 | Feaster | Oct 1993 | A |
5254107 | Soltesz | Oct 1993 | A |
5256144 | Kraus et al. | Oct 1993 | A |
5257974 | Cox | Nov 1993 | A |
5259393 | Corso, Jr. et al. | Nov 1993 | A |
5267979 | Appling et al. | Dec 1993 | A |
5267982 | Sylvanowicz | Dec 1993 | A |
5279562 | Sirhan et al. | Jan 1994 | A |
5284128 | Hart | Feb 1994 | A |
5300032 | Hibbs et al. | Apr 1994 | A |
5304131 | Paskar | Apr 1994 | A |
5306252 | Yutori et al. | Apr 1994 | A |
5308435 | Ruggles et al. | May 1994 | A |
5315906 | Ferenczi et al. | May 1994 | A |
5315996 | Lundquist | May 1994 | A |
5318529 | Kontos | Jun 1994 | A |
5322064 | Lundquist | Jun 1994 | A |
5329923 | Lundquist | Jul 1994 | A |
5333620 | Moutafis et al. | Aug 1994 | A |
5334145 | Lundquist et al. | Aug 1994 | A |
5336205 | Zenzen et al. | Aug 1994 | A |
5341818 | Abrams et al. | Aug 1994 | A |
5345937 | Middleman et al. | Sep 1994 | A |
5345945 | Hodgson et al. | Sep 1994 | A |
5354623 | Hall | Oct 1994 | A |
5358493 | Schweich et al. | Oct 1994 | A |
5358796 | Nakamura et al. | Oct 1994 | A |
5365942 | Shank | Nov 1994 | A |
5365943 | Jansen | Nov 1994 | A |
5368564 | Savage | Nov 1994 | A |
5368661 | Nakamura et al. | Nov 1994 | A |
5376084 | Bacich et al. | Dec 1994 | A |
5381782 | DeLaRama et al. | Jan 1995 | A |
5406960 | Corso, Jr. | Apr 1995 | A |
5411476 | Abrams | May 1995 | A |
5437288 | Schwartz et al. | Aug 1995 | A |
5438993 | Lynch et al. | Aug 1995 | A |
5439000 | Gunderson et al. | Aug 1995 | A |
5441483 | Avitall | Aug 1995 | A |
5441489 | Utsumi et al. | Aug 1995 | A |
5447812 | Fukuda et al. | Sep 1995 | A |
5454787 | Lundquist | Oct 1995 | A |
5460187 | Daigle et al. | Oct 1995 | A |
5470330 | Goldenberg et al. | Nov 1995 | A |
5476701 | Berger | Dec 1995 | A |
5477856 | Lundquist | Dec 1995 | A |
5496294 | Hergenrother et al. | Mar 1996 | A |
5497785 | Viera | Mar 1996 | A |
5507301 | Wasicek et al. | Apr 1996 | A |
5507729 | Lindenberg et al. | Apr 1996 | A |
5507751 | Goode et al. | Apr 1996 | A |
5507766 | Kugo et al. | Apr 1996 | A |
5514128 | Hillsman et al. | May 1996 | A |
5520194 | Miyata et al. | May 1996 | A |
5520645 | Imran et al. | May 1996 | A |
5531719 | Takahashi | Jul 1996 | A |
5533985 | Wang | Jul 1996 | A |
5546958 | Thorud et al. | Aug 1996 | A |
5551444 | Finlayson | Sep 1996 | A |
5554139 | Okajima | Sep 1996 | A |
5562619 | Mirarchi et al. | Oct 1996 | A |
5569197 | Helmus et al. | Oct 1996 | A |
5569200 | Umeno et al. | Oct 1996 | A |
5569218 | Berg | Oct 1996 | A |
5571073 | Castillo | Nov 1996 | A |
5573520 | Schwartz et al. | Nov 1996 | A |
5584821 | Hobbs et al. | Dec 1996 | A |
5599326 | Carter | Feb 1997 | A |
5599492 | Engelson | Feb 1997 | A |
5601539 | Corso, Jr. | Feb 1997 | A |
5605162 | Mirzaee et al. | Feb 1997 | A |
5622184 | Ashby et al. | Apr 1997 | A |
5630806 | Inagaki et al. | May 1997 | A |
5637089 | Abrams et al. | Jun 1997 | A |
5653697 | Quiachon et al. | Aug 1997 | A |
5656011 | Uihlein et al. | Aug 1997 | A |
5658264 | Samson et al. | Aug 1997 | A |
5666968 | Imran et al. | Sep 1997 | A |
5666969 | Urick et al. | Sep 1997 | A |
5669926 | Aust et al. | Sep 1997 | A |
5676659 | McGurk | Oct 1997 | A |
5676697 | McDonald | Oct 1997 | A |
5682894 | Orr et al. | Nov 1997 | A |
5690120 | Jacobsen et al. | Nov 1997 | A |
5720300 | Fagan et al. | Feb 1998 | A |
5722609 | Murakami | Mar 1998 | A |
5728063 | Preissman et al. | Mar 1998 | A |
5741429 | Donadio, III et al. | Apr 1998 | A |
5746701 | Noone | May 1998 | A |
5769830 | Parker | Jun 1998 | A |
5772609 | Nguyen et al. | Jun 1998 | A |
5782809 | Umeno et al. | Jul 1998 | A |
5788653 | Lorenzo | Aug 1998 | A |
5788654 | Schwager | Aug 1998 | A |
5788707 | Del Toro et al. | Aug 1998 | A |
5792124 | Horrigan et al. | Aug 1998 | A |
5797856 | Frisbie et al. | Aug 1998 | A |
5800454 | Jacobsen et al. | Sep 1998 | A |
5807075 | Jacobsen et al. | Sep 1998 | A |
5807249 | Qin et al. | Sep 1998 | A |
5810885 | Zinger | Sep 1998 | A |
5813996 | St. Germain et al. | Sep 1998 | A |
5827225 | Ma Schwab | Oct 1998 | A |
5827242 | Follmer et al. | Oct 1998 | A |
5833632 | Jacobsen et al. | Nov 1998 | A |
5836926 | Peterson et al. | Nov 1998 | A |
5843050 | Jones et al. | Dec 1998 | A |
5843244 | Pelton et al. | Dec 1998 | A |
5851203 | van Muiden | Dec 1998 | A |
5895378 | Nita | Apr 1999 | A |
5897537 | Berg et al. | Apr 1999 | A |
5902254 | Magram | May 1999 | A |
5902290 | Peacock, III et al. | May 1999 | A |
5904657 | Unsworth et al. | May 1999 | A |
5906618 | Larson, III | May 1999 | A |
5911715 | Berg et al. | Jun 1999 | A |
5911717 | Jacobsen et al. | Jun 1999 | A |
5916177 | Schwager | Jun 1999 | A |
5916178 | Noone | Jun 1999 | A |
5916194 | Jacobsen et al. | Jun 1999 | A |
5931830 | Jacobsen et al. | Aug 1999 | A |
5935108 | Katoh et al. | Aug 1999 | A |
5947940 | Beisel | Sep 1999 | A |
5951539 | Nita et al. | Sep 1999 | A |
5971975 | Mills et al. | Oct 1999 | A |
5980471 | Jafari | Nov 1999 | A |
6001068 | Uchino et al. | Dec 1999 | A |
6004279 | Crowley et al. | Dec 1999 | A |
6014919 | Jacobsen et al. | Jan 2000 | A |
6017319 | Jacobsen et al. | Jan 2000 | A |
6022343 | Johnson et al. | Feb 2000 | A |
6022369 | Jacobsen et al. | Feb 2000 | A |
6024730 | Pagan | Feb 2000 | A |
6027461 | Walker et al. | Feb 2000 | A |
6042553 | Solar et al. | Mar 2000 | A |
6045547 | Ren et al. | Apr 2000 | A |
6048339 | Zirps et al. | Apr 2000 | A |
6056702 | Lorenzo | May 2000 | A |
6063101 | Jacobsen et al. | May 2000 | A |
6063200 | Jacobsen et al. | May 2000 | A |
6066361 | Jacobsen et al. | May 2000 | A |
6106485 | McMahon | Aug 2000 | A |
6106488 | Fleming et al. | Aug 2000 | A |
6139510 | Palermo | Oct 2000 | A |
6159187 | Park et al. | Dec 2000 | A |
6165292 | Abrams et al. | Dec 2000 | A |
6171295 | Garabedian et al. | Jan 2001 | B1 |
6171296 | Chow | Jan 2001 | B1 |
6183410 | Jacobsen et al. | Feb 2001 | B1 |
6193686 | Estrada et al. | Feb 2001 | B1 |
6197014 | Samson et al. | Mar 2001 | B1 |
6203485 | Urick | Mar 2001 | B1 |
RE37148 | Shank | Apr 2001 | E |
6210396 | MacDonald et al. | Apr 2001 | B1 |
6214042 | Jacobsen et al. | Apr 2001 | B1 |
6228073 | Noone et al. | May 2001 | B1 |
6248082 | Jafari | Jun 2001 | B1 |
6251092 | Qin et al. | Jun 2001 | B1 |
6254549 | Ramzipoor | Jul 2001 | B1 |
6260458 | Jacobsen et al. | Jul 2001 | B1 |
6273404 | Holman et al. | Aug 2001 | B1 |
6273876 | Klima et al. | Aug 2001 | B1 |
6273879 | Keith et al. | Aug 2001 | B1 |
6290656 | Boyle et al. | Sep 2001 | B1 |
6296616 | McMahon | Oct 2001 | B1 |
6296631 | Chow | Oct 2001 | B2 |
6302870 | Jacobsen et al. | Oct 2001 | B1 |
6325790 | Trotta | Dec 2001 | B1 |
6338725 | Hermann et al. | Jan 2002 | B1 |
6346091 | Jacobsen et al. | Feb 2002 | B1 |
6352515 | Anderson et al. | Mar 2002 | B1 |
6355005 | Powell et al. | Mar 2002 | B1 |
6355027 | Le et al. | Mar 2002 | B1 |
6368315 | Gillis et al. | Apr 2002 | B1 |
6368316 | Jansen et al. | Apr 2002 | B1 |
6375628 | Zadno-Azizi et al. | Apr 2002 | B1 |
6375774 | Lunn et al. | Apr 2002 | B1 |
6379369 | Abrams et al. | Apr 2002 | B1 |
6390993 | Cornish et al. | May 2002 | B1 |
6398758 | Jacobsen et al. | Jun 2002 | B1 |
6428489 | Jacobsen et al. | Aug 2002 | B1 |
6428512 | Anderson et al. | Aug 2002 | B1 |
6431039 | Jacobsen et al. | Aug 2002 | B1 |
6440088 | Jacobsen | Aug 2002 | B1 |
6478778 | Jacobsen et al. | Nov 2002 | B1 |
6488637 | Eder et al. | Dec 2002 | B1 |
6491648 | Cornish et al. | Dec 2002 | B1 |
6491671 | Larson, III et al. | Dec 2002 | B1 |
6503244 | Hayman | Jan 2003 | B2 |
6508803 | Horikawa et al. | Jan 2003 | B1 |
6524301 | Wilson et al. | Feb 2003 | B1 |
6530934 | Jacobsen et al. | Mar 2003 | B1 |
6547779 | Levine et al. | Apr 2003 | B2 |
6553880 | Jacobsen et al. | Apr 2003 | B2 |
6556873 | Smits | Apr 2003 | B1 |
6579246 | Jacobsen et al. | Jun 2003 | B2 |
6602207 | Mann et al. | Aug 2003 | B1 |
6602280 | Chobotov | Aug 2003 | B2 |
6610046 | Usami et al. | Aug 2003 | B1 |
6623448 | Slater | Sep 2003 | B2 |
6636758 | Sanchez et al. | Oct 2003 | B2 |
6638266 | Wilson et al. | Oct 2003 | B2 |
6652508 | Griffin et al. | Nov 2003 | B2 |
6682493 | Mirigian | Jan 2004 | B2 |
6689120 | Gerdts | Feb 2004 | B1 |
6702762 | Jafari et al. | Mar 2004 | B2 |
6712826 | Lui | Mar 2004 | B2 |
6730095 | Olson, Jr. et al. | May 2004 | B2 |
6749560 | Konstorum et al. | Jun 2004 | B1 |
6766720 | Jacobsen et al. | Jul 2004 | B1 |
6777644 | Peacock, III et al. | Aug 2004 | B2 |
6811544 | Schaer | Nov 2004 | B2 |
6837898 | Boyle et al. | Jan 2005 | B2 |
6866642 | Kellerman et al. | Mar 2005 | B2 |
6887235 | O'Connor et al. | May 2005 | B2 |
6918882 | Skujins et al. | Jul 2005 | B2 |
6997937 | Jacobsen et al. | Feb 2006 | B2 |
7001369 | Griffin et al. | Feb 2006 | B2 |
7074197 | Reynolds et al. | Jul 2006 | B2 |
7153277 | Skujins et al. | Dec 2006 | B2 |
7182735 | Shireman et al. | Feb 2007 | B2 |
20020013540 | Jacobsen et al. | Jan 2002 | A1 |
20020019599 | Rooney et al. | Feb 2002 | A1 |
20030009208 | Snyder et al. | Jan 2003 | A1 |
20030060732 | Jacobsen et al. | Mar 2003 | A1 |
20030069522 | Jacobsen et al. | Apr 2003 | A1 |
20030216668 | Howland et al. | Nov 2003 | A1 |
20040116831 | Vrba | Jun 2004 | A1 |
20040142643 | Miller et al. | Jul 2004 | A1 |
20040167436 | Reynolds et al. | Aug 2004 | A1 |
20040167437 | Sharrow et al. | Aug 2004 | A1 |
20040167441 | Reynolds et al. | Aug 2004 | A1 |
20040181174 | Davis et al. | Sep 2004 | A2 |
20040181176 | Jafari et al. | Sep 2004 | A1 |
20060121218 | Obara et al. | Jun 2006 | A1 |
20060122537 | Reynolds et al. | Jun 2006 | A1 |
20060189896 | Davis et al. | Aug 2006 | A1 |
20060264904 | Kerby et al. | Nov 2006 | A1 |
20080021347 | Jacobsen et al. | Jan 2008 | A1 |
20080021348 | Jacobsen et al. | Jan 2008 | A1 |
20080021400 | Jacobsen et al. | Jan 2008 | A1 |
20080021401 | Jacobsen et al. | Jan 2008 | A1 |
20080021402 | Jacobsen et al. | Jan 2008 | A1 |
20080021403 | Jacobsen et al. | Jan 2008 | A1 |
20080021404 | Jacobsen et al. | Jan 2008 | A1 |
20080021405 | Jacobsen et al. | Jan 2008 | A1 |
20080021406 | Jacobsen et al. | Jan 2008 | A1 |
20080021407 | Jacobsen et al. | Jan 2008 | A1 |
20080021408 | Jacobsen et al. | Jan 2008 | A1 |
Number | Date | Country |
---|---|---|
723040 | Dec 1997 | AU |
733966 | Apr 1998 | AU |
PI 9712829 | Jan 2000 | BR |
2266685 | May 2006 | CA |
2255781 | Mar 2007 | CA |
1230914 | Oct 1999 | CN |
2539191 | Mar 1976 | DE |
285514 | Dec 1990 | DE |
0 045 931 | Feb 1982 | EP |
0 069 522 | Jan 1983 | EP |
0 087 933 | Sep 1983 | EP |
0 111 044 | Jun 1984 | EP |
0 181 174 | May 1986 | EP |
0 377 453 | Jul 1990 | EP |
0 565 065 | Jun 1996 | EP |
0 778 038 | Jun 1997 | EP |
0 778 039 | Jun 1997 | EP |
0 778 040 | Jun 1997 | EP |
0 812 599 | Dec 1997 | EP |
0 865 772 | Sep 1998 | EP |
0 865 773 | Sep 1998 | EP |
0 521 595 | May 1999 | EP |
0 917 885 | May 1999 | EP |
0 937 481 | Aug 1999 | EP |
0 790 066 | Apr 2000 | EP |
0 608 853 | Apr 2003 | EP |
0 935 947 | Dec 2004 | EP |
0 934 141 | Nov 2005 | EP |
2214354 | Aug 1989 | GB |
2257269 | Jan 1993 | GB |
58-8522 | Jan 1983 | JP |
60091858 | May 1985 | JP |
61022752 | Jan 1986 | JP |
62023361 | Jan 1987 | JP |
62089470 | Apr 1987 | JP |
62299277 | Dec 1987 | JP |
6393516 | Apr 1988 | JP |
63-181774 | Jul 1988 | JP |
63217966 | Sep 1988 | JP |
1089956 | Apr 1989 | JP |
1135363 | May 1989 | JP |
1158936 | Jun 1989 | JP |
2107268 | Apr 1990 | JP |
3081831 | Apr 1991 | JP |
03-122850 | Dec 1991 | JP |
4061840 | Feb 1992 | JP |
4099963 | Mar 1992 | JP |
4213069 | Aug 1992 | JP |
4213070 | Aug 1992 | JP |
4236965 | Aug 1992 | JP |
5149969 | Jun 1993 | JP |
5-506806 | Oct 1993 | JP |
5-309159 | Nov 1993 | JP |
5-507857 | Nov 1993 | JP |
6-501179 | Feb 1994 | JP |
631749 | Apr 1994 | JP |
6169996 | Jun 1994 | JP |
6-63224 | Sep 1994 | JP |
6312313 | Nov 1994 | JP |
728562 | May 1995 | JP |
7124164 | May 1995 | JP |
7124263 | May 1995 | JP |
7136280 | May 1995 | JP |
7148264 | Jun 1995 | JP |
7505561 | Jun 1995 | JP |
7037199 | Jul 1995 | JP |
7185009 | Jul 1995 | JP |
7255855 | Oct 1995 | JP |
7275366 | Oct 1995 | JP |
751067 | Nov 1995 | JP |
8-229888 | Sep 1996 | JP |
8509141 | Oct 1996 | JP |
8317988 | Dec 1996 | JP |
9000164 | Apr 1997 | JP |
9-276413 | Oct 1997 | JP |
9276413 | Oct 1997 | JP |
9-294813 | Nov 1997 | JP |
9294813 | Nov 1997 | JP |
10-118193 | May 1998 | JP |
10328191 | Dec 1998 | JP |
11-267224 | Oct 1999 | JP |
2000-197704 | Jul 2000 | JP |
2000-510722 | Aug 2000 | JP |
2000-511083 | Aug 2000 | JP |
2001-500808 | Jan 2001 | JP |
3325828 | Jul 2002 | JP |
2002-529137 | Sep 2002 | JP |
2002-542901 | Dec 2002 | JP |
2002-543896 | Dec 2002 | JP |
2003-517893 | Jun 2003 | JP |
3649604 | Feb 2005 | JP |
2005-534407 | Nov 2005 | JP |
712908 | Jan 1980 | SU |
758421 | Aug 1980 | SU |
1529365 | Dec 1989 | SU |
WO 9002520 | Mar 1990 | WO |
WO 9113364 | Sep 1991 | WO |
WO 9204072 | Mar 1992 | WO |
WO 9207619 | May 1992 | WO |
WO 9304722 | Mar 1993 | WO |
WO 9311313 | Jun 1993 | WO |
WO 9524236 | Sep 1995 | WO |
WO 9619255 | Jun 1996 | WO |
WO 9710022 | Mar 1997 | WO |
WO 9725914 | Jul 1997 | WO |
WO 9743949 | Nov 1997 | WO |
WO 9744083 | Nov 1997 | WO |
WO 9744086 | Nov 1997 | WO |
WO 9810694 | Mar 1998 | WO |
WO 9904847 | Feb 1999 | WO |
WO 9911313 | Mar 1999 | WO |
WO 0027303 | May 2000 | WO |
WO 0030710 | Jun 2000 | WO |
WO 0048645 | Aug 2000 | WO |
WO 0057943 | Oct 2000 | WO |
WO 0066199 | Nov 2000 | WO |
WO 0067845 | Nov 2000 | WO |
WO 0072907 | Dec 2000 | WO |
WO 0128620 | Apr 2001 | WO |
WO 0136034 | May 2001 | WO |
0145912 | Jun 2001 | WO |
WO 0145773 | Jun 2001 | WO |
WO 0193920 | Dec 2001 | WO |
WO 0213682 | Feb 2002 | WO |
WO 02062540 | Aug 2002 | WO |
WO 03004086 | Jan 2003 | WO |
WO 03008148 | Jan 2003 | WO |
WO 2004012804 | Feb 2004 | WO |
2004047899 | Jun 2004 | WO |
Entry |
---|
“Mechanical Design and Systems Handbook”, H.A. Rothbart, 1964, p. 33-13 (one sheet). |
Number | Date | Country | |
---|---|---|---|
20080077119 A1 | Mar 2008 | US |
Number | Date | Country | |
---|---|---|---|
60302685 | Jul 2001 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10188929 | Jul 2002 | US |
Child | 11951975 | US |