The present disclosure relates to the technical field of well drilling speed acceleration devices, and particularly to a torsion impact speed acceleration device.
In the process of oilfield exploitation and development, accelerating the penetration rate is a forever theme of petroleum exploration and development. Currently, merely in the aspect of accelerating the penetration rate, a lot of researches have been carried out at home and abroad, and put into site applications to achieve a good speed acceleration effect. With the continuous development of the drilling industry and the professional persons' increasingly deep-going researches on the PDC drill bit in the drilling process, people gradually find that when the PDC drill bit shears (grinds) a stratum, the cutting gear tooth cannot effectively cut the stratum instantaneously, and the torque energy generated by a rotary table on the ground is gradually aggregated on the blade of the PDC drill bit and the whole drill string. When the energy is aggregated to a certain degree, the stratum is sheared instantaneously, and the energy aggregated on the blade of the PDC drill bit and the whole drill string is released at the same time, which leads to the results such as the gear tooth breakage and the blade damage on the PDC drill bit, thereby decreasing the service life of the PDC drill bit, and causing fatigue damage of the whole drill string. In earlier researches on the acceleration tools, the professional persons focused on the development of axial jolting tools to accelerate the speed of the PDC drill bit. Those tools have substantially the same working principle, i.e., to generate an axially downward jolting force through different levels of hydraulic cylinders under the effect of hydraulic pressure, so as to accelerate the penetration rate. In recent years, the self-oscillation speed acceleration tools also occur and achieve some effect at site. Those tools increase the penetration rate at a certain extent, but cannot fundamentally solve the problem of the gear tooth breakage of the PDC drill bit occurred during drilling, and are not widely used. Meanwhile, since those tools have sealing members, their service lives are not too long.
The present disclosure provides a torsion impact speed acceleration device to overcome the above deficiencies of the prior art, which can effectively solve the problem of the gear tooth breakage of the PDC drill bit occurred during drilling when the existed well drilling speed acceleration device is practically used.
The technical solutions of the present disclosure are implemented as follows.
A torsion impact speed acceleration device, comprising a main body, an anvil, an impact hammer, a conversion member, a mandrel and a throttle nozzle; an inner limiting boss is provided at an upper inner side of the main body, a drainage member is mounted between the inner limiting boss and the anvil, a lower conical annular platform which is a frustum having a wide upper portion and a narrow lower portion is provided at an upper inner side of the throttle nozzle, a lower portion of the anvil is fixed with a lower portion of the main body through locating devices, an upper outer side of the mandrel is fixed with a lower inner side of the drainage member, a lower outer side of the mandrel is fixed with a lower inner side of the anvil, an outer side of the throttle nozzle is fixed with a lower inner side of the mandrel, the conversion member and the impact hammer are sheathed sequentially between an outer side of the mandrel and an inner side of the anvil, an annular liquid flow cavity is provided between a middle outer side of the mandrel and an upper inner side of the conversion member, at least one first radial liquid flow via-hole in communication with the annular liquid flow cavity is distributed circumferentially on the mandrel above the throttle nozzle, an inner side of the impact hammer is provided with a first groove and a second groove, an outer side of the conversion member is provided with a first slider rotatable circumferentially in the first groove and a second slider rotatable circumferentially in the second groove, a second radial liquid flow via-hole and a third radial liquid flow via-hole both in communication with the annular liquid flow cavity are distributed circumferentially on the second slider, the second radial liquid flow via-hole is located on the second slider between the first slider and the third radial liquid flow via-hole, the inner side of the anvil is provided with a third groove, an outer side of the impact hammer corresponding to and outward of the second groove is provided with a third slider rotatable circumferentially in the third groove, a fourth radial liquid flow via-hole capable of being in communication with the second radial liquid flow via-hole and a fifth radial liquid flow via-hole capable of being in communication with the third radial liquid flow via-hole are distributed circumferentially on the impact hammer and adjoin two sides of the third slider, respectively, an annular liquid cavity is provided between the outer side of the mandrel and the inner side of the anvil below the conversion member and the impact hammer, and an inclined flow channel in communication with the annular liquid cavity is provided on the mandrel below the throttle nozzle.
The above technical solution of the present disclosure is further optimized and/or improved as follows.
An upper conical annular platform which is a frustum having a wide upper portion and a narrow lower portion is provided at an upper inner side of the drainage member, a buffering groove is provided at a middle outer side of the drainage member, a drainage hole in communication with the buffering groove is provided on the drainage member, a left drainage elongated slot and a right drainage elongated slot both in communication with the buffering groove are provided at a lower outer side of the drainage member, and a left-semicircle opened elongated slot and a right-semicircle opened elongated slot are distributed at an outer side of the anvil, wherein the left drainage elongated slot and the left-semicircle opened elongated slot are up-down corresponding to and communicated with each other, and the right drainage elongated slot and the right-semicircle opened elongated slot are up-down corresponding to and communicated with each other.
A sixth radial liquid flow via-hole in communication with the first groove is provided on a portion of the impact hammer corresponding to and outward of the first groove, a seventh radial liquid flow via-hole in communication with the second groove is provided on a portion of the impact hammer corresponding to and outward of the second groove, and an eighth radial liquid flow via-hole capable of being in communication with the sixth radial liquid flow via-hole and a ninth radial liquid flow via-hole capable of being in communication with the seventh radial liquid flow via-hole are distributed circumferentially on the anvil, wherein the ninth radial liquid flow via-hole is in communication with the left-semicircle opened elongated slot, and the eighth radial liquid flow via-hole is in communication with the right-semicircle opened elongated slot.
The locating device comprises a detent ball, a detent board, a compression spring and a pressing cap, wherein at least two locating blind holes are distributed circumferentially at an interval at an outer side of the anvil, locating threaded holes corresponding to the locating blind holes are distributed on the main body, the pressing cap is fixedly mounted in the locating threaded hole, and the compression spring, the detent board and the detent ball are compressively mounted in this order in the locating blind hole and the locating threaded hole.
A first limiting annular boss is provided at the outer side of the mandrel above the inclined flow channel, the conversion member is seated on the first limiting annular boss, a second limiting annular boss is provided at the inner side of the anvil above the annular liquid cavity, the impact hammer is seated on the second limiting annular boss, a limiting bump is provided at a lower outer side of the conversion member, a limiting open groove corresponding to the limiting bump is provided at the inner side of the impact hammer, and the limiting bump abuts against an inner side of the limiting open groove.
An outer limiting boss is provided at a lower outer side of the anvil, the main body is seated on the outer limiting boss, an internal thread or an external thread is provided at an upper portion of the main body, an internal thread is provided at the lower portion of the anvil, the upper outer side of the mandrel and the lower inner side of the drainage member are mounted together by thread tightening, the lower outer side of the mandrel and the lower inner side of the anvil are mounted together by thread tightening, the outer side of the throttle nozzle and a lower inner side of the mandrel are mounted together by thread tightening, and/or a circumferential bump is provided at an outer side of the second slider at a rear side of the second radial liquid flow via-hole, and a liquid flow elongated slot is provided between the circumferential bump and the rear side of the second radial liquid flow via-hole.
The present disclosure has a reasonable and compact structure and is convenient to be used. During a usage, the present disclosure provides an additional impact force to a PDC drill bit through an impact action on the anvil made by the impact hammer, thereby reducing the drill capacity aggregation of the PDC drill bit, preventing the gear tooth breakage of the PDC drill bit occurred during drilling, also preventing the entire drill string from fatigue damage and extending the service life of the PDC drill bit on the condition that the drill speed of the PDC drill bit can be increased.
In order to more clearly describe the technical solutions in the embodiments of the present disclosure, the drawings to be used in the descriptions of the embodiments will be briefly introduced as follows. Obviously, the drawings in the following descriptions just illustrate some embodiments of the present disclosure, and a person skilled in the art can obtain other drawings from them without paying any creative labor.
The reference numerals in the drawings are 1: main body; 2: anvil; 3: impact hammer; 4: conversion member; 5: mandrel; 6: throttle nozzle; 7: inner limiting boss; 8: outer limiting boss; 9: drainage member; 10: annular liquid flow cavity; 11: first radial liquid flow via-hole; 12: first groove; 13: second groove; 14: first slider; 15: second slider; 16: second radial liquid flow via-hole; 17: third radial liquid flow via-hole; 18: third groove; 19: third slider; 20: fourth radial liquid flow via-hole; 21: fifth radial liquid flow via-hole; 22: annular liquid cavity; 23: inclined flow channel; 24: lower conical annular platform; 25: sixth radial liquid flow via-hole; 26: seventh radial liquid flow via-hole; 27: eighth radial liquid flow via-hole; 28: ninth radial liquid flow via-hole; 29: upper conical annular platform; 30: buffering groove; 31: drainage hole; 32: left-semicircle opened elongated slot; 33: right-semicircle opened elongated slot; 34: detent ball; 35: detent board; 36: compression spring; 37: pressing cap; 38: first limiting annular boss; 39: second limiting annular boss; 40: limiting bump; 41: circumferential bump; and 42: liquid flow elongated slot.
Next, the technical solutions in the embodiments of the present disclosure will be clearly and completely described with reference to the drawings in the embodiments of the present disclosure. Obviously, those described are just a part rather than all of the embodiments of the present disclosure. Based on the embodiments of the present disclosure, any other embodiment obtained by a person skilled in the art without paying any creative effort shall fall within the protection scope of the present disclosure.
The present disclosure is not restricted by the following embodiments, and the specific embodiment can be determined based on the technical solutions of the present disclosure and the actual conditions.
In the present disclosure, in order to facilitate the description, the relative position relations between various parts, such as front, rear, upper, lower, left and right, are all described with reference to the layout of
Next, the present disclosure will be further described as follows in conjunction with the embodiments and the drawings.
As illustrated in
It is defined a set of impact structures composed of the first groove 12 and the second groove 13 provided in the impact hammer 3, the first slider 14 rotatable circumferentially in the first groove 12 and the second slider 15 rotatable circumferentially in the second groove 13, the second radial liquid flow via-hole 16 and the third radial liquid flow via-hole 17 provided on the second slider 15, the third groove 18 provided in the anvil 2, the third slider 19 provided at the outer side of the impact hammer 3 and rotatable circumferentially in the third groove 18, and the fourth radial liquid flow via-hole 20 capable of being in communication with the second radial liquid flow via-hole 16 and the fifth radial liquid flow via-hole 21 capable of being in communication with the third radial liquid flow via-hole 17 which are distributed circumferentially on the impact hammer 3. In another embodiment of the present disclosure, based on the actual application requirement, the torsion impact speed acceleration device may be circumferentially provided with a plurality of sets of impact structures.
In addition, in one embodiment of the present disclosure, the mandrel 5 and the conversion member 4 sheathing the mandrel 5 can be integrally formed.
Further, in the present disclosure, a length of an outer arc between a rear side of the third radial liquid flow via-hole 17 and a rear side of the second slider 15 is larger than a length of an inner arc of the third slider 19, i.e., as illustrated in
Based on the actual requirement, the torsion impact speed acceleration device may be further optimized and/or improved.
As illustrated in
As illustrated in
As illustrated in
As illustrated in
As illustrated in
The above technical features constitute the optimum embodiment of the present disclosure, which has a strong adaptability and a best implementation effect. Unnecessary technical features can be added or deleted upon actual demand to meet the requirements under different conditions.
The use process of the optimum embodiment of the present disclosure is as follows. Firstly, the anvil 2 is directly connected to the PDC drill bit, the upper portion of the main body 1 is threadedly connected to the drill string (drill collar), and the initial positions of the main body 1, the anvil 2, the impact hammer 3, the conversion member 4, the mandrel 5, etc. in the present disclosure are as illustrated in
Number | Date | Country | Kind |
---|---|---|---|
2015 1 0636735 | Oct 2015 | CN | national |
Number | Name | Date | Kind |
---|---|---|---|
4312412 | Pillow | Jan 1982 | A |
4333537 | Harris | Jun 1982 | A |
4662459 | Bodine | May 1987 | A |
5305837 | Johns et al. | Apr 1994 | A |
20050241842 | Marsh | Nov 2005 | A1 |
Number | Date | Country |
---|---|---|
1053101 | Jul 1991 | CN |
102454364 | May 2012 | CN |
102536114 | Jul 2012 | CN |
103075097 | May 2013 | CN |
103244052 | Aug 2013 | CN |
203430420 | Feb 2014 | CN |
104533283 | Apr 2015 | CN |
104612582 | May 2015 | CN |
105156027 | Dec 2015 | CN |
204984255 | Jan 2016 | CN |
0 851 090 | Jul 1998 | EP |
Entry |
---|
International Search Report for co-pending International Application No. PCT/CN2016/082977 dated Jul. 12, 2016 with English translation. |
Written Opinion of the International Searching Authority for co-pending International Application No. PCT/CN2016/082977 dated Jul. 12, 2016. |
First Office Action and Search Report issued in co-pending Chinese Application No. 201510636735.8 dated Jan. 25, 2017 with English translation. |
Number | Date | Country | |
---|---|---|---|
20180171717 A1 | Jun 2018 | US |
Number | Date | Country | |
---|---|---|---|
Parent | PCT/CN2016/082977 | May 2016 | US |
Child | 15899727 | US |