Not applicable.
Not applicable.
Not applicable.
Not applicable.
1. Field of the Invention
The present invention relates generally to a pneumatic tool percussion hammer structure, and more particularly to an innovative torsion increasing percussion hammer.
2. Description of Related Art Including Information Disclosed Under 37 CFR 1.97 and 37 CFR 1.98.
The functions of various pneumatic tools are based on torsion generated by the pneumatic power. For example, a pneumatic spanner is mainly used to fasten or loosen large-sized nuts or bolts. Because such large-sized nuts or bolts require a high fastening torsion, the pneumatic spanner must generate sufficient torsion to be capable of the operation.
Said pneumatic spanner usually generates torsion through the configuration of a percussion seat. Inside the percussion seat, one or two block-shaped percussion hammers are housed and restrained. The hammers will have an inertia motion along with the stops of positive or negative revolving of the driving axle, and generate a torsion-increasing percussion force.
Based on existing designs, the torsion generated by the pneumatic spanner usually depends on the size of the percussion hammers, because larger and heavier percussion hammers will naturally generate higher inertia acting force. However, in this way, the overall size of the pneumatic spanner must be enlarged to meet the demand of higher torsion. This is obviously a problem and bottleneck for production as well as usage.
For the users, a small-sized pneumatic spanner is easier to operate and is obviously more convenient and practical. Hence, it is obviously a goal and target for the manufacturers to further increase the functional torsion of the pneumatic spanner while maintaining its relatively small size, so as to meet the expectation of users.
Thus, to overcome the aforementioned problems of the prior art, it would be an advancement if the art to provide an improved structure that can significantly improve the efficacy.
Therefore, the inventor has provided the present invention of practicability after deliberate design and evaluation based on years of experience in the production, development and design of related products.
The present invention mainly features the innovative and unique design of the motion ends of the percussion block of the percussion hammer with added configuration of the mass increasing part. Comparing to the known structures disclosed in the prior art, the mass increasing part can help to increase the mass of the motion ends of the percussion block without increasing the overall size of the percussion block. Hence, the design of the present invention can effectively increase the inertia force of the percussion block in motion, and consequently the torsion and instant acceleration of the percussion hammer, without the need to increase the overall size of the percussion hammer. This is an obvious advantage and practical advancement.
As a supplement to the above descriptions, taking the pneumatic spanner product shown in
Although the invention has been explained in relation to its preferred embodiment, it is to be understood that many other possible modifications and variations can be made without departing from the spirit and scope of the invention as hereinafter claimed.
The percussion hammer A comprises a percussion seat 10, being a hollow frame, comprising of a percussion block housing space 11 and a croze hole 12 and an axle through hole 13 configured on the two opposite side walls of the percussion block housing space 11.
A driving axle 20 has a driving end 21 and a tool end 22 (can be a quadrangular prism), wherein, the driving end 21 goes through the axle through hole 13 of the percussion seat 10 and is housed in the percussion block housing space 11. The driving end 21 has a driving rib 23. The tool end 22 projects out of the axle through hole 13 of the percussion seat 10 as the part to fasten or loosen the bolt.
At least one percussion block 30 (this embodiment has two) is housed inside the percussion block housing space 11 of the percussion seat 10 and is movable. Said percussion block 30 comprises an irregular through hole 31 and two motion ends 32. The irregular through hole 31 is to be matched and fitted by the driving end 21 of the driving axle 20. Further, the two opposite sides of the percussion block 30 are respectively configured with a supporting concave edge 33 and a motion limiting concave edge 33B.
Two fixation pins 40 go through and are fitted on the two opposite sides of the percussion block housing space 11 of the percussion seat 10. If viewing from the percussion block 30, one of the fixation pins 40 goes through the supporting concave edge 33 configured on the percussion block 30, while the other fixation pins 40 goes through the motion limiting concave edge 33B configured on the percussion block 30.
A mass increasing part(s) 50 is configured on the motion end 32 of the percussion block 30. Said mass increasing part 50 is to increase the mass of the motion end 32 of the percussion block 30.
Based on the above structure, the mass increasing part 50 can increase the inertia acting force of the percussion block 30 in motion, so as to increase the torsion and instant acceleration of the percussion hammer A, without the need to increase the overall size of the percussion hammer.
Particularly, the embodiment of said mass increasing part 50 (as depicted in
Alternatively, as shown in
Further, as shown in
Moreover, said mass increasing part 50 can be configured on either of the two motion ends 32 of the percussion block 30 (as shown in
Referring to
Moreover, when two percussion blocks 30, 30B are configured, the different mass increasing parts 50, 50B configured on the motion ends 32 of the percussion block 30, 30B can be of different mass (as shown in