1. Field of the Invention
The invention relates to a torsion tool test fixture or test head for use in determining the quality of a securement of a feature to a planar surface.
2. Background Art
In manufacturing operations involving metal welding, it is known design practice to secure features, such as a weld nut, to a surface of a metal plate. A weld nut may be secured to a metal plate, for example, using a projection welding technique in which welding projections on a weld nut form weld metal zones. A welding electrode creates a welding force on the weld nut as high voltage welding current is applied during a weld cycle of predetermined duration. In order to test weld integrity or quality, an impact tool in a destructive test is used to break the weld so that the quality of the weld zone for the projections can be examined. In a high volume manufacturing procedure, multiple weld nuts may be secured to a given surface. A weld testing operation can be carried out on a selected test weld in a group of welds so that weld quality of each weld nut in the group can be inferred by observing the quality of the test weld during the destructive test of the selected test weld nut. If the examined test weld meets quality standards, the welding pressure and current for the test weld cycle may be repeated for subsequent welds.
It is known design practice also to use a torque limiting tool in a non-destructive torque test of a welded nut whereby a predetermined torque is applied to the nut. If the weld is of sufficient quality to avoid failure as the limited torque is applied, the test then will have demonstrated that the weld quality will meet preestablished standards for a given application. A non-destructive testing procedure of this type requires a special test tool that is adapted to accommodate a given test piece. A test tool design typically is usable only with a given test piece design or shape. This has the disadvantage of requiring multiple special test tools for testing features of various shapes. Further, increased man-hours for final inspection in high volume manufacturing operations are required because of a need for frequent test tool changes, which compromise efficiency.
The invention comprises a tool fixture for use in an efficient non-destructive test of a welded feature, such as a weld nut attached to a metal surface. Although the embodiment of the disclosed invention is especially adapted for use in testing weld nuts, it may be used as well for testing features that are fastened by other securements.
According to the embodiment of the disclosed invention, a weld nut feature that is secured to a metal plate by welding can be tested to determine whether it has sufficient weld metal penetration. The test may be executed using a common air pressure powered torsion drill. The tool test fixture of the invention is designed to permit the weld nut feature to slide into the test fixture as the fixture is turned in one direction. Spring loaded teeth carried by an internal cam ring then firmly grip the feature. The test fixture can accommodate a common torsion drill or an air-powered torque wrench for applying a torque in the opposite direction. It can be used, for example, with an octagonal weld nut, or with a feature with any other shape, such as a round bushing that is welded to a metal plate. The feature may be secured to a metal surface by projection welding or by other fastening techniques, such as continuous bead welding or by tack welding.
The test fixture of the invention includes a housing or body with an internal adjustable ring or actuating cam. Internal locking teeth are pivotally secured to the ring. A torsion spring between the ring and the housing urges the ring toward a position that allows the teeth to grip the feature.
As the test fixture is turned by applying a torque on the housing in one direction, the teeth will pivot in a direction that will permit the feature to slide into the ring. As this is done, the torsion spring is loaded so that when torque on the housing is released, the tension on the spring will hold the teeth firmly against the feature. Torque then is applied in the opposite direction to the feature using a torque limiting tool, such as a torque wrench, of known design. The housing, with the internal ring and locking teeth assembled inside, is closed by a cover plate.
Since the torsion tool fixture of the present invention permits the use of a non-destructive test, each weld of a multiple weld nut assembly, for example, may readily be tested for proper weld metal penetration. Proper weld metal penetration need not be merely inferred.
Numeral 10 in
The side of the housing 10 opposite to the opening 14 is surrounded by a housing cover plate 18 having a peripheral portion 20. The cover plate includes a radial portion 22, as seen in
The interior ring or cam 34 within the housing 10 comprises a cylindrical body with a central opening 32 and an outer periphery 34. The periphery 34 is received within the peripheral portion 30 of the housing 10, but seen in
The ring 34 has recesses, as shown at 36, each recess receiving a locking tooth 28. Each locking tooth 28 is pivotally supported in their respective recesses 36 by a pivot pin 38. Each locking tooth has a tooth edge 40, which is adjustable toward the axis 24 when a locking tooth is rotated in a counter-clockwise direction as viewed in
When the fixture is placed over a test feature, the feature engages the lower surface of each tooth. As the fixture is turned in a clockwise direction as seen in
Housing 10 has peripheral recesses 53, best seen in
In carrying out the testing operation for features such as those illustrated in
Although the present embodiment of the invention is intended for use with weld nuts or other features such as a round bushing, it may be test for other types of features. The same torsion tool may be used for a variety of test feature pieces without changing work station tooling in a manufacturing assembly facility.
Although an embodiment of the invention has been disclosed, modifications may be made without departing from the scope of the invention. All such modifications and improvements thereof are intended to be covered by the following claims.