1. Field of the Invention
The invention pertains to the field of variable camshaft timing (VCT) systems. More particularly, the invention pertains to an infinitely variable camshaft indexer with controls in the center of the rotor.
2. Description of Related Art
There are many vane type VCTs on the market today that use a conventional 4-way valve mounted in a valve body to control the phaser. The “phaser” is all of the parts of the engine which allow the camshaft to run independently of the crankshaft. Typically, the valve body is integrated into the front cam bearing which introduces a leak path between the phaser and the control system. This leakage is significant in terms of performance and oil consumption. Therefore, there is a need in the art to decrease oil leakage to maximize performance and minimize oil consumption.
There have been a number of VCT systems patented in the past.
U.S. Pat. No. 5,386,807 uses torque effects at high speed, and engine pressure at low speed. The control valve is in the phaser core. The phaser has a built-in oil pump to provide oil pressure at low speeds. The oil pump is preferably electromagnetically controlled.
U.S. Pat. No. 6,053,138 discloses a device for hydraulic rotational angle adjustment of a shaft to a drive wheel, especially the camshaft of an internal combustion engine. This device has ribs or vanes that are nonrotatably connected with the shaft. These ribs or vanes are located in the compartments of a compartmented wheel. The compartments of the compartmented wheel and the ribs and/or vanes produce pressure chambers by whose hydraulic pressurization the two structural elements can be rotated relative to one another. In order to reduce undesired rotation when an insufficient adjusting or retaining pressure is present, a common end face of the compartmented wheel and of the ribs and/or vanes works with an annular piston that exerts a releasable clamping action on the parts that are rotatable relative to one another.
A related patent, U.S. Pat. No. 6,085,708, shows a device for changing the relative rotational angle of the camshaft of an internal combustion engine relative to its drive wheel. This device has an inner part connected with ribs or vanes that is located rotationally movably in a compartmented wheel. This driven compartmented wheel has a plurality of compartments distributed around the circumference divided by ribs or vanes into two pressure chambers each. The change in rotational angle is produced by their pressurization. To minimize the influence of overlapping alternating torque influences from the valve drive of the internal combustion engine, a damping structure is integrated into this device to hydraulically damp the change in rotational position.
Consideration of information disclosed by the following U.S. Patents, which are all hereby incorporated by reference, is useful when exploring the background of the present invention.
U.S. Pat. No. 5,002,023 describes a VCT system within the field of the invention in which the system hydraulics includes a pair of oppositely acting hydraulic cylinders with appropriate hydraulic flow elements to selectively transfer hydraulic fluid from one of the cylinders to the other, or vice versa, to thereby advance or retard the circumferential position on of a camshaft relative to a crankshaft. The control system utilizes a control valve in which the exhaustion of hydraulic fluid from one or another of the oppositely acting cylinders is permitted by moving a spool within the valve one way or another from its centered or null position. The movement of the spool occurs in response to an increase or decrease in control hydraulic pressure, PC, on one end of the spool and the relationship between the hydraulic force on such end and an oppositely direct mechanical force on the other end which results from a compression spring that acts thereon.
U.S. Pat. No. 5,107,804 describes an alternate type of VCT system within the field of the invention in which the system hydraulics include a vane having lobes within an enclosed housing which replace the oppositely acting cylinders disclosed by the aforementioned U.S. Pat. No. 5,002,023. The vane is oscillatable with respect to the housing, with appropriate hydraulic flow elements to transfer hydraulic fluid within the housing from one side of a lobe to the other, or vice versa, to thereby oscillate the vane with respect to the housing in one direction or the other, an action which is effective to advance or retard the position of the camshaft relative to the crankshaft. The control system of this VCT system is identical to that divulged in U.S. Pat. No. 5,002,023, using the same type of spool valve responding to the same type of forces acting thereon.
U.S. Pat. Nos. 5,172,659 and 5,184,578 both address the problems of the aforementioned types of VCT systems created by the attempt to balance the hydraulic force exerted against one end of the spool and the mechanical force exerted against the other end. The improved control system disclosed in both U.S. Pat. Nos. 5,172,659 and 5,184,578 utilizes hydraulic force on both ends of the spool. The hydraulic force on one end results from the directly applied hydraulic fluid from the engine oil gallery at full hydraulic pressure, PS. The hydraulic force on the other end of the spool results from a hydraulic cylinder or other force multiplier which acts thereon in response to system hydraulic fluid at reduced pressure, PC, from a PWM solenoid. Because the force at each of the opposed ends of the spool is hydraulic in origin, based on the same hydraulic fluid, changes in pressure or viscosity of the hydraulic fluid will be self-negating, and will not affect the centered or null position of the spool.
In U.S. Pat. No. 5,361,735, a camshaft has a vane secured to an end for non-oscillating rotation. The camshaft also carries a timing belt driven pulley which can rotate with the camshaft but which is oscillatable with respect to the camshaft. The vane has opposed lobes which are received in opposed recesses, respectively, of the pulley. The camshaft tends to change in reaction to torque pulses which it experiences during its normal operation and it is permitted to advance or retard by selectively blocking or permitting the flow of engine oil from the recesses by controlling the position of a spool within a valve body of a control valve in response to a signal from an engine control unit. The spool is urged in a given direction by rotary linear motion translating means which is rotated by an electric motor, preferably of the stepper motor type.
U.S. Pat. No. 5,497,738 shows a control system which eliminates the hydraulic force on one end of a spool resulting from directly applied hydraulic fluid from the engine oil gallery at full hydraulic pressure, PS, utilized by previous embodiments of the VCT system. The force on the other end of the vented spool results from an electromechanical actuator, preferably of the variable force solenoid type, which acts directly upon the vented spool in response to an electronic signal issued from an engine control unit (“ECU”) which monitors various engine parameters. The ECU receives signals from sensors corresponding to camshaft and crankshaft positions and utilizes this information to calculate a relative phase angle. A closed-loop feedback system which corrects for any phase angle error is preferably employed. The use of a variable force solenoid solves the problem of sluggish dynamic response. Such a device can be designed to be as fast as the mechanical response of the spool valve, and certainly much faster than the conventional (fully hydraulic) differential pressure control system. The faster response allows the use of increased closed-loop gain, making the system less sensitive to component tolerances and operating environment.
In all the systems described above, the controls for camshaft timing are located in the camshaft itself, or downstream of the camshaft, increasing the likelihood for leakage as the hydraulic fluid moves from the spool valve into the vanes of the rotor. Therefore, there is a need in the art for an infinitely variable VCT multi-position cam indexer which decreases leakage during operation.
The present invention is an infinitely variable camshaft timing device (phaser) with a control valve located in the rotor. Since the control valve is in the rotor, the camshaft need only provide a single passage for supplying engine oil or hydraulic fluid, and does not need multiple passageways for controlling the phaser, as was the prior art. The main advantage to putting the spool in the rotor is to reduce leakage and to improve response of the phaser. This design allows for shorter fluid passages when compared to a control system mounted at the cam bearing.
The rotor is connected to the camshaft, and the outer housing and gear move relative to the rotor and camshaft. Source oil is supplied through the center of the camshaft. In a preferred embodiment, the oil passes through an inlet check valve and is ported to the center of the spool valve. The inlet check valve eliminates oil from back flowing through the source during a torque reversal. The position of the spool valve determines if the phaser will advance or retard.
Referring to
In a variable cam timing (VCT) system, the timing gear on the camshaft is replaced by a variable angle coupling known as a “phaser”, having a rotor connected to the camshaft and a housing connected to (or forming) the timing gear, which allows the camshaft to rotate independently of the timing gear, within angular limits, to change the relative timing of the camshaft and crankshaft. The term “phaser”, as used here, includes the housing and the rotor, and all of the parts to control the relative angular position of the housing and rotor, to allow the timing of the camshaft to be offset from the crankshaft. In any of the multiple-camshaft engines, it will be understood that there would be one phaser on each camshaft, as is known to the art.
A rotor (1) is fixedly positioned on the camshaft (9), by means of mounting flange (8), to which it (and rotor front plate (4)) is fastened by screws (14). The rotor (1) has a diametrically opposed pair of radially outwardly projecting vanes (16), which fit into recesses (17) in the housing body (2). The inner plate (5), housing body (2), and outer plate (3) are fastened together around the mounting flange (8), rotor (1) and rotor front plate (4) by screws (13), so that the recesses (17) holding the vanes (16), enclosed by outer plate (3) and inner plate (5), form fluid-tight chambers. The timing gear (11) is connected to the inner plate (5) by screws (12). Collectively, the inner plate (5), housing body (2), outer plate (3) and timing gear (11) will be referred to herein as the “housing”.
The vanes (16) of the rotor (1) fit in the radially outwardly projecting recesses (17), of the housing body (2), the circumferential extent of each of the recesses (17) being somewhat greater than the circumferential extent of the vane (16) which is received in such recess to permit limited oscillating movement of the housing relative to the rotor (1). The vanes (16) are provided with vane tips (6) in receiving slots (19), which are biased outward by linear expanders (7). The vane tips (6) keep engine oil from leaking between the inside of the recesses (17) and the vanes (16), so that each recess is divided into opposed chambers (17a) and (17b). Thus, each of the chambers (17a) and (17b) of the housing (2) is capable of sustaining hydraulic pressure. Thus, application of pressure to chambers (17a) will move the rotor clockwise relative to the rotor (1), and application of pressure to chambers (17b) will move the rotor counterclockwise relative to the rotor (1).
Referring to
Referring also to
Control of the position of spool (104) within member (115) is in direct response to a variable force solenoid (103). The variable force solenoid (103) is preferably an electromechanical actuator (103). U.S. Pat. No. 5,497,738, entitled “VCT Control with a Direct Electromechanical Actuator”, which discloses the use of a variable force solenoid, issued Mar. 12, 1996, is herein incorporated by reference. Briefly, in the preferred embodiment an electrical current is introduced via a cable through the solenoid housing into a solenoid coil which repels, or “pushes” an armature (117) in the electromechanical actuator (103). The armature (117) bears against extension (104c) of spool (104), thus moving spool (104) to the right. If the force of spring (116) is in balance with the force exerted by armature (117) in the opposite direction, spool (104) will remain in its null or centered position. Thus, the spool (104) is moved in either direction by increasing or decreasing the current to the solenoid coil, as the case may be. In an alternative embodiment, the configuration of electromechanical actuator (103) may be reversed, converting the force on spool extension (104c) from a “push” to a “pull.” This alternative requires the function of spring (116) to be redesigned to counteract the force in the new direction of armature (117) movement.
The variable force electromechanical actuator (103) allows the spool valve to be moved incrementally instead of only being capable of full movement to one end of travel or the other, as is common in conventional camshaft timing devices. The use of a variable force solenoid eliminates slow dynamic response. The faster response allows the use of increased closed-loop gain, making the system less sensitive to component tolerances and operating environment. Also, a variable force solenoid armature only travels a short distance, as controlled by the current from the Engine Control Unit (ECU) (102). In a preferred embodiment, an electronic interface module (EIM) provides electronics for the VCT. The EIM interfaces between the actuator (103) and the ECU (102).
Because the travel required rarely results in extremes, chattering is eliminated, rendering the system virtually noise-free. Perhaps the most important advantage over the conventional differential pressure control system is the improved control of the basic system. A variable force solenoid provides a greatly enhanced ability to quickly and accurately follow a command input of VCT phase.
Preferred types of variable force solenoids include, but are not limited to, a cylindrical armature, or variable area, solenoid, and a flat faced armature, or variable gap, solenoid. The electromechanical actuator employed could also be operated by a pulse-width modulated supply. Alternatively, other actuators such as hydraulic solenoids, stepper motors, worm- or helical-gear motors or purely mechanical actuators could be used to actuate the spool valve within the teachings of the invention.
To maintain a phase angle, the spool (104) is positioned at null, as shown in FIG. 6. The camshaft (9) is maintained in a selected intermediate position relative to the crankshaft of the associated engine, referred to as the “null” position of the spool (104). Make up oil from the supply fills both chambers (17a) and (17b). When the spool (104) is in the null position, spool lands (104a) and (104b) block both of the return lines (112) and (114), as well as inlet lines (111) and (113).
Since the hydraulic fluid (122) is essentially trapped in the center cavity (119) of the spool valve (109), the pressure is maintained, and hydraulic fluid (122) does not enter or leave either of the chambers (17a) and (17b). However, there is inevitably leakage from the chambers (17a) and (17b). So, the spool valve is “dithered” to allow a small bit of movement. That is, the spool (104) wiggles back and forth enough so that if the advance (17a) and retard (17b) chambers begin losing pressure, make-up fluid (122) restores the pressure. However, the movement is not sufficient to let fluid out exhaust ports (106)(107). Center cavity (119) is preferably tapered at the edges to allow easier transport of make-up fluid during dithering.
Since the force of armature (117) corresponds to the electrical current applied to the solenoid coil, and the force of spring (116) is also predictable (with respect to spring position), the position of spool (104) is readily ascertainable based on solenoid current alone. By using only imbalances between an electrically-generated force on one end (104b) of spool (104) and a spring force on the other end (104a) for movement in one direction or another (as opposed to using imbalances between hydraulic loads from a common source on both ends), the control system is completely independent of hydraulic system pressure. Thus, it is not necessary to design a compromised system to operate within a potentially wide spectrum of oil pressures, such that may be attributed to individual characteristics of particular engines. In that regard, by designing a system which operates within a narrower range of parameters, it is possible to rapidly and accurately position the spool (104) in its null position for enhanced operation of a VCT system.
Referring to
Referring to
In a preferred embodiment, a lock mechanism is included for start up, when there is insufficient oil pressure to hold the phaser in position. For example, a single position pin can be inserted into a hole, locking the rotor and housing together, or another shift and lock strategy as known to the art used.
Accordingly, it is to be understood that the embodiments of the invention herein described are merely illustrative of the application of the principles of the invention. Reference herein to details of the illustrated embodiments is not intended to limit the scope of the claims, which themselves recite those features regarded as essential to the invention.
This is a continuation application of application Ser. No. 10/198,318, filed Jul. 18, 2002 now abandoned, entitled “HYBRID MULTI-POSITION CAM INDEXER HAVING CONTROLS LOCATED IN ROTOR”, which claims an invention which was disclosed in Provisional Application No. 60/312,285, filed Aug. 14, 2001, entitled “HYBRID MULTI-POSITION CAM INDEXER HAVING CONTROLS LOCATED IN ROTOR”. The benefit under 35 USC §119(e) of the U.S. provisional application is hereby claimed, and the aforementioned applications are hereby incorporated herein by reference in their entireties.
Number | Name | Date | Kind |
---|---|---|---|
5002023 | Butterfield et al. | Mar 1991 | A |
5107804 | Becker et al. | Apr 1992 | A |
5117785 | Suga et al. | Jun 1992 | A |
5172659 | Butterfield et al. | Dec 1992 | A |
5184578 | Quinn, Jr. et al. | Feb 1993 | A |
5361735 | Butterfield et al. | Nov 1994 | A |
5386807 | Linder | Feb 1995 | A |
5497738 | Siemon et al. | Mar 1996 | A |
5666914 | Ushida et al. | Sep 1997 | A |
6053138 | Trzmiel et al. | Apr 2000 | A |
6085708 | Trzmiel et al. | Jul 2000 | A |
6129060 | Koda | Oct 2000 | A |
6250265 | Simpson | Jun 2001 | B1 |
6363896 | Speier | Apr 2002 | B1 |
6505586 | Sato et al. | Jan 2003 | B1 |
Number | Date | Country |
---|---|---|
100 38 072 | Aug 2000 | DE |
08121123 | May 1996 | JP |
Number | Date | Country | |
---|---|---|---|
20040099232 A1 | May 2004 | US |
Number | Date | Country | |
---|---|---|---|
60312285 | Aug 2001 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10198318 | Jul 2002 | US |
Child | 10714159 | US |