1. Field of the Invention
This invention relates generally to total joint arthroplasty of a ball and socket joint such as hip and shoulder replacements, and more particularly to a system and method for accurate positioning of a prosthesis through pinless surgical navigation during replacement surgery according to a predetermined distance from the center of rotation of the replaced joint and/or articular surface in order to obtain the proper length, offset, and biomechanics of the replaced joint.
2. Background Art
After hip replacement surgery, patients often suffer from leg length displacements, lateral offset displacements, or a translation of the center of rotation of the hip. Often, these patients suffer from a persistent limp, an abnormal gait, and inappropriate soft tissue tension after hip replacement surgery. These complications are normally the result of an inability to properly reposition the femur in relation to the ilium as a result of improper positioning or selection of the femoral or acetabular component. This inability is normally caused by the lack of measurements of displacements caused by the hip replacement when the femur is reconnected to the ilium.
Unfortunately, current methods of relocating the hip are unacceptably inaccurate or are relatively bulky and complicated to install and use. Prior art methods determine the leg length and lateral offset displacements by placing reference points on the femur and the patient's ilium. Inserted into the ilium reference points are reference pins for measuring the relative displacement of the patient's femur to the selected points on the ilium. Typically, the reference point on the femur is located on the greater trochanter since it is on the upper part of the femur and hence relatively close to the patient's ilium so as to facilitate measurement. The ilium reference pins extrude through the skin and are normally reached through a stab incision above the acetabulum.
Most prior art measurement devices suffer from several disadvantages. First, prior art devices do not measure relative to the femoral axis of the femur. Therefore, rotations of the femur during surgery can lead to inaccuracies in the measurement of displacements. Second, measurement error exists when the reference pins loosen from the bone and there is relative motion between the bones and the reference pins. Furthermore, these reference pins are placed at an unacceptable distance from the hip causing them to bend and rotate throughout the surgery. The prior art thus provides unstable reference locations for measuring the displacements of the femur. Third, the reference pins are not removable and thus obstruct the surgeon during portions of the surgery. Fourth, these pins require extra incisions including a blind insertion of the pin into the ilium which risks neurovascular injury. Finally, many of these prior art devices introduce error because the leg is not returned to its original angular orientation (i.e. rotation, flexion, abduction) for displacement measurements.
My copending U.S. patent application Ser. No. 11/640,141, which the present application is a C-I-P of, and which is expressly incorporated herein by reference in its entirety, discloses a joint measurement device and method for determining length displacement and lateral offset displacement of a patient's femur during hip replacement surgery. The device and method permit the surgeon to measure the leg length displacement and the lateral offset displacement in order to select components for a replacement hip that returns the femur to its original position. The device may also be utilized to maintain the hip's center of rotation and native anteversion. More particularly, the device and method improves the spatial measurement of the relationship between a femur and ilium prior to the hip replacement and can accurately recreate that spatial relationship after the hip replacement surgery. The device and method stabilizes the reference points between the femur and ilium and provides a more accurate measurement of displacements between the femur and ilium thereby facilitating a proper selection of the hip replacement and providing the appropriate alignment between the femur and ilium.
Various surgical navigation procedures for hip arthroplasty have been developed and continue to improve. To date, some total hip arthroplasty surgical navigation systems attach active or passive line-of-sight navigation arrays, tracking sensors, or radio frequency markers to both the ilium and femoral bone. Measurements of distances between these devices both before and after the hip replacement help surgeons recreate leg length and offset.
Surgeons attempt to determine the depth at which the femoral broach and/or prosthesis is likely to become firmly attached to the femoral bone by using pre-operative x-rays and transparent femoral prosthetic templating guides. By selecting a smaller or larger sized femoral prosthetic templating guide, the surgeon can increase or decrease the planned depth of the femoral prosthesis so that the known femoral neck length corresponds with the planned distance between the femoral and acetabular prosthesis. This planned depth of the femoral component may or may not correspond with the actual depth that is obtained during surgery due to errors in radiograph magnification, leg positioning, and inaccurate templating. Distances from the planned depth of the femoral prosthesis and known bony landmarks (i.e. lesser troachanter) on the femoral bone are measured on the pre-operative x-rays, and the surgeon attempts to reproduce those measurements during surgery in hopes to increase his/her accuracy in leg length and offset.
There are several patents directed toward various “pinless” surgical navigation devices and procedures used in ball and socket joint replacement surgery, such as hip and shoulder arthroplasty.
Sarin, et al, U.S. Pat. No. 6,711,431 and U.S. Published Patent Application 20040254584 disclose a non-imaging, computer assisted navigation system for hip replacement surgery, which includes: a locating system; a computer, interfaced to the locating system and interpreting the positions of tracked objects in a generic computer model of a patient's hip geometry; a software module, executable on the computer, which defines the patient's pelvic plane without reference to previously obtained radiological data, by locating at least three pelvic landmarks; and a pelvic tracking marker, fixable to the pelvic bone and trackable by the locating system, to track in real time the orientation of the defined pelvic plane. Preferably, the system also includes a femoral tracking marker, securely attachable to a femur of the patient by a non-penetrating ligature and trackable by the locating system to detect changes in leg length and femoral offset.
Jansen, et al, U.S. Published Patent Application 20040230199 discloses a computer-assisted surgery (CAS) system and method for guiding an operator in inserting a femoral implant in a femur as a function of a limb length and orientation of the femoral implant with respect to the femur, comprising a reference tool for the femur, a registration tool, a bone altering tool and a sensing apparatus. A controller is connected to the sensing apparatus to: (i) register a frame of reference of the femur by calculating surface information provided by the registration tool as a function of the position and orientation of the registration tool provided by the sensing apparatus, and/or retrieving in a database a model of the femur; (ii) calculate a desired implant position with respect to the frame of reference as a function of the limb length; and (iii) calculate a current implant position and orientation in relation to the desired implant position with respect to alterations being performed in the femur with the bone altering tool, as a function of the position and orientation of the bone altering tool provided by the sensing apparatus and of a digital model of a femoral implant provided by the database. The database is connected to the controller for the controller to store and retrieve information relating to an operation of the controller. The computer-assisted system may be used to guide an operator in inserting a pelvic implant in an acetabulum as a function of an orientation of the pelvic implant with respect to the pelvis.
Murphy, U.S. Pat. No. 7,105,028 (was 20050081867) discloses a minimally invasive and tissue preserving surgical procedure for the replacement of a hip joint, including the steps of: making a superiorly positioned incision; and preparing the femoral canal of a patient's natural femur for receipt of a femoral implant, through the superior incision, while the patient's natural femoral head is still within the patient's natural acetabulum.
Radinsky, et al, U.S. Published Patent Application 20060293614 discloses a computer-assisted surgery (CAS) system and method for measuring surgical parameters during hip replacement surgery to guide an operator in inserting a hip joint implant in a femur, comprising a first trackable reference in fixed relation with the pelvis and a registration tool. A sensor apparatus tracks the first trackable reference and the registration tool. A controller unit is connected to the sensor apparatus so as to receive tracking data for the first trackable reference and the registration tool. The controller unit has a position and orientation calculator to calculate from the tracking data a position and orientation of the pelvic trackable reference to track the pelvic frame of reference, and of the registration tool to produce a femoral frame of reference at two sequential operative steps. A reference orientation adjustor receives tracking data for the pelvic frame of reference, and the femoral frame of reference associated with the first trackable reference, to orient the femoral frame of reference in a reference orientation with respect to the pelvic frame of reference, and to produce a reference adjustment value as a function of the reference orientation. A surgical parameter calculator receives tracking data from the registration tool to calculate surgical parameters as a function of the reference adjustment value, the surgical parameters at the two sequential operative steps being related by the reference orientation.
Amiot, et al, U.S. Published Patent Application 20060287613 discloses a device, method and system for digitizing a center of rotation of a hip component with respect to a bone element in computer-assisted surgery. The device comprises a detectable member trackable for position and orientation by a computer-assisted surgery system. A body is connected to the detectable member in a known geometry. The body has a coupling portion adapted to be coupled to the hip joint implant component in a predetermined configuration. In one embodiment, the coupling of the detectable member is a tubular body having a cylindrical bore that is received on the frusto-conically shaped connector end of the femoral implant. In an alternate embodiment, the connector has a hemispherical hole and is positioned directly on the ball head secured to the connector end of the femoral implant. A detector member is also disclosed for digitizing the center of rotation of the acetabular implant, which has a generally hemispherical body that is positioned into the receiving cavity of the shell of the acetabular implant. The center of rotation of the hip component is calculable in the predetermined configuration as a function of the known geometry and of the position and orientation of the detectable member.
It should be noted that the present invention differs from Amoit, et al, in that the present method determines the center of rotation of the actual ball and socket hip joint, whereas Amoit, et al, determines the center of rotation of the prosthesis (which could also just be determined from a data-base of known implants.
Murphy, U.S. Published Patent Application 20060264731 discloses methods of determining the axial rotation and transaxial rotation of a pelvis from a single fluoroscopic image, comprising the steps of: (A) forming a fluoroscopic image of said pelvis in the near AP direction; (B) defining first and second landmarks of the pelvis on the image, the landmarks separated from each other in at least an anterior-posterior direction; (C) determining the axial and transaxial displacement of the landmarks on the image; and (D) using the displacement as a measure of the axial and transactional rotation of the pelvis with respect to the plane of the fluoroscopic image.
Moctezuma de la Barrera, et al, U.S. Published Patent Application 20050065617 discloses a system and method of performing a total replacement surgery of a ball and socket joint of a patient using a surgical navigation system that is performed by constructing intra-operatively a three dimensional model of the joint based on landmarks of the patient, by preparing the joint to receive implants, by placement of implants into the prepared joint and by determining range of motion and/or stability of the reconstructed joint. The system includes a surgical navigation system, a first circuit to construct intra-operatively a three dimensional model of the joint, a first tool to prepare the joint, a second tool to place an implant into the prepared joint, and a second circuit to determine range of motion and/or stability of the reconstructed joint. A virtual trialing or look ahead feature can also be included. A tool to locate the center of the canal of a limb includes an elongate body, a series of outwardly biased surfaces spaced around the elongate body and an interface to enable a tracking device to be attached to the body. A tool to guide the depth of the resection of a neck of a limb comprises a flat guide surface, a handle, and an interface to enable a tracking device to be attached to the tool.
Another problem with current and prior art ball and socket joint replacement surgery procedures, such as hip and shoulder arthroplasty, is that surgeons typically cut the neck of the femoral or humeral prosthesis and then inserted broaches into the femoral or humeral canal. The surgeon gradually enlarges the size of the broach until the broach fills the canal and stops at a pre-determined point. The surgeon typically measures on a pre-operative x-ray where he/she wants the broach to sit in the femoral or humeral canal so he/she can recreate the limb length and offset. The surgeon typically estimates the location of the broach to a pre-determined bony reference point (lesser trochanter) and compares the intra-operative measurement with the measurement on the pre-operative x-ray. The surgeon can then increase the size of the femoral or humeral broach until it is firmly positioned in the proper location (as best as the surgeon can tell).
It is therefore an object of the present invention to provide a surgical navigation method that accurately positions a prosthesis through pinless surgical navigation during replacement surgery according to a predetermined distance from the center of rotation of the replaced joint and/or articular surface to obtain the proper length, offset, and biomechanics of the replaced joint.
Another object of the present invention is to provide an improved pinless surgical navigation method for use in hip and shoulder replacement surgery that produces more accurate measurements of limb length and offset by positioning femoral or humeral navigational tracking sensors on the femoral or humeral prosthesis and closer to the joint that is being replaced.
Another object of the present invention is to provide an improved pinless surgical navigation method for use in hip and shoulder replacement surgery that will accurately recreate limb length and offset by determining the ideal femoral and humeral component position from intra-operative navigational measurements of the distance between the center of rotation of the joint and the femoral and humeral prosthesis, rather than from pre-operative templating and planning.
A further object of the present invention is to provide an accurate measurement of the pre-operative and post-operative femoral or humeral limb length and femoral or humeral offset, the pre-operative and post-operative acetabular height and acetabular offset, and the pre-operative and post-operative total limb length and total offset.
A still further object of the present invention is to provide an improved pinless surgical navigation method for use in hip and shoulder replacement surgery that can be used in conjunction with known surgical procedures, such as: determining the center of rotation of the a joint through arcs of motion of the limb, through mapping the surface of the femoral head or humeral head, and can be accomplished through either a superior approach while the patient's natural femoral or humeral head is still within the patient's natural acetabulum, or by a traditional approach with the femoral or humeral head dislocated but still attached to the femoral or humeral shaft.
One aspect of the present invention relates to a method of performing a total arthroplasty of a ball and socket joint using a surgical navigation system wherein the joint has a socket and a limb having a ball shaped head at a proximal end of the limb near the socket that includes insertion of the femoral or humeral broach and/or femoral or humeral prosthesis into the femoral or humeral canal such that the distance between the broach and/or prosthesis and the center of rotation of the limb equals the available femoral or humeral prosthetic neck length and angle, plus or minus any intended limb lengthening.
Another aspect of the present invention relates to a method of performing a total arthroplasty of a ball and socket joint using a surgical navigation system which includes insertion of the femoral or humeral broach and/or femoral or humeral prosthesis into the femoral or humeral canal such that the distance between the broach and/or prosthesis and the center of rotation of the limb equals the available femoral or humeral prosthetic head sizes, plus or minus any intended limb lengthening.
Another aspect of the present invention relates to a method of performing a total arthroplasty of a ball and socket joint using a surgical navigation system which includes determining the center of rotation of the joint prior to cutting the femoral or humeral neck, which be determined with surgical navigation by rotating the femoral head in the acetabulum and calculating the center of rotational movements of the femur. The center of rotation can also be determined by surface mapping the femoral head to determine the volumetric center of the femoral head.
A further aspect of the present invention relates to a method of performing a total arthroplasty of a ball and socket joint using a surgical navigation system which includes preparing the femoral or humeral canal to receive the femoral or humeral prosthesis prior to cutting the femoral or humeral neck through either a superior approach while the patient's natural femoral or humeral head is still within the patient's natural acetabulum, or by a traditional approach with the femoral or humeral head dislocated but still attached to the femoral or humeral shaft.
A still further aspect of the present invention relates to a method of performing a total arthroplasty of a ball and socket joint, such as the hip or shoulder, using a surgical navigation system which includes: inserting the femoral or humeral broach and/or prosthesis into the femoral or humeral canal, determining the distance between the femoral or humeral broach and/or prosthesis and the center of rotation of the hip or shoulder; adjusting the position of the femoral or humeral broach and/or prosthesis to a pre-determined distance from the center of rotation of the hip or shoulder joint; and gradually increasing the size of broaches in the canal until the distance between the broach and the center of rotation of the joint is identical (plus or minus any intended changes in leg length or offset) to the available prosthetic neck length and angle.
Other objects, aspects, features and advantages of the invention will become apparent from time to time throughout the specification and claims as hereinafter related.
In the following discussion, the term, femoral component, refers to either the femoral broach that is used to prepare the shape of the femoral canal or the final femoral prosthesis. The term, humeral component, refers to either the humeral broach that is used to prepare the shape of the humeral canal or the final humeral prosthesis. A hip joint is described and depicted in some of the drawings, for purposes of example only, but not limited thereto, and it should be understood that present invention relates to a method of performing a total arthroplasty of a ball and socket joint, such as the hip or shoulder.
It should also be understood that the present pinless surgical navigation method can be used in conjunction with known surgical procedures, such as: determining the center of rotation of the a joint through arcs of motion of the limb, through mapping the surface of the femoral head or humeral head, and can be accomplished through either a superior approach while the patient's natural femoral or humeral head is still within the patient's natural acetabulum, or by a traditional approach with the femoral or humeral head dislocated but still attached to the femoral or humeral shaft, as will be described hereinafter.
Referring now to
(1) The femoral canal is prepared prior to the neck osteotomy. The femoral canal preparation can be done either with the femoral head located in the joint socket or with the head dislocated but still attached to the femoral neck and shaft. The femoral canal may be prepared by a superior approach, a posterior approach, or other traditional approach.
(3) Once the femoral broach is firmly positioned, the surgeon utilizes the navigation system to determine the distance between the center of rotation (COR) of the hip socket and the femoral broach. Determination of the center of rotation may be accomplished one or more of the following procedures:
In an alternate method, a navigation tracking sensor may be attached to the femoral bone, the center of rotation is calculated by one of the methods described above, and then a broach and/or femoral prosthesis is inserted to the desired location to recreate offset and leg length.
It should also be understood that the present method may be carried out using a superior approach, a posterior approach, or other traditional approach.
As shown somewhat schematically in
A navigational tracking sensor or marker can also be attached to the pelvic bone to allow additional measurements and more accurate positioning of the acetabular prosthesis, whereby the center of rotation of the hip joint can be determined relative to the femoral and/or pelvic navigational tracking sensor or marker so that the acetabular component can be positioned relative to the center of rotation of the joint.
As shown somewhat schematically in
If the surgeon is using a femoral prosthesis without a modular neck, then the surgeon must firmly implant the final femoral broach, and take all necessary navigational measurements depicted in
If the surgeon is using a femoral prosthesis with a modular neck, then the surgeon can take preliminary navigational measurements with the femoral broaches, implant the femoral prosthesis to its permanent position in the femoral bone, and take additional navigational measurements based off the permanent position of the femoral prosthesis. After the additional navigational measurements based off the permanent position of the femoral prosthesis are taken, the femoral neck is cut, the femoral head is removed, the acetabular socket is prepared and the acetabular component is inserted. By using the permanent position of the femoral prosthesis with a modular neck instead of the femoral broach, the surgeon could eliminate the possible error of positioning the femoral component in a different location than the final femoral broach.
As shown somewhat schematically in
Referring now to
As shown somewhat schematically in
A navigational tracking sensor or marker can also be attached to the pelvic bone to allow additional measurements and more accurate positioning of the acetabular prosthesis, whereby the center of rotation of the hip joint can be determined relative to the pelvic navigational tracking sensor or marker so that the acetabular component can be positioned relative to the center of rotation of the joint. A navigational tracking sensor or marker attached to the pelvis is not necessary for the femoral component positioning, but is necessary for the acetabular component positioning relative to the center of rotation of the joint.
Referring now
The device disclosed in my copending application Ser. No. 11/640,141, is a joint/leg measurement device for determining length displacement and lateral offset displacement of a patient's femur during hip replacement surgery, and includes a reference member, a marking device, and a measurement tool. For a hip replacement, a femoral prosthetic component is inserted prior to the cutting of the femoral neck. As a result, the prosthesis preferably is placed into the canal prior to the disruption of the natural anatomical relationship of the hip joint and the ilium. The reference member is attachable to a femoral prosthetic component thus allowing the prosthesis in combination with the reference member to act as a reference for the leg measurement tool. The reference member thus provides a stable component which extends proximately along the femoral axis. In this manner, a leg measurement device can provide leg length and lateral offset displacement measurements by measuring the relative movement of the femoral axis with reference to the ilium reference location. The reference member is transversely intersected by the leg measurement tool, which is placed at the ilium reference location thereby permitting the physician to keep track of the relative movement of the femur both before and after hip replacement surgery. As such, by providing this reference member attached to the femoral prosthetic component, the reference member can continually keep track of the femoral axis thereby providing more reliable measurements of displacements in the femur relative to the ilium.
Thus, the femoral component itself acts as an extension of the femoral axis to track changes in the leg length and lateral offset displacements. The leg measurements are more accurate because the measurements are taken closer to the joint without bending pins, which leads to inaccuracy. The leg measurement tool is preferably always pointing in the same reference direction when placed at the ilium reference location. This permits the surgeon to measure the movements and rotations of the femur relative to the ilium. As a result, the joint can always be placed in the same position between measurements.
The device may also have a guiding member that inserts through an aperture in the reference member. This guiding member is utilized to mark the ilium reference location on the ilium. In order to mark this reference location, the guiding member can be inserted through the reference member for inserting a guide pin through the passage in the guiding member and into the ilium. The ilium is then drilled and a marking apparatus, which may be a cannulated screw, is then inserted into the ilium reference location. The leg measurement device can be inserted into the marking apparatus repetitively. Thus, by placing the leg measurement tool into the marking apparatus at the ilium reference location, the leg measurement tool maintains a reproducible reference line from the ilium reference location to the reference member. When the leg is repositioned such that the reference member is perpendicular to the measurement tool, the leg measurement tool will preferably always maintain the same axis relative to the marking apparatus and will preferably always be perpendicular to the femoral axis thereby assuring that the leg is repositioned in the original rotation.
Referring now to
While this invention has been described fully and completely with special emphasis upon preferred embodiments, it should be understood that within the scope of the appended claims the invention may be practiced otherwise than as specifically described herein. The foregoing disclosure and description of the invention is illustrative and explanatory thereof. No limitations are intended to the details of construction or design, herein shown, or to the methods described herein, other than is described in the claims below.
This application is a Continuation-In-Part of, and claims the benefit of priority under 35 U.S.C. 120, of copending U.S. patent application Ser. No. 11/640,141, filed Dec. 15, 2006, and which is expressly incorporated herein by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
Parent | 11640141 | Dec 2006 | US |
Child | 11975515 | US |