The present invention relates to a totally non-invasive and intelligent telemetry apparatus for monitoring continuous blood sugar levels, blood pressure data, psychological stress and other physiological parameters. It is, in particular, related to clinical monitors, health management gadgets and wearable medical devices involving reflective optical sensing design.
Modern lifestyle and food habits have huge impact on our physiological and psychological health. In this fast-paced society, it has become a necessity to track and manage our health and activities. In fact, globally 1 in 11 of us are suffering from diabetic condition and 21% of people in the US are standing on the diabetic border. In the coming quarter century, this count is expected to raise by more than 200 million and the prevalence is expected to raise by over 25%. The current technology either offers painful periodic invasive monitoring solution or disposable microneedles based monitoring solution. The current continuous glucose tracking devices also fails to monitor blood sugar levels in prediabetic range and neither acts as a management or prevention solution. Attempts have been made in the past by inventors and academic scholars to create a non-invasive technology, but their hardware and processing architecture proposals ignores underlying scientific principles of reflective sensing and real-time processing techniques.
The invention is hence directed towards a hardware design and real-time processing system that can intelligently overcome the barriers using boundary angle conditions and other signal altering factors like dispersion effects. The disclosure describes a reflective sensing based portable continuous blood sugar monitoring apparatus integrated with real-time diet recommendation and lifestyle management system, which can work for both prediabetic and diabetic population. The device also includes other health guidance components like blood pressure fluctuation tracking system, hypertension management system, sleep monitoring system and emergency life-support system.
What is needed is:
The object of the invention is to present a reflective configuration based totally non-invasive continuous blood glucose monitoring solution. The apparatus can also be utilized to monitor and manage blood pressure and other health parameters.
First Aspect
In the first aspect, a reflective configuration based near-infrared optical spectrometer is presented. The Near-Infrared (Near-IR) spectrometer comprises of a set of Near-Infrared LEDs and optical lens tilted at boundary angle θB. A distance of wavelength number (kλ) is kept between the light sources for attaining constructive interference. The tilt of the signal probe system assures that the Near-IR response is reflected from the bone boundary, which would not otherwise occur in normal direction. The optical lens focuses and constructively interferes Near-IR radiation on the sensing spot. The reflected optical response is captured and focused by an optical lens at the photodetector-end. The reflected response is recorded by the Near-IR photodetector.
Second Aspect
The second aspect of the invention presents a green optical spectrometer. The green spectrometer comprises of a green LED and optical signal probe tilted at a critical angle (θc), and photodetection system of optical lens and green photodetector. The optical lens and green photodetector are placed at an optimal response receiving spot so that the internal reflection noise can be avoided. The light emitted by tilted green LED is reflected off the skin boundary and the reflected response is captured by the optical lens and green photodetector set.
Third Aspect
The third aspect of the invention shows a red indicator spectrometer. A set of two red photodetectors are placed on the either side of the red LED with optical lens at proximity and distant positions. The signal difference between the proximity photodetectors and distant photodetectors are taken to analyse the red signal dispersion values. The dispersion values are analysed through the internal circuitry of the telemetry apparatus.
Fourth Aspect
The fourth aspect of the invention provides an infrared indicator spectrometer. A set of two infrared photodetectors are placed on the either side of the infrared LED with optical lens at proximity and distant positions. The signal difference between the proximity photodetectors and distant photodetectors are taken to analyse the infrared signal dispersion values. The dispersion values are analysed through the internal circuitry of the telemetry apparatus.
Fifth Aspect
In the fifth aspect of the invention, a dual side sensing Near-Infrared spectrometer is presented. A primary lens is used to focus the Near-IR response from the set of Near-IR LEDs arranged at distance of wavelength number (kλ). The Near-IR response is focused at an angle by the primary optical lens on the tilted beam splitter. The beam splitter refracts the radiation on one side and reflects the radiation on the other side. The light refracted by the beam splitter is focused and concentrated by a secondary optical lens tilted at a boundary angle θG. The light reflected by the beam splitter is further reflected and focused by a mirror to compensate the phase change. The mirror inverts the phase and focuses the light on the secondary lens on the other side tilted at the boundary angle θG. The light reflected from the bone boundary on the either side and the reflected response is captured by the corresponding optical lens on the photodetector end. The optical lens in turn focuses the light on the respective photodetectors. A set of mirrors, at optimal orientations and positions, can be utilized in the refracted space for equalizing the wave pathlength difference between the light in the refracted and reflected space.
Sixth Aspect
A dispersion analyser apparatus is explained in the sixth aspect of the invention. The dispersion apparatus comprises of signal board with light source and optical lens system tilted at an angle and focused on the central photodetector. The photodetector system of the dispersion analyser apparatus comprises of a central photodetector with optical lens and two adjacent photodetectors with optical lens in each of it. The light emitted by the light probe is focused by the signal probe end optical lens on the central photodetector. The reflected light is captured by the central photodetector's optical lens and the two adjacent optical lenses. The photodetector end lenses focus the reflected response on their respective photodetectors. The signal difference between the central photodetector response and total response of the adjacent photodetectors is taken through the Instrumental Amplifier. The output of the Instrumental Amplifier is analysed to obtain the real-time dispersion information.
Seventh Aspect
The seventh aspect of the invention puts forth a low-powered hardware of the telemetry apparatus.
The hardware comprises of optical signal probes of near-infrared light probes, Green LED, IR LEDs and red LEDs, and photodetector probes of near-infrared photodetector, green photodetector, IR photodetectors and red photodetectors with their respective optical elements. The light emitting signal probes, photodetector probes and their corresponding optical elements are arranged according to the spectrometer configurations. The input to the near-infrared light probes are coherently driven through a tunable BJT/FET based active current amplifier circuit and the set of resistors. A main micro-switch set is utilized to shift the input from the LED frontend to the green LED, red LED, infrared LED and to active current amplifier attached to the Near-IR light probes. The LED frontend comprises of LED driver, LED controller, PWM and clock controller, which tunes and sends the input signal through the main micro-switch set.
A BJT/FET based Darlington pair and small signal current source is attached to the Near-IR photodetector set, which is used to amplify the low powered Near-IR response. The low powered green response signals pass through the optical elements and the green photodetector probes, which are amplified by the Darlington pair and small current source attached to the photodetector. The small current source circuits attached to the photodetectors adds a baseline to the response signals. The red response and IR response, recorded by the red photodetector-optical lens system and IR photodetector-optical lens system, are extracted alternatively by using a switch set. The proximity photodetectors responses are separately summed and processed using an op-amp and stabilizing buffer. The responses of distant photodetectors are amplified, summed and processed through darlington pair, an op-amp based circuit and stabilizing buffer unit. The summed response signals of the proximity photodetectors and distant photodetectors pass through the circuit line of ADC, Ambient Noise cancellation IC and DAC. The responses of red-infrared signals are extracted using two different circuit lines. One response line is utilized to analyse the total Infrared-red response and the other circuit line is utilized to obtain dispersion signal. An Instrumental Amplifier is attached to the proximity and distant photodetectors response output line for extracting the real-time dispersion information. The analysed dispersion signal is passed through a power notch to remove the power line noise. The analysed dispersion signal passes through an ADC to the microprocessor. The distant photodetector signal and proximity photodetector signal are aggregated using resistors and Transimpedance (TIA) amplifier. The response signals of Near-infrared light, green light and red-IR light are processed using the photodetector frontend circuit line of TIA amplifier, power notch, ADC and noise cancellation IC. The processed output response is then sent to the microprocessor. A main micro-switch set is attached between the photodetector frontend and response line of different light spectrum, which shifts the output response to respective photodetector circuit based on the input signals. The micro-switch set reduces the overall component use and power consumption. An additional switch set can be utilized to reduce the count of the power notch and Noise cancellation IC.
A non-contact MEMs/NEMs temperature biosensor, attached to the microprocessor, logs the body temperature response and thermal feedback. An ambient temperature sensor, attached to the microprocessor, records the environment temperature and temperature of the internal electronics system. The 9/6 axis MEMs/NEMs accelerometer of the hardware is utilized as a real-time feedback to remove motion noise from the bio-signal response. A set of wireless antennae of WLAN, BLE, GSM and GPS are either externally attached to the microprocessor or integrated inside the microprocessor. The set of wireless antennae communicates the data between the telemetry apparatus, and the set of external storage and computational devices like accessorial mobile devices, server, etc. The set of wireless antennae along with the accelerometer is used for tracking the real-time location and movement signals like phase, speed, steps taken, etc. The microprocessor is used for communicating commands and feedbacks with the internal electronic components of LED frontend, photodetector frontend, accelerometer, temperature biosensors, ambient temperature sensors, other sensors, wireless antennas, USB module, buttons, potentiometer integrated navigator, fancy LED, touch display and other electronics modules. The function of microprocessors also includes computing and storing the required information. A mini-touch display is attached to the hardware for viewing and accessing the real-time medical information, health data and on-device applications. The touch display is also used to calibrate and operate the instrumentation. The fancy LED flashes for representing different device modes, device status and decorative applications. The buttons and potentiometer integrated navigator are used for operating and calibrating the device. The memory module attached to the microprocessor is utilized for internally storing the information.
Apart from the display unit, the hardware of the telemetry device is internally or externally attached to an additional user interaction system consisting of mic and speaker. The set of user interaction hardware components is utilized by the user for interacting with the medical and health practitioners for clinical and health analysis. The professionals can send and receive the information, as well supervise the user through the user interaction system. The user interaction unit is also used as the means to perceive the recorded and computed information, and to operate the device and its in-built applications.
The hardware of the telemetry apparatus is attached to a power supply unit, which comprises of power management IC, supercapacitor-battery set, supercapacitor-renewable energy harvester set, wireless coil, USB module and negative voltage converter. The power management IC of the power supply unit, attached to the hardware and microprocessor, regulates the current flow and power supply. The negative voltage converter attached to the power management unit generates the negative reference signal. The USB module and supercapacitor-battery are utilized for powering the electronic circuit. The USB module is also used for communicating the data with the external devices and charging the battery of the internal circuit. The device is wirelessly recharged through the coil. The power supply unit includes an alternative and supplementary power supply unit containing renewable energy harvester and supercapacitor.
Eighth Aspect
The eighth aspect of the invention provides the method for device initialization and apparatus calibration. During the initial device start-up, the age, weight, gene info, BMI, Fat % and contact layer picture of the user is recorded. The recorded contact layer skin colour is processed on a scale of 1 to 10 and the contact picture is again recorded multiple times. The median values of the processed contact layer color are stored and utilized. On unavailability of the contact layer recording, the realistic profile picture of the user is processed, and the values are altered by an adjusting parameter to extract the realistic value of the contact layer skin color. Different blood sugar values, blood pressure values and other health parameters are recorded and processed for calibrating the device. The blood sugar values, blood pressure values and other vital health parameters are recorded during sitting position, standing position, relaxing position, fasting glucose, post-dinner, post-breakfast, post-lunch, post-sleep, post-exercise, before dinner, before breakfast, before lunch, before bed-time and also during the hypoglycaemic and hyperglycaemic conditions. If increasing value of hyperglycaemic and hypoglycaemic conditions are recognized, the device is re-calibrated. For diagnosed hyperglycaemic and hypoglycaemic conditions, the apparatus records and stores the blood sugar values, blood pressure values and vital information multiple times a day. If enough calibration values are available, the calibration process is skipped and if lesser number are values are available, then more calibration values are recorded. The Near-IR light sources, green LED, IR LEDs and red LEDs are initiated, and the values of the responses are recorded in their respective matrices. The recorded responses are normalized according to the light source area and power. The green response (G) signals are analyzed for DC losses. The recorded red and IR response signals are analyzed to extract the Integrated signal response (Rtot−IRtot), Differential/Dispersion signal responses (Rdiff−IRdiff) and power response (RP−IRP). The body temperature (Btemp) and Ambient temperature response (Atemp) are recorded and the response signals are adjusted as per the temperature stats. Accelerometer is initiated to record movement data and to remove motion noise in the real-time signal. Wireless antennae are initiated and analysed for location and movement data.
Ninth Aspect
The ninth aspect of the invention presents the real-time system for monitoring continuous blood sugar levels. The recorded sensor signals are processed and correlated for extracting the real-time values. The real-time green sensor values G) are analyzed for losses due to skin layer. Fast Fourier analysis is applied to to detect the skin signal loss green parameter (GPAR). The Near-IR signal values are adjusted for body temperature values and ambient environment temperature values using statistical methods, and the different resonant values of the Near-IR signals are computed. The mean of different adjusted Near-IR values is computed using NIRT= (NIRA+NIRB+NIRC+so on till NIRN)/N. Fast-Fourier series is applied to Rtot1 to derive oscillatory signal (Rosc). The oscillatory signal (Rosc) is adjusted for blood line dc losses, and then it (Rosc) is adjusted for skin losses using the derived green signal parameter (GPAR). The oscillatory signal power (Rosc) is compensated from the Near-IR signal (|NIRT1|t=|NIRT|t−X1.|Rosc|t). Then, NIRTI is adjusted from the IRtot and IRdis for Near-IR dispersion due to other blood particles (NIRT2=NIRT1-X1IRdis-X2.IRtot). Then Near-IR value is adjusted for red differential/dispersion signal (NIR3=NIR2+X3.Rdif). Then, the green parameter is adjusted from Near-IR signal in variable constant form and dependent coefficient form (NIR4-NIR3-X4.In (GPAR-X5)). Linear and non-linear correlation is applied to different processed Near-IR values (NIR4), Color indices (C) and different recorded blood sugar calibration values. Then, the Near-IR sensor is calibrated using the processed Near-IR signal and calibrated blood sugar values. Then, real time value of continuous blood sugar (BSL) is computed from the calibrated sensors. The sensor is re-calibrated for recognized hyperglycemic and hypoglycemic conditions. The IR sensor, red sensor, current values and calibrated values are analyzed and learnt for tracking BSL, hypoglycemic and hyperglycemic conditions. The real-time values of the continuous blood sugar and blood sugar fluctuation data are stored and displayed. On recognizing the chronic and abnormal blood sugar conditions, the system automatically alerts the life-support network of the user.
Tenth Aspect
In the tenth aspect of the invention, a method to precisely calibrate the blood sugar monitoring is provided. Initially the computed blood sugar values are evaluated for boundary values and threshold fluctuation values. Different blood glucose states of fasting glucose, pre-meal values and post-meal values are evaluated against the boundary fluctuations, threshold values and different blood sugar ranges, and the device is recalibrated accordingly. Based on the detected blood sugar condition of pre-diabetes, hyperglycemia and hypoglycemia, an automated therapy and diet recommendation is presented to the user. The dispersion values are further analyzed and learnt to evaluate the response result.
Eleventh Aspect
A method to extract the blood pressure and stress levels are provided in the eleventh aspect of the invention. Initially, the red signals are compensated for skin losses using parametric analysis between the green response and red response signals. Fast Fourier analysis is applied to the total and oscillatory signals of the red sensor to extract the power values of the red signal. The analyzed and noise-free red sensor values are further analyzed using non-linear or linear analysis for deducing real-time blood pressure values. The real-time blood pressure values and fluctuations are analyzed to evaluate the blood pressure conditions of stage 1 hypertension, stage 2 hypertension, pre-hypertension and low blood pressure conditions. Based on the recognized blood pressure condition, the user is presented with physician consultation message, diet and health management techniques. The blood pressure values and the temporal fluctuations of the red signal are analyzed through different methods and parameters of user location, user state and user postures. The analyzed blood pressure values and the temporal fluctuations are utilized to evaluate the psychological stress levels of the user. During the state of psychological stress, the user is automatically presented with stress management methods. On recognizing the severe blood pressure condition and state of psychological stress, the system automatically alerts the life-support network of the user.
Twelfth Aspect
An automated sleep tracking system is presented in the twelfth aspect of the invention.
The accelerometer signals, body temperature, blood pressure data and blood sugar values are initially evaluated for state of sleep. The variations in blood pressure and blood sugar values are compared against the wake levels, and then derived HP1, HP2 and HP3 parameters are furthered analyzed for recognizing NREM sleep cycle and REM sleep cycle. The computed sleep cycle and time period of the respective sleep cycles are incremented and stored. The actimeter signals are evaluated to verify if the user's sleep is disrupted. On recognizing the state of disturbed sleep, the health and life-style recommendations are provided to the user. Further learning is applied to the signals to simplify the sleep recognition process.
Thirteenth Aspect
The thirteenth aspect provides a method and software device to calibrate the device. The user data of profile picture, age, BMI, fat %, gene info, weight and height are recorded through the telemetry apparatus or the accessorial mobile apparatus. A picture of the contact surface is recorded and processed through the aforementioned method. The blood sugar and blood pressure calibration values are recorded for different instances of fasting glucose values, before bedtime, before lunch, before dinner, after breakfast, after sleep, after dinner, after lunch, and after exercise. The user can also record information on the micro-nutrition and macro nutrition, and meal-information through the telemetry apparatus or the accessorial mobile apparatus. The real-time information and data trends on blood sugar levels, blood pressure levels, neural activity, pulse rate, oxygen saturation and body temperature are automatically displayed on the device along with health sense message. The device comprises of automated real-time reminder and alert system to notify the user during the instances of medication and chronic medical conditions. The device further comprises of recommendation system, which guides the user with health practices and diet management techniques for the diagnosed health condition.
Fourteenth Aspect
The fourteenth aspect provides an optimization method for estimating the health and calibration parameters from the previously recorded data of the user database. The color index, age, BMI, fat %, gene Info, sensor intensity, signal response and real-time calibration values of the user are matched with the previously recorded parameters in the database. The optimization parameters of color index, sensor calibration data, healthy H.R. index, performance index and progress index are learnt and derived from the central database. The optimization parameters are returned to the user device, which is used in processing the real-time biological information and other health parameters.
Fifteenth Aspect
In the fifteenth aspect, a parallel computational network is provided. The parallel computational network enables the computation with much higher speed and efficiency, while keeping the complexity low. The network of parallel computation network comprises of internal microprocessor, external server computers, accessorial mobiles devices, external computers and other connected local devices. The external servers are used for executing computational process, and as well as for remotely storing the information. The accessorial mobile devices and other synchronized devices are also used to compute and store the information. The network of parallel computing devices are accessed through wireless methods of ‘WLAN, BLE, GSM’ and through other possible modes of communication. Whenever necessary, stored information and computed results are communicated between the telemetry apparatus and network of devices.
Sixteenth Aspect
An emergency system is presented in the sixteenth aspect. On recognizing emergency trigger, the system validates the status of the wireless antennae and switches it on. The location data are recorded through the wireless antennae set, and the biometric and other vital information are recorded through the internal bio-sensors. The recorded information is transmitted to the central server, SOS network, support network and to the near—by mobile devices through the wireless methods. The devices are synchronized, and the next set data are transmitted. The wireless data transfer occurs directly or via medium of central server.
Seventeenth Aspect
The seventeenth aspect of the invention provides a smart wearable or portable embodiment of the reflective continuous glucose monitor. The near-infrared optical spectrometer, reflective red sensor spectrometer, reflective Infrared sensor spectrometer, green optical sensor spectrometer and body temperature sensor are placed inside cavity structure of the contact surface. The cavity like structure is utilized as a means to evade the background optical noise. The sensors on the contact surface are surrounded by a foam base, which curtails the movement noise in the real-time recording. The device is packaged with a board of successive segregated layers of analog and sensor frontend plane, secondary digital and analog plane, power plane and digital and wireless plane. The mini-touch screen, mic and micro-speakers are placed on the top user facing surface. The successive and sequential plane packaging method is used to curtail the electrical noise and reduce the circuit line tracing efforts. The battery is placed in unobtrusive manner around the electronics packaging to elude the signal interference. The device is covered with the PCB waterproofing coating and product waterproofing coating. A USB charging and data transfer port and button set is packaged on the side surface of the device along with buttons. A button and navigator crown is packaged on the other side surface of the device.
Eighteenth Aspect
The eighteenth aspect of the invention presents a solar module powered portable telemetry monitoring embodiment form. A reflective sensing spectrometer with foam base is embedded on the finger placement area of the apparatus. A set of buttons are embedded on the side surface of the device, which are used to operate the device. A USB port is attached on the side surface of the device, which is used to transfer data, and to power the device and its battery. The device comprises of touch-screen, which is used to access the information and to operate the telemetry apparatus. The back surface of the device is attached to a solar module. The solar module has an actuatable module 1 and actuatable module 2, which are attached to each through an actuatable hinge. The actuator hinge along with an actuator automatically extends the solar module for absorbing more solar energy. The solar module is used as an auxiliary renewable powering unit. The device further comprises a wearable chord with molded extender clip and extender chord, which is used as a method to modify the chord size. The device is further coated with water proof coating.
Nineteenth Aspect
In the nineteenth aspect of the invention, an earphone based embodiment form is presented. The device has reflective sensing spectrometer near earlobe attachment area. A fancy LED is embedded in the ear hook of the device, which emits light to represent different operating modes and device status. The music ear-buds are attached to the rear-end of the device. The ear-bud and ear-hook are used to fasten the device to the user.
Twentieth Aspect
The twentieth aspect of the invention presents a fancy LED apparatus. The fancy LED device comprises of multi-colored LED encased in a line of multiple optical tubes. The light emitted by the fancy LED is observed inside the multiple optical tubes.
Series of
Series of
Series of
Series of
Series of
Series of
Series of
Series of
Series of
Series of
Series of
Series of
Comprehensively, the disclosure can be utilized and perceived in the form of various applications. The principle of the described invention is not intended to limit to the specific device or instrumentation application. The disclosure can be chiefly classified into live clinical diagnostic instrument, telemetry medical apparatus, mobile wellness management device, automated recommendation system, real-time intelligent medical reminder, software medical device and other forms of health management devices.
The set of optical lens system of 66, 67, 68 and 69 tunes and focuses the input radiation of the corresponding light sources of 80-81, 82, 83 and 84. The output response is focused by optical lens system of 70, 71, 72, 73, 74, 75, 76, 77, 78 and 79 on the corresponding photodetector probes of 85, 86, 87, 88, 89, 90, 91, 92, 93 and 94. The input to the near-infrared light sources of 80 and 81 are coherently driven through a resistor line and a tunable FET/RIT based active amplifier circuit 95. The signal input is variably triggered and sent through a LED frontend comprising of LED driver 124, PWM 127, switch set 125, LED controller 126 and clock controller 128. A signal probe end primary switch set 123 is utilized for connecting the LED frontend of 124-125-126-127-128 to the red LED 82, infrared LED 83, green LED 84 and active amplifier circuit 95 attached to the near-infrared LDs 80-81. The primary switch set 123 reduces the overall component use, power consumption and electrical tracing efforts.
The near-infrared output response recorded by the near-infrared photodetector probe 85 is shifted by small signal source 96 and amplified by the darlington pair 97. The response recorded by the green photodetector probe of 86 is shifted by small signal source 98 and amplified by the darlington pair 99. A set of switches of 100, 101, 102 and 103 are placed between the corresponding set of red photodetector-infrared photodetector of 87-91, 88-92, 89-93 and 90-94. The set of switches of 100, 101, 102 and 103 are utilized to alternatively record output response of the red photodetector probes of 87-88-89-90 and infrared photodetector probes of 91-92-93-94. The output response of proximity red-infrared photodetectors of 87-91 and 88-92 is separately extracted through a proximity response line 106 and summed through an op-amp circuit 108. The output response of the distant red-infrared photodetector set of 89-93 and 90-94 are amplified through darlington circuit of 104 and 105. The response of distant red-infrared photodetectors set is separately extracted through a distant response line 107 and summed through an op-amp circuit 110. The output line of proximity photodetectors and distant photodetectors are stabilized through a buffer circuit of 109 and 111. The summed proximity response line and summed distant response line are filtered and processed using a circuit line of ADC 112, ambient noise cancellation IC 113 and DAC 114. An Instrumental amplifier 115 with gain is attached to the proximity response line and distant response line for extracting the real-time dispersion information. The real-time dispersion is further filtered and recorded through a circuit line of power notch 116 and ADC 117. The processed output response lines of the individual light sources are attached to an op-amp circuit 119 through a photodetector end primary switch set 118. The photodetector-end primary switch set 118 is utilized to reduce the component use and overall power consumption. The output response through op-amp circuit 119 is filtered and processed through a circuit line of power notch 120, ADC 121 and ambient noise cancellation IC 122.
A MEMs/NEMs non-contact temperature biosensor 129 is attached to the hardware for extracting the real-time body temperature and temperature feedback. An ambient temperature sensor 130 of the hardware is utilized for extracting real-time environment temperature and feedback of the internal electronics. A MEMs/NEMs 9/6-axis accelerometer 131 is attached to the hardware, which is utilized as a real-time motion feedback for the bio-sensor and as a means to compute movement signals. The wireless antennae set of GPS 132, GSM 135, WLAN 133 and BLE 134 of the hardware are used for communicating the information between the telemetry apparatus and external devices. The wireless antenna set of 132-133-134-135 is also utilized to compute the real-time location and movement data of steps taken, speed, phase, etc. A mini touch display 136 is attached to the hardware, which is utilized for viewing and accessing the real-time medical information, real-time medical alerts, automated recommendations, notifications, data trends, daily health check-up data and other essential information. The touch display 136 is also used for operating the telemetry apparatus and its in-built applications. Apart from the display unit 136, the hardware of the telemetry device is attached to a user interaction system of mic 137, speaker 138, button set B1-B2-B3139-140-141 and potentiometer integrated navigator 142. The navigator crown 142 comprises of a potentiometer and fixed impedance component. The set of interaction components of 136-137-139-140-141 are utilized for operating the telemetry apparatus and accessing the in-built applications. The set of user interaction hardware components of 136-137-138-139-140-141 are utilized as a means for interacting with the professional medical and health practitioners for clinical and health analysis. The speaker 138 is also used as the means to perceive the recorded and computed information. A fancy LED circuit 143 is attached to the hardware, which is utilized for automatically indicating the user condition, displaying decorative applications and representing different operating modes and device status.
The hardware of the telemetry apparatus is powered by a power supply unit comprising of power management IC 144, supercapacitor 145-battery set 146, supercapacitor 147-renewable energy harvester 148, wireless coil 150, USB module 149 and negative voltage converter 151. The power management IC 144 is used to regulate power supply. The supercapacitor 145-battery 146 is utilized for energy storage and powering the internal electronics. The supercapacitor 147-renewable energy harvester 148 is used as the auxiliary powering unit. The wireless coil 150 is used as the wireless method to charge the battery and power the internal electronics. The negative signal reference is generated by the negative voltage converter 151. The USB module 149 is used for powering the electronic circuit, charging the internal battery and communicating the data with the external devices.
The microprocessor 152 attached to memory 153, is used for communicating with the internal electronics and operating the internal electronic components. The microprocessor 152 with memory 153 is also utilized for computing and storing the required information.
The values of continuous blood pressure values (BP) and blood pressure fluctuations (ΔBP) are analyzed during fasting glucose state, post-meal state, post-sleep state, post-meditation state, regular condition, and pre-meal state for recognizing hypertension, hypertension stage 2, hypotension, and unusual blood pressure fluctuations. The system further analyses the blood pressure values (BP) and blood pressure fluctuations (ΔBP) for different locations. The system informs the user with information on the recognized health condition, present blood pressure levels and current blood pressure fluctuations. Subsequently, the system verifies probable symptoms, and automatically generates and displays recommendations from database on therapy methods, treatment centres, lifestyle practices, diet suggestions, physical activities, mitigation methods and medication advice to treat and manage the recognized blood pressure condition. Then, the real-time system also automatically notifies and alerts the life-support network with a warning message and information on user data, user condition, user location, recognized health condition, present blood pressure levels, current blood pressure fluctuations and other essential data. Based on the real-time data and recognized health conditions, the user is automatically presented with real-time medical alert, a message to consult the doctor, medication reminder and information on location of the medication.
Series of
Series of
Series of
Series of
Series of
The above described invention disclosure is intended for illustration purposes, and for those skilled in the art may instantly perceive numerous suggestive modifications, variations and equivalents. Therefore, the disclosure is not exhaustive in broader aspects and the invention is not intended to limit to specific details, spectrometer instruments, illustrated hardware designs, described computational methods and embodiment forms. All equivalents and modifications are intended to be included within the scope of disclosure and attached claims. Accordingly, additional changes and modifications may be made without departing from the scope and the spirit of the invention disclosure appended in the document, claims and their equivalents.
The disclosure presents reflective sensing based low-powered and totally non-invasive continuous glucose monitoring solution. The described intelligent technology can be utilized as telemetry clinical instrumentation, neo-natal medical device, gestational diabetes monitoring apparatus, real-time diagnostic technology, portable medical apparatus, in-vitro and in-vivo biosensing instrument, general wellness management device, smart wearable device, server based real-time clinical diagnosis system, life-support device, health tracking software device, real-time intelligent medical reminder, automated recommendation system and software medical device.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/IB2019/050253 | 1/13/2019 | WO |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2019/138382 | 7/18/2019 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
20140121527 | Adler, Jr. | May 2014 | A1 |
20160150978 | Yuen | Jun 2016 | A1 |
20160270656 | Samec | Sep 2016 | A1 |
20160324478 | Goldstein | Nov 2016 | A1 |
20180177459 | Eletr | Jun 2018 | A1 |
20180184972 | Carmi | Jul 2018 | A1 |
20190129470 | Hasei | May 2019 | A1 |
Number | Date | Country | |
---|---|---|---|
20210059542 A1 | Mar 2021 | US |
Number | Date | Country | |
---|---|---|---|
62617273 | Jan 2018 | US |