This invention relates to a retainer device for securing multiple totes in a tote storage array which may be used, for example, for product order-fulfillment systems and more particularly to such a retainer device which is removable to enable reuse and reconfiguration of the totes in the tote storage arrays.
Ordering products over the internet for home delivery is an extremely popular way of shopping. Fulfilling such orders in a timely, accurate and efficient manner is logistically challenging to say the least. Clicking the “check out” button in a virtual shopping cart creates an “order.” The order includes a listing of items that are to be shipped to a particular address. The process of “fulfillment” involves physically taking or “picking” these items from a large warehouse, packing them, and shipping them to the designated address. An important goal of the order-fulfillment process is thus to ship as many items in as short a time as possible.
Among the tasks of order fulfillment is therefore that of traversing the warehouse to find and collect the various items listed in a customer order. Certain order-fulfillment processes use only human operators to pick and place goods. Often the human operators use carts to assist them in transporting the goods around the warehouse. In other cases, robots are used to increase efficiency and productivity. In both cart-based and robot-based systems, totes or containers may be used to organize the goods being transported. And, in certain cases, a plurality of individual totes or containers may be interconnected to form a tote array to organize the goods for multiple orders.
To ensure they are lightweight while being sufficiently durable, the totes may be formed of a rigid polyofelin plastic material, such as polyethylene. In order to adequately secure each tote to an adjacent tote, a relatively strong adhesive, such as LocTite 3035, has been used. However, separating totes that have been adhered using glue often results in the hard plastic material of the totes breaking. Therefore, it has been found that separating the individual totes from the tote arrays for reuse/reconfiguration is generally not possible. This is a less than desirable result and a secure, convenient, and easy way to interconnect totes which may be later disconnected (for reuse/reconfiguration) without destroying or damaging the totes is needed.
An object of the invention is to provide a tote retainer device, which enables a secure, convenient, and easy way to interconnect multiple totes.
Another object of the invention is to provide such a tote retainer device which also enables the totes to be disconnected without destroying or damaging the totes so that they may be reused and/or reconfigured.
In one aspect the invention features a retainer device for removably connecting a first tote to a second tote in a stacked arrangement, the first tote including a rail disposed along a top edge of the first tote and a lip disposed adjacent to the rail, the second tote including a flange disposed along a bottom edge of the second tote, the flange of the second tote being seated on the rail of the first tote when the second tote is stacked on the first tote. The retainer device includes an elongated body member including a top surface, a bottom surface, and a channel disposed in the bottom surface and extending along a length of the elongated body member. There is a leg member affixed to the elongated body member at a first angle with respect to the top surface of the elongated body member and extending at least partially along the length of the elongated body member. There is also at least one foot member having a top surface and the at least one foot member is affixed to the leg member at a second angle such that the top surface of at least one foot member faces the bottom surface of the elongated body member to define a region there between. The channel is configured to receive and engage with the lip of the first tote and the region defined between the top surface of at least one foot member and the bottom surface of the elongated body member is configured to receive and engage with the rail of the first tote and the flange of the second tote when the second tote is stacked on the first tote.
In other aspects of the invention, one or more of the following features may be included. The first and second angles may be approximately 90 degrees. The elongated body member, the leg member, and the at least one foot member may be integrally formed. The leg member may extend along the entire length of the elongated body member 5. The at least one foot member may include a first foot member located proximate a first end of the elongated body member and a second foot member located proximate a second end of the elongated body member, and each foot member has a top surface which faces the bottom surface of the elongated body member to define the region. The top surface of the elongated body member may include two holes which extend at an angle through the bottom surface, one hole being aligned with the first foot member and the other hole being aligned with the second foot member. The rail of the first tote and the flange of the second tote when the second tote is stacked on the first tote may be positioned in the region, the holes may be configured to receive screws which are inserted through the rail of the first tote and the flange of the second tote and into the respective top surface of the first and second foot members to secure the retainer device to the first and second totes. The angle of the two holes may be approximately 75 degrees with respect to the top surface of the elongated body member. The bottom surface of the elongated body member may be disposed at an angle relative to the top surface of the elongated body member and the angle may be complementary to an angle of a top surface of the flange of the second tote. The bottom surface of the elongated body member may be disposed at an angle of approximately 30 degrees. The channel may be disposed between the bottom surface of the elongated body member and the leg member.
These and other features of the invention will be apparent from the following detailed description and the accompanying figures, in which:
The invention and the various features and advantageous details thereof are explained more fully with reference to the non-limiting embodiments and examples that are described and/or illustrated in the accompanying drawings and detailed in the following description. It should be noted that the features illustrated in the drawings are not necessarily drawn to scale, and features of one embodiment may be employed with other embodiments as the skilled artisan would recognize, even if not explicitly stated herein. Descriptions of well-known components and processing techniques may be omitted so as to not unnecessarily obscure the embodiments of the disclosure. The examples used herein are intended merely to facilitate an understanding of ways in which the disclosure may be practiced and to further enable those of skill in the art to practice the embodiments of the disclosure. Accordingly, the examples and embodiments herein should not be construed as limiting the scope of the disclosure. Moreover, it is noted that like reference numerals represent similar parts throughout the several views of the drawings.
The invention is directed to a tote retainer device for use in tote storage arrays. Although not restricted to any particular application, one suitable application that the invention may be used in is order fulfillment with or without the use of autonomous mobile robots. An application using robots to transport tote storage arrays will be described first, but only to provide context for the invention. Then, the tote retainer device according to the invention will be described in connection with a tote storage array. The robot system described herein used to transport the tote storage array is not limiting in any way to the tote retainer device, and such tote retainer device may be used in any application using a tote storage array.
Referring to
In a preferred embodiment, a robot 18, shown in
Referring again to
In this application, a local operator 50, which is typically human, carries out the task of physically removing an ordered item from a shelf 12 and placing it on robot 18, for example, in tote 44. The robot 18 communicates the order to the local operator 50 via the tablet 48 (or laptop/other user input device), which the local operator 50 can read, or by transmitting the order to a handheld device used by the local operator 50.
Upon receiving an order 16 from the order server 14, the robot 18 proceeds to a first warehouse location, e.g. as shown in
Upon reaching the correct location, the robot 18 parks itself in front of a shelf 12 on which the item is stored and waits for a local operator 50 to retrieve the item from the shelf 12 and place it in tote 44. If robot 18 has other items to retrieve it proceeds to those locations. The item(s) retrieved by robot 18 are then delivered to a packing station 100,
It will be understood by those skilled in the art that each robot may be fulfilling one or more orders and each order may consist of one or more items. Instead of using a single tote, a storage or tote array having two or more totes or containers which are affixed to one another, may be used. Each of the totes/containers or compartments may be associated with a separate order or multiple totes/containers/compartments may be used for and associated with a single, larger order.
One embodiment of the storage array according to this invention is described with regard to
In this embodiment, storage array 44a includes three storage containers 102, 104, and 106, which are vertically stacked upon each other and are fixedly interconnected to form an integrated array. Each container 102, 104, and 106 in storage array 44a includes a bar code disposed on bar code labels 112, 114, and 116, respectively. Also on each bar code label is a number associated with each container, which may be read by a human operator, such as operator 50a,
In addition, there is included a bar code label 120, which is associated with the storage array 44a. The bar code label 120 also includes a storage array identification number, in this case “001”, for the operator 50a to identify it among the various storage arrays. Bar code label 120 is positioned on a side of container 102, but this label could be positioned in various locations on the storage array.
An operator may initiate a “pick” process with a robot by inducting it into the system and providing notification to warehouse management system (“WMS”) 15 that robot 18a is available to receive and execute an order. In the induction process, the operator may interact with the robot 18a via a touch screen on the tablet 48a of the robot or via a handheld wireless device to activate it. The robot then communicates to WMS 15 that it is ready to receive its order session. The operator also provides robot 18a with a storage array, such as storage array 44a.
Rather than inducting each container 102, 104, and 106 individually and obtaining an order for each serially by scanning the bar code labels 112, 114, and 116 for each container, the operator may scan only bar code label 120, associated with storage array 44a, in order to efficiently generate the orders for all three individual containers. This process is described more fully in co-pending U.S. patent application Ser. No. 15/254,321, entitled Item Storage Array for Mobile Base in Robot Assisted Order-Fulfillment Operations, filed on Sep. 1, 2016.
In the approach for securing multiple totes together to form a tote array, as depicted in
A tote retainer device 200, according to an aspect of this invention, which interconnects one tote to another tote and which may be easily removed to allow the totes to be disconnected is depicted in
Each rail is configured to receive a bottom surface of a bottom edge flange on the tote above it in a stacked arrangement. For example, tote 152 includes a bottom edge flange 166 which runs along its bottom left edge from the front of the tote to the rear of the tote. Bottom edge flange has a bottom surface (not visible) which is seated flush on the rail of top edge 154 of tote 150. Tote 150 includes a bottom edge flange 168 which runs along its bottom left edge from the front of the tote to the rear of the tote. This bottom edge flange also has a bottom surface (not visible) which may be seated on a surface of a robot or on the rail of another tote in the tote array.
Each top edge also includes a lip which extends from its rail in a direction substantially perpendicular to the rail. Thus, tote 150 includes lip 155 which runs along its top left edge 154 from the front of tote 150 to the rear of tote 150 and extends in a direction substantially perpendicular to the rail (not visible) of edge 154. The top right edge 158 of tote 150 includes a rail and a lip but they are not visible in this figure. Tote 152 includes lip 157 which runs along its top left edge 156 from the front of tote 152 to the rear of tote 152 and extends in a direction substantially perpendicular to the rail (not visible) of edge 156. The top right edge 160 of tote 156 includes a rail 161 a lip 163, which in this view can be seen to extend from rail 161 in a substantially perpendicular direction.
Before describing in more detail how tote retainer device 200 is installed on and interconnects totes 150 and 152 with regard to
Disposed or formed in bottom surface 206 is channel 208. Channel 208 extends along the length of the elongated body member 202. There is a leg member 210 affixed to the elongated body member 202 at an angle with respect to the top surface 204 of the elongated body member 202 and extending along the length of the elongated body member 202. The leg member 210 may be integrally formed with elongated body member 202 and may be disposed at substantially a right angle. It should be noted that leg member 210 extends along the full length of elongated body member 202, but it does not need to be and (although not shown) it could extend only partially along the length in a continuous manner or it could be segmented in order to reduce the amount of material used to fabricate the tote retainer device 200.
Continuing to refer to
In
During installation, retainer device 200 is forced over top edge 154 such that lip 155 is inserted into channel 208 and the bottom edge flange 166 and rail 184 on which it is seated are positioned in region 216 of retainer device 200. In the installed position it can be seen that top surface 213 of foot member 212 is spaced from the bottom surface of rail 184 and top surface 180 of bottom edge flange 166 is engaged with surface 206 of elongated body member 202. The spacing between top surface 213 of foot member 212 from the bottom surface of rail 184 provides some level of “play” to place the retainer over the bottom edge flange 166 of tote 152 and the top edge 154 of tote 150 while being able to guide lip 155 into channel 208. Once the retainer device 200 is in position on the totes, screw 220 may be placed through hole 221 the elongated body member 202 of retainer device 200 and driven through bottom edge flange 166 and rail 184 and into leg member 212 of retainer device 200.
With another retainer device installed on the opposite side of totes 150 and 152, the tote array will be ready for use. If at a later time, the individual totes are needed for another purpose, the screws may be removed from retainer device 200 and the device may be easily removed from top edge 154 of tote 150. The retainer device on top edge 158 (
While the foregoing description of the invention enables one of ordinary skill to make and use what is considered presently to be the best mode thereof, those of ordinary skill will understand and appreciate the existence of variations, combinations, and equivalents of the specific embodiments and examples herein. The above-described embodiments of the present invention are intended to be examples only. Alterations, modifications and variations may be effected to the particular embodiments by those of skill in the art without departing from the scope of the invention, which is defined solely by the claims appended hereto. The invention is therefore not limited by the above described embodiments and examples.