Totipotent hub for construction toy system

Information

  • Patent Grant
  • 6592421
  • Patent Number
    6,592,421
  • Date Filed
    Tuesday, July 23, 2002
    22 years ago
  • Date Issued
    Tuesday, July 15, 2003
    21 years ago
  • Inventors
  • Examiners
    • Ackun; Jacob K.
    Agents
    • Lehrer; Norman E.
Abstract
Disclosed are improvements to a construction system based on genderless connectors. The improvements include a totipotent hub that by itself can accomplish the three basic requirements of a hub-and-rod construction system: construct a one-one-square-root-of-two right triangle, construct a logarithmic spiral based on same, and tile the plan with triangles. Other inventions are disclosed including a genderless two-piece rivet system.
Description




BACKGROUND OF THE INVENTION




This invention relates to construction toy systems. More particularly, it relates to both hub and rod construction toy systems based on hermaphroditic and identical (genderless) connectors, and to building block systems also based on genderless connectors. In many cases the genderless connectors are integral to the parts being connected. And the genderless connectors greatly extend the range of applications for this invention.




This is a crowded art with much activity in the construction toy system part of it, with many U.S. patents, referred to by number below, known to the inventor that have some pertinence. U.S. Pat. No. 1,113,371 discloses the original rod and hub construction toy system with wooden hubs and rods and with the rod inserted into a hole in the hub and held there by friction and compression (interference fit). U.S. Pat. No. 1,707,691 discloses a hub and rod construction toy system with a hub of stamped metal and wooden rods with slit ends. The connection is formed by inserting the metal hub into the rod-end slit.




A great many construction toy systems allow identical elements to be interconnected but with only a few exceptions noted below the actual connections are not genderless. Instead, the male and female connecting elements are placed on opposite ends of the block or hub. In any event, we found no construction system that allowed genderless connection between non-identical elements, e.g., between hub and rod. U.S. Pat. No. 3,626,632 discloses a typical building block system that allows identical blocks to be interconnected by means of a male element on one side and female elements on three other sides. But U.S. Pat. No. 2,800,743 discloses a nearly genderless building block system. But in this system when genderless connections are made the elements are no longer aligned and regular figures can not be constructed.




U.S. Pat. No. 2,633,662 discloses a construction toy system with genderless interconnection for hubs connected orthogonally. But hub and rod connections in the same plane are effected with rods that connect across the face of the hubs and do not form a genderless connection. U.S. Pat. No. 4,758,196 discloses a hub and rod construction toy system with genderless rod-rod connections but without any way of directly connecting the hubs.




Various concepts from the construction and other industries have been adapted to construction toy systems. U.S. Pat. No. 3,648,404 discloses a hub and rod construction system designed to be used with hollow rods. The construction toy system disclosed in U.S. Pat. Nos. 4,078,328 and 5,049,105 uses a similar connection system. U.S. Pat. No. 3,891,335 discloses a hub and rod and panel snap together construction system. The hub and rod construction toy system disclosed in U.S. Pat. Nos. 5,061,219, 5,137,486 and 5,199,919 uses a retaining clip similar to the one disclosed in the '335 patent. The '486 patent does disclose a genderless hub-hub connection for orthogonally connecting hubs. However, the means of connecting the hubs is not the same means as connecting rods to hubs.




Other mechanical connectors include U.S. Pat. No. 4,280,339, which discloses a torque transfer device for flexible shaft couplings. Each shaft has an extended portion with forked ends defining teeth. The teeth are inserted orthogonally to each other. U.S. Pat. No. 3,800,556 discloses a power shaft coupling including a coupling mechanism having elongate square bars defining extensions. These extensions may be mutually inserted in orthogonal positional relationship. U.S. Pat. No. 2,577,508 is a universal coupling with bifurcated tongues that mate. U.S. Pat. No. 2,832,943 is a detachable coupling in which the male and female members are not identical but do have an orthogonal insert relationship. U.S. Pat. No. 3,224,222 is a universal joint with yoke members including cross-pintles for connecting the yoke members together.




Hermaphroditic connectors have been used in the electronic connector industry. The invention disclosed herein grew out of our prior electronic connector inventions as shown in U.S. Pat. No. No. 5,183,409 and in our continuation in part application filed on Aug. 01, 1994.




Other presently known U.S. patents of interest are: U.S. Pat. Nos. 3,516,043; 3,070,769; 2,690,542; 3,011,143; 4,199,208; 3,634,811; 2,996,026; 3,070,769; 2,475,046; 2,470,282; 1,865,300; 2,577,508; 607,607; 3,552,145; 1,171,380; 2,740,271; 4,172,369; 2,460,231; 534,732, and 2,389,115. It is believed that the present invention is patentably distinct from the teachings of any of the above-cited Patents.




SUMMARY OF THE INVENTION




Disclosed is an improvement to the construction toy systems disclosed in our prior applications referred to above all of which that describe toy systems all of whose parts directly interconnect by means of genderless connectors. These new inventions include a square hub, which by itself can fulfill the role of the three basic components of the inventions disclosed in our prior U.S. Pat. No. 6,231,416—hub, short rod and long rod (the basic components of a hub-and-rod construction system). Said new invention augments our prior inventions but also can be completely independent of them because by itself it can be used to construct the standard logarithmic spiral that is the test of the correctness and usefulness of a hub and rod system. And as can be seen in the illustrations, it can be used to construct rectangular walls—a feat that no basic hub and rod system can accomplish. Also disclosed are: a new beam-and-beam construction system also based on genderless connectors similar to connectors disclosed in our previous patents and swivel connectors similar to those that we have previously disclosed. Genderless demi-rivets are also disclosed that, when connected together, form a rivet.




By the use of these genderless connectors plus the disclosed improvements, a very wide range of very different and independent toy systems can be designed that freely inter-connect. In fact, the invention disclosed in the related application with the addition of the improvements disclosed in this application allows for the creation of a near universal construction toy system—one that allows for free inter-connection across a wide range of construction toy types: hub-and-rod, beam-and-beam, blocks, and geodesics all in a range of sizes that makes them appropriate for various age groups from toddler (very large and easy to grasp) to adult (miniature, precision) with all the pieces from all the sizes and types interconnecting.











BRIEF DESCRIPTION OF THE FIGURES




For the purpose of illustrating the invention, there is shown in the accompanying drawings forms which are presently preferred; it being understood that the invention is not intended to be limited to the precise arrangements and instrumentalities shown.





FIGS. 1



a


,


1




b


, and


1




c


show a totipotent hub in plan and perspective views;





FIG. 2

shows a totipotent hub in plan view with absolute and relative dimensions furnished for clarity of exposition;





FIGS. 3



a


,


3




b


, and


3




c


show an assembly of identical totipotent hubs in plan and perspective views in a plane-tiling configuration;





FIG. 4

shows tables illustrating dimensional relationships of the parts of the hubs of

FIG. 2

;





FIGS. 5



a


and


5




b


show identical totipotent hubs in a plane-tiling configuration assembled into a rectangle in both plane and perspective views;





FIGS. 6



a


and


6




b


show identical totipotent hubs assembled into a logarithmic spiral in both plane and perspective views;





FIGS. 7



a


,


7




b


, and


7




c


show a totipotent hub none of whose genderless connectors have backstops;





FIGS. 8



a


,


8




b


, and


8




c


show in plan, end and perspective views various rods that could be used with the totipotent hubs;





FIGS. 9



a


,


9




b


, and


9




c


show in plan, end and perspective views two beams—A and B;





FIG. 10

shows in plan, end, and perspective views three additional α-length beams—C, D and E: C being a simple beam and D and E are used to make T-joints. In D all three connectors are in the same plane while in E they are not;





FIGS. 11



a


,


11




b


,


11




c


, and


12


show in plan, end, and perspective views a corner connector, two of the connectors being in the same plane but at right angles to each other while the plane of the middle connector is at right angles to the other two;





FIGS. 13



a


,


13




b


,


13




c


, and


13




d


show in semi-plan and perspective views a genderless demi-rivet; two such demi-rivets, when connected to each other, form a rivet and do not require a well-defined rivet hole, the mating surfaces of the demi-rivets being furnished with ‘one-way’ grooves;





FIGS. 14



a


,


14




b


,


14




c


, and


14




d


show in plan, end and perspective views one half of an adjustable length rod(/beam). When two such are mated together at their adjustable length ends they form an adjustable length rod(/beam). The adjustable length mating surfaces are rough—similar to the mating surfaces of the demi-rivets but not as extreme;





FIG. 15

shows in perspective view a (hollow) square panel; its four edges being furnished with identical genderless connectors. Such a panel can be inserted into an array of panels without regard to top, bottom, left, right, back or front;





FIG. 16

shows in perspective view a panel similar to the panel of

FIG. 15

except that it will freely mate with all of the rods and beams of the related patents and applications. However, it has fewer degrees of freedom and it has a distinguishable front and back;





FIGS. 17



a


,


17




b


, and


17




c


show in plan, end and perspective views a curved rod. It acts as a curved hypotenuse to complete a 1-1-square-root-of-two right triangle by connecting to the hub connectors one beyond where a straight rod would connect, and





FIGS. 18



a


,


18




b


,


18




c


, and


18




d


show in plan, end and perspective views a rod capable of swiveling about its long axis being comprised of two identical parts and an axle with the axle press-fit into a bearing cavity.











DESCRIPTION OF THE PREFERRED EMBODIMENTS




Totipotent hubs disclosed herein extend the hub-and-rod systems of our U.S. Pat. No. 6,231,416. Said system was already notable in that, unlike all other hub-and-rod systems it only required three parts to perform the two basic functions of a hub-and-rod system: tile the plane and construct a logarithmic spiral. A totipotent hub of the invention is even more remarkable in that identical hubs can be assembled into those same structures without the use of any other parts (which is why they are totipotent).




Another way of thinking about this is that totipotent hubs extend the hubs of the '416 patent. The '416 hubs are in themselves remarkable—unlike other hub-and-rod systems, the '416 hubs could be used by themselves in large constructions—in particular spheroids can be constructed of identical hubs. As can be seen in

FIG. 1

, said hub is square and furnished with four diagonally situated connectors (one at each corner) and four orthogonally situated connectors (one at each pole—the NSEW connectors). The distance between two opposite NSEW connectors as shown in

FIG. 2

is ‘α’ and the distance between two opposite diagonally situated connectors as shown in

FIG. 2

is ‘β’. In order to use said hubs as totipotent hubs for a hub-and-rod construction system, then the distance β must satisfy the following equation:






β=α((22)−1)






or






β≈1.828α






which here we accomplish by slightly recessing the NSEW connectors. We could just as easily protrude the diagonally situated connectors. As drawn, said hub's material thickness is approximately 10% its maximum orthogonal diameter ‘δ’.












TABLE 1











(length relationships in the logarithmic-spiral triangles)


















<-- Leg -->





<--Hyp -->





Log




Triangle






















a




b




a




b




Ln








2




0




1




1




L1




(T1)







1




1




4




0




L2







4




0




2




2




L3




(T2)







2




2




8




0




L4







8




0




4




4




L5




(T4)







4




4




16 




0




L6







16 




0




8




8




L7




(T8)







. . .




. . .




. . .




. . .




. . .























TABLE 2











(length relationships in the plane-tiling triangles)


















<-- Leg -->





<--Hyp -->





Tiling




Triangle






















a




b




a




b




Tn








2









1




1




T1







4









2




2




T2







6









3




3




T3







8









4




4




T4







. . .









. . .




. . .




. . .







2n









n




n




Tn















In

FIG. 3

we can see that in fact one can tile a plane with identical hubs the invention. The mathematics of which is elucidated in Table 2 of FIG.


4


. In

FIG. 6

we see that one can also construct a logarithmic spiral with identical hubs of the invention. The mathematics of which is elucidated in Table 1 of FIG.


4


.

FIG. 5

shows a rectangular plane tiling.

FIG. 7

shows a totipotent hub similar to hub


11


except that none of its genderless connectors have backstops. Such a condition facilitates connection with other hubs and rods of radically different sizes.




DESCRIPTION OF THE RELATED EMBODIMENTS




Beam-and-beam systems shown in

FIGS. 9

to


13


extend the hub-and-rod systems of the '416 patent and related applications to frame-based construction systems. If such a system contains: α-spaced, α-length, β-spaced, β-length beams and multiple and sub multiples of same, then the rules of Tables 1 and 2 hold for the system. Such a result guarantees that it can make use of the rich possibilities of '1-12 right triangles'. A demi-rivet


130


disclosed below is itself a notable improvement with applications far outside beam-and-beam systems for which it was conceived.




Also shown in

FIG. 14

is ½ of an adjustable length rod(/beam) pair. When two such are correctly mated they form an adjustable length rod(/beam). The mating surfaces on the adjustable length portion are rough—similar to the ‘one-way’ grooves on the demi-rivets but not as extreme.





FIGS. 15 and 16

show panels that can be used to construct walls. Genderless connectors on the panel in

FIG. 16

are identical to the connectors of the beam system disclosed herein and can freely mate with them (and most of the rods of the related patents and applications) thereby extending both systems.




In

FIG. 17

we show a curved rod that acts as a curved hypotenuse to complete a 1-1-square-root-of-two right triangle by connecting to the hub connectors one beyond where a straight rod would connect.




In

FIG. 18

we show a rod that can swivel about its long axis. It is composed of two identical parts and an axle-bearing press-fit into an axle-bearing cavity. Said rod can be used as an axle.




DETAILED OF THE FIGURES




An embodiment of the invention


11


in

FIG. 1

is a totipotent hub. Said hub is furnished with eight genderless connectors


13




a


to


13




g


whose properties are fully disclosed in the related patents.


11


is similar to the hubs of the related patents with eight connectors radially arrayed at equal 45 degree angles around its center except that instead of being round it is square with four connectors at the corners and four in the middle of the straight sides. Said hub has a center hole


12


in the center of body


16


. The four orthogonal connectors have cutouts


15




a


to


15




d


to accommodate the correct connection distance. A typical connector


13




c


is furnished with a backstop


14


and a web face


17


. In

FIG. 2

we show an embodiment of the invention


21


identical to


11


with relative dimensions shown. The distance from orthogonal west connector's web face


22




a


to orthogonal east connector's web face


22




b


is α. The distance from corner NW. connector's web face


23




a


to corner SE connector's web face


23




b


is β. The orthogonal distance d from points


24




a


to


24




b


give the orthogonal size of


21


's body. And the orthogonal distance from N web face


25




b


to nearest body side


25




a


is w. As above β=α((22)−1).




An assembly


51


of nineteen identical totipotent hubs of the invention is shown in FIG.


5


. Nine hubs


52




a


. . .


52




i


are assembled in a flat plane in a 3×3 square array. Said hubs are connected by hubs


52




j


. . .


52




q


orthogonal to the plane and arranged in a square. Hubs


52




r


and


52




s


are also orthogonally oriented to the plane but connect the center hub


52




e


diagonally.





FIGS. 6



a


and


6




b


show an assembly


61


similar to assembly


51


but instead twenty-nine identical hubs of the invention are arranged in a logarithmic spiral. The center points v


1


. . . v


5


of five of the hubs are the first five vertices of a logarithmic spiral created by included triangles L


1


. . . L


5


.




In

FIG. 7

we have an embodiment


71


similar to


11


but none of its eight connectors


73




a


to


73




h


have backstops. Said hub is furnished with an optional center hole


72


.




The connection length of a rod of the inventions is given by its web face to web face distance. In

FIG. 8

we have rods whose connectors have no backstops and whose connection distances are useful with embodiment


11


and with hubs, rods, etc. of the related applications. Rod


82


has a connection length of ½α. Two such rods


87




a


and


87




b


are shown assembled into an assembly


86


that is effectively an α-length rod with free end connectors whose planes of connection are at right angles. Rod


85


has a connection length of


2




w.


With said rod two hubs similar to


11


can be assembled such that their edges touch. Rod


83


is a simple α-length rod similar to other rods in the related applications but without backstop. With all of these rods the orthogonal distance from web face to nearest tip is e, which is ½ the standard connector length. Rod


84


has a connection length of


2




e


and can be used to connect almost any two similarly scaled elements of this or any of the related applications such that their edges touch.




Embodiments of the inventions shown in FIG.


9


and

FIG. 10

are beams to be used as construction elements in frame-based construction systems.


91


are two similar beams


92


and


93


. Beam


92


is shown with end connectors


94




a


and


94




b.


It is also furnished with two locations


95




a


and


95




b


to which swivel connectors similar to


97




a


can be attached. Such a location consists of a medially located through hole


98


and an area with material removed


99


such that the material thickness of the beam is ½ its full thickness as shown at location


95




b.


This thickness relationship is shown clearly in the plan view of swivel connection


96


. Also the area of removal must be great enough to allow the swivel connector room to rotate. Swivel connectors


97




a


. . .


97




c


on beam


93


located at swivel connection locations


95




c,




95




d


and


96


themselves consist of full-sized genderless connectors


202


connected to a ½-thickness body


203


containing a rivet hole


204


as shown on swivel connector


97




a.


Beam


93


is also furnished with end connectors


94




d


and


94




c.


As shown, beams


92


and


93


are


2


α long and are also α-spaced with swivel connection rivet holes centered ½α or α from the nearest web face. Note that the plane of connection at connection location


96


is at right angles to the plane of all the other connectors and connector locations (except for its attached swivel connector


97




b


).






101


of

FIG. 10

are three α-length beams


102


is a simple beam whereas


103


and


104


can be used to make T-connections. Connectors


105




a


. . .


105




f


are normal connectors whose planes of connection are all in the same plane. On beam


103


, connector


106


's plane of connection is in the same plane as the other two connectors


105




c


and


105




d


on


103


but its angle of admittance is at right angles to


105




c


and


105




d,


which orientation allows a T-joint to be realized. Whereas, the plane of connection for connector


107


on beam


104


is at right angles to the planes of connection for connectors


105




e


and


105




f.


Such an orientation also allows a T-joint to be realized.




A three-connector-corner connector


110


of

FIG. 11

can be realized as beam


104


cut and welded back together such that connectors


105




e


and


105




f


(


112


and


113


in


110


respectively) are still in the same plane but


105




e


's angle of admittance is now at right angles to that of


105




f.


Connector


111


corresponds to connector


107


.


114


and


116


are needed to attach


112


to the rest of the assembly. Gap


115


must be there to allow a connection at connector


111


.




Genderless demi-rivet


130


of

FIG. 13

is similar to the rods disclosed in this and related applications except that in place of a rod-body it is furnished with a rivet head


132


. Web


134


, half the length of connector fingers


131




a


and


131




b


reinforces them. One-way groove strips


133


placed on each


458


face of said connector fingers keep two demi-rivets


136


and


137


firmly attached to each other after connection as shown in assembly


135


. In rivet


135


demi-rivets


136


and


137


are shown not fully joined. Even so, with one-way grooves


133


and sufficient interference fit it could be extremely difficult to separate them.




Demi-adjustable-length rod


140


of

FIG. 14

consists of a regular connector


141


on one end and a longer connector


142


on the other on the end. Line


146


marks the operational division between said connectors. As shown web


144


runs through both connectors and its total length is ½ the length of said regular connector plus ½ the length of said long connector. Gap


145


is ½ the length of


142


. Two-way groove strips


143


decorate the


458


faces of connector fingers


147




a


and


147




b.


Two such demi-adjustable-length rods


149




a


and


149




b,


shown when connected by their long connectors, form an adjustable-length rod


148


. Said two-way groove strips hold the said adjustable-length rod at whatever connection position it is placed as long as it remains under no load or a light load. Loading capability will depend on strength of material of the rod, the degree of interference fit and the exact nature of said groove strips.




Hollow construction panel


151


consists of a frame


153


decorated on all four sides with genderless connector strips


152




a


to


152




d,


as shown in FIG.


15


. Said connector strips are radially orthogonally arrayed around the frame with connectors facing out. As designed


151


is square so as to impose no orientation when assembled with other construction panels with identical connector configurations. Hollow


154


is optional.




Construction panel


161


is furnished with four genderless connectors


162




a


. . .


162




d


one per side. Similarly for another four genderless connectors


163




a


. . .


163




d.


The only difference between these sets of connectors are there orientation. As you traverse the edge of


161


you must alternate among the


162




s


and


163




s


as shown in

FIG. 16. 161

is shown with a solid body


164


and grooves in the connector area


165


which are there to ease connection. Curved rod


171


shown in assembly


170


assembled to an assembly of totipotent hubs


175


has a body


172


furnished with genderless connectors


172




a


and


172




b


on each end.


171


acts as a curved hypotenuse to complete a 1-1-square-root-of-two right triangle by connecting to the hub connectors one beyond where a straight rod or hub would connect. Hub


176


is located in the regular hypotenuse connection position.




In


180


we have three similar axle-swivel rods in three different states. Axle-swivel rod


187


consists of two identical ends


182




a


and


182




b


each furnished with genderless connectors


222




a


and


222




b


at their ends. As shown


187


is in position to have its axle-bearing


184




a


press fit into axle-bearing cavities


183




a


and


183




b.




184




a


is furnished with four normally positioned bearings


189




a


to


189




d,


two at each end. Axle-swivel rod


181


is shown with axle-bearing assembly


184




c


press fit in. Axle-swivel rod


188


is shown swiveled about its axle


184




b.


Axle-bearing cavity cross section


185


shows a reverse curvature


186


that provides the material interference needed to hold axle-bearings in their cavities after they are press fit in.




The present invention may be embodied in other specific forms without departing from the spirit or essential attributes thereof and accordingly, reference should be made to the appended claims rather than to the foregoing specification as indicating the scope of the invention.



Claims
  • 1. A construction toy system comprising a plurality of hubs, each of which is capable of functioning both as a hub and as a rod:each of said hubs being comprised of a substantially flat disc-shaped member lying substantially within a single first plane and including an outer periphery defining the outer extent of said disc-shaped member within said first plane; each of said hubs being substantially in the shape of a square with four sides and four corners; each of said hubs including eight substantially identical genderless connectors located substantially equally spaced around the outer periphery of said disc-shaped member and facing outwardly from the same substantially in said first plane, said genderless connectors being located at each of said corners and on each of said sides, the connectors located on said sides being recessed inwardly.
  • 2. A construction toy system as set forth in claim 1 wherein each of said hubs has an upper surface and a lower surface which are substantially identical to each other whereby there is no up or down orientation to said hubs.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation-in-part of prior application Ser. No. 09/855,265, filed May 15, 2001, now U.S. Pat. No. 6,422,909, which was a continuation of application Ser. No. 09/359,204, filed Jul. 22, 1999, now U.S. Pat. No. 6,231,416, which was a continuation of application Ser. No. 08/862,948, filed May 30, 1997, now abandoned and which claimed the benefit of provisional patent application Serial No. 60/018,771, filed May 31, 1996.

US Referenced Citations (15)
Number Name Date Kind
1113371 Pajeau Oct 1914 A
2633662 Nelson Apr 1953 A
2984935 Beck May 1961 A
4758196 Wang Jul 1988 A
D304217 Klitsner Oct 1989 S
4902259 Ziegler Feb 1990 A
5049105 Glickman Sep 1991 A
5061219 Glickman Oct 1991 A
5183409 Clever et al. Feb 1993 A
5322467 Barzani Jun 1994 A
5769681 Greenwood et al. Jun 1998 A
5904606 Zimmer et al. May 1999 A
6149487 Peng Nov 2000 A
6231416 Clever et al. May 2001 B1
6325694 Clever et al. Dec 2001 B1
Provisional Applications (1)
Number Date Country
60/018771 May 1996 US
Continuations (2)
Number Date Country
Parent 09/359204 Jul 1999 US
Child 09/855265 US
Parent 08/862948 May 1997 US
Child 09/359204 US
Continuation in Parts (1)
Number Date Country
Parent 09/855265 May 2001 US
Child 10/201461 US