Touch controller architecture

Information

  • Patent Grant
  • 10845901
  • Patent Number
    10,845,901
  • Date Filed
    Wednesday, July 16, 2014
    10 years ago
  • Date Issued
    Tuesday, November 24, 2020
    4 years ago
Abstract
A touch controller that can configure touch circuitry according to a scan plan, which can define a sequence of scan events to be performed on a touch panel is disclosed. The touch controller can include a configurable transmit section to generate stimulation signals to drive the panel, a configurable receive section to receive and process touch signals from the panel, and a configurable memory to store the touch signals. The touch controller can also include a programmable scan engine to configure the transmit section, the receive section, and the memory according to the scan plan. The touch controller advantageously provides more robust and flexible touch circuitry to handle various types of touch events at the panel. An active stylus that can generate stimulation signals that can be detected by the touch controller during various touch events at the panel is also disclosed.
Description
FIELD

This relates generally to a touch controller and, more specifically, to a touch controller architecture that can be configured according to a scan plan.


BACKGROUND

Many types of input devices are presently available for performing operations in a computing system, such as buttons or keys, mice, trackballs, joysticks, touch panels, touch screens and the like. Touch sensitive devices, and touch screens in particular, are quite popular because of their ease and versatility of operation as well as their affordable prices. A touch sensitive device can include a touch panel, which can be a clear panel with a touch sensitive surface, and a display device such as a liquid crystal display (LCD) that can be positioned partially or fully behind the panel so that the touch sensitive surface can cover at least a portion of the viewable area of the display device. The touch sensitive device can allow a user to perform various functions by touching or hovering over the touch panel using a finger, stylus or other object at a location often dictated by a user interface (UI) being displayed by the display device. In general, the touch sensitive device can recognize a touch or hover event and the position of the event on the touch panel, and the computing system can then interpret the event in accordance with the display appearing at the time of the event, and thereafter can perform one or more actions based on the event.


Touch sensitive devices are being developed to recognize more and more types of touch and hover events. Device circuitry needs to be developed to perform the increasing number of events in a timely and accurate manner.


SUMMARY

This relates to a touch controller that can configure touch circuitry according to a scan plan, which can define a sequence of scan events to be performed on a touch panel. The touch controller can include a configurable transmit section to generate stimulation signals to drive the panel, a configurable receive section to receive and process touch signals from the panel, and a configurable memory to store the touch signals. The touch controller can also include a programmable scan engine to configure the transmit section, the receive section, and the memory according to the scan plan. The touch controller can advantageously provide more robust and flexible touch circuitry to handle various types of touch events at the panel. This also relates to an active stylus that can generate stimulation signals that can be detected by the touch controller during scan events at the panel.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 illustrates an exemplary computing system implementing an exemplary touch controller that can detect both touch and hover events caused by objects such as a finger or a stylus according to examples of the disclosure.



FIG. 2 illustrates an exemplary stylus and exemplary communication between the stylus and a computing system according to examples of the disclosure.



FIG. 3 illustrates an exemplary touch controller that can control the various scan operations on a touch sensor panel according to examples of the disclosure.



FIG. 4A illustrates an exemplary touch sensor panel operable with an exemplary touch controller to perform a mutual capacitance row-to-column scan according to examples of the disclosure.



FIG. 4B illustrates an exemplary touch sensor panel operable with the touch controller of FIG. 3 to perform a mutual capacitance column-to-row scan according to examples of the disclosure.



FIGS. 5A and 5B illustrate an exemplary touch sensor panel operable with an exemplary touch controller to perform a mutual capacitance row-to-row scan according to examples of the disclosure.



FIGS. 6A and 6B illustrate an exemplary touch sensor panel operable with an exemplary touch controller to perform a mutual capacitance column-to-column scan according to examples of the disclosure.



FIGS. 7A and 7B illustrate an exemplary touch sensor panel operable with an exemplary touch controller to perform self-capacitance row scans and self-capacitance column scans according to examples of the disclosure.



FIG. 8 illustrates an exemplary touch sensor panel operable with an exemplary touch controller to perform stylus scans according to examples of the disclosure.



FIG. 9 illustrates an exemplary touch sensor panel operable with an exemplary touch controller to perform stylus spectral analysis scans or touch spectral analysis scans according to examples of the disclosure.



FIG. 10 illustrates an exemplary transmit section of an exemplary touch controller, where the transmit section can generate stimulation signals Vstim to drive the row or column traces of a touch panel according to examples of the disclosure.



FIG. 11 illustrates an exemplary receive section of an exemplary touch controller, where the receive section can receive and process touch signals from a touch sensor panel according to examples of the disclosure.



FIG. 12 illustrates an exemplary scan architecture of a touch controller in which various scan events can be performed at a touch sensor panel under the direction of the touch controller according to examples of the disclosure.



FIG. 13 illustrates the correspondence between an exemplary touch signal and the touch signal demodulation window according to examples of the disclosure.



FIG. 14 illustrates an exemplary scan plan executed in FIG. 12 according to examples of the disclosure.



FIG. 15 illustrates an exemplary method for configuring components of the transmit section, receive section, and the RAM at a scan engine according to examples of the disclosure.



FIG. 16 illustrates an exemplary method for handling a stylus spectral scan event according to examples of the disclosure.



FIG. 17 illustrates an exemplary RAM configuration that can correspond to the scan events in FIG. 12 according to examples of the disclosure.



FIG. 18 illustrates an exemplary scan architecture for a touch controller configuring a master-slave circuit, which can include touch circuitry for a master touch circuit and touch circuitry for a slave touch circuit, according to examples of the disclosure.



FIG. 19 illustrates an exemplary scan plan executed in FIG. 18 according to examples of the disclosure.



FIG. 20 illustrates an exemplary RAM configuration that can correspond to the scan events in FIG. 18 according to examples of the disclosure.



FIGS. 21A-21D illustrate example systems in which a touch controller according to examples of the disclosure can be implemented.



FIGS. 22A and 22B illustrate exemplary coupling between transmit/receive channels and row/column traces according to examples of the disclosure.





DETAILED DESCRIPTION

In the following description of the disclosure and examples, reference is made to the accompanying drawings in which it is shown by way of illustration specific examples that can be practiced. It is to be understood that other examples can be practiced and structural changes can be made without departing from the scope of the disclosure.


This relates to a touch controller that can configure touch circuitry according to a scan plan, which can define a sequence of scan events to be performed on a touch panel. The touch controller can include a configurable transmit section to generate stimulation signals to drive the panel, a configurable receive section to receive and process touch signals from the panel, and a configurable memory to store the touch signals. The touch controller can also include a programmable scan engine to configure the transmit section, the receive section, and the memory according to the scan plan. The touch controller can advantageously provide more robust and flexible touch circuitry to handle various types of touch events at the panel. This also relates to an active stylus that can generate stimulation signals that can be detected by the touch controller during various scan events at the panel.



FIG. 1 illustrates an exemplary computing system 100 implementing a touch controller 102 that can detect both touch and hover events caused by objects such as finger 104, and signals from a stylus 106 according to examples of the disclosure. Computing system 100 can include a touch sensor panel 114 to detect touch or hover events at a touch sensitive device, such as a mobile phone, tablet, touchpad, portable or desktop computer, portable media player, wearable device or the like. Touch sensor panel 114 can include an array of touch nodes 144 that can be formed by a two-layer electrode structure separated by a dielectric material, although in other examples the electrodes can be formed on the same layer. For example, touch nodes 144 can be formed at the crossing points between row electrodes and column electrodes, separated by a dielectric material. The row electrodes can form drive lines 142 and the column electrodes can form sense lines 140, although it should be understood that the row/drive line and column/sense line associations can be only exemplary. The sense lines 140 can intersect the drive lines 142 in a variety of manners. For example, the sense lines 140 can be perpendicular to the drive lines 142 and can form touch nodes 144 with x and y coordinates. However, other coordinate systems can also be used, and the coordinates of the touch nodes 144 can be defined differently. Although FIG. 1 illustrates four drive lines 142 and five sense lines 140, it should be understood that touch sensor panel 114 can include any number of drive lines 142 and any number of sense lines 140 to form the desired number and pattern of touch nodes 144.


Additionally, it should be understood that although the sensors described above include a pattern of row and column traces, in other examples, the sensors can be formed from any suitable one-dimension, two-dimension or three-dimension pattern of electrodes. For example in some one-dimensional arrangements, all electrodes can be row electrodes or all electrodes can be column electrodes. One-dimensional arrangements can be used for self-capacitance scans, row-row and column-column mutual capacitance scans, stylus scans and spectral analysis scans. A two-dimensional arrangement, for example, can include an array of row and column electrodes forming touch nodes as discussed above or pixilated electrodes (i.e. a matrix of conductive material). A three-dimensional arrangement, for example, can include a combination of two-dimensional arrangements (e.g. sensors in the X-Y, X-Z and Y-Z planes).


The capacitance between the drive lines 142 and local system ground and the capacitance between sense lines 140 and local system ground can appear as a stray capacitance Cstray, and the capacitance at the touch nodes 144 can appear as a mutual capacitance Csig when the given drive line is stimulated with an alternating current (AC) signal. During a mutual capacitance scan, for example, the presence of a finger 104 or other object near or on the touch sensor panel 114 can be detected by measuring changes to a signal present at the nodes being touched, which can be a function of Csig. Various touch and stylus detection scans are described in more detail below.


Computing system 100 can include one or more processors, which can execute software or firmware implementing at least portions of the touch controller 102 according to examples of the disclosure. Touch controller 102 can also include peripherals (not shown) such as random access memory (RAM) or other types of memory or storage, watchdog timers and the like. Additionally, touch controller 102 can include a drive controller 146 and sense circuitry 150. In one example, drive controller 146 can be coupled to each of the drive lines 142 and drive controller 146 can provide a stimulation signal (e.g., voltage) to the drive lines 142. The sensing circuitry 150 can be coupled to each of the sense lines 140, and the sensing circuit 150 can detect changes in capacitance at the touch nodes 144. During a mutual capacitance scan, for example, stimulation signals can be applied to one or more of the drive lines 142, and due to the capacitive coupling between the one or more drive lines 142 and sense lines 140, a charge can be coupled onto the sense lines 140 at each of the touch nodes 144. The sensing circuit 150 can then detect changes in capacitance at each of the touch nodes 144. In some examples, drive lines 142 can be switchably configured to operate as sense lines 140, and thus sensing circuitry 150 and multiplexer 154 can be coupled to the drive lines 142 similar to sense lines 140 depicted in FIG. 1.


The sensing circuitry 150 can include one more sense channels that can communicate sense data to touch processor 148. In one example, the sensing circuitry 150 can convert the analog capacitive signals to digital data and then transmit the digital data to the touch processor 148. In other examples, the sensing circuitry 150 can transmit the analog capacitance signals to the touch processor 148, which can then convert the data to a digital form. Further, it should be noted that the sensing circuitry 150 can include individual channels for each sense line 140 or a single sense channel for all of the sense lines 140. The sensing circuitry 150 can report a location of the touch node 144, as well as the intensity of the capacitance (or changes thereof) at the touch node 144.


In some examples, the touch controller 102 can include one or more multiplexers. For example, during various touch sensing scans, the sensing circuitry 150 can also include a multiplexer configured to perform time multiplexing for the sense lines 140. For example, the sensing circuitry 150 can receive signals from each of the touch nodes 144 along the sense lines 140 at approximately the same time. The incoming signals can be stored in the sensing circuitry 150 and the multiplexer can then can be used to release the signals sequentially to the touch processor 148 one at a time or in groups.


In some examples, touch processor 148, drive controller 146, and sense circuitry 150 can be integrated into a single application specific integrated circuit (ASIC). In some examples, touch controller 102 can be implemented using a master-slave configuration, described in more detail below. The master-slave configuration can include a slave drive controller 166 and slave sense circuitry 160.


In addition to the multiplexers that may be used during a touch sensing scan to process touch signals, the computing system can also include a drive multiplexer 152 and/or a sense multiplexer 154. These two input device multiplexers 152, 154 can be coupled with the respective drive lines 142 and sense lines 140 to switch functionality depending on the scan operation performed, as will be discussed in more detail below. For example, the drive lines 142 can be coupled to sense circuitry to detect a signal coupled onto the drive lines 142. In this manner, the drive lines 142 can be configured to act as sense lines 140.


The touch controller 102 can also include a spectral analyzer 156 for finding frequencies that have minimal noise. A different spectral scan can be used for touch sensing and stylus scan frequencies as described below in more detail.


Computing system 100 can also include host processor 128. Host processor 128 can receive outputs from touch processor 148 and perform actions based on the received outputs that can include, but are not limited to, moving one or more objects such as a cursor or pointer, scrolling or panning, adjusting control settings, opening a file or document, viewing a menu, making a selection, executing instructions, operating a peripheral device coupled to the host device, answering a telephone call, placing a telephone call, terminating a telephone call, changing the volume or audio settings, storing information related to telephone communications such as addresses, frequently dialed numbers, received calls, missed calls, logging onto a computer or a computer network, permitting authorized individuals access to restricted areas of the computer or computer network, loading a user profile associated with a user's preferred arrangement of the computer desktop, permitting access to web content, launching a particular program, encrypting or decoding a message, and/or the like. Host processor 128 can execute software or firmware for implementing the touch controller according to examples of the disclosure. Host processor 128 can also perform additional functions that can be unrelated to touch sensor panel processing, and can be coupled to program storage 132 and display device 130 such as an LCD display for providing a UI to a user of the device. Display device 130 together with touch sensor panel 114, when located partially or entirely under the touch sensor panel, can form a touch screen. The computing system 100 can process the outputs from the touch sensor panel 114 to perform actions based on detected touch or hover events and the displayed graphical user interface on the touch screen.


Computing system 100 can also include a wireless communication chip 170, implementing wireless communication standards such as a WiFi®, BLUETOOTH™ or the like. Wireless communication chip 170 can be used to communicate information from the touch processor 148 or host processor 128 to stylus 106 or to communicate information from the stylus 106 to touch processor 148 or host processor 128 via a wireless communication channel 108. In other examples, the wireless communication functionality can be incorporated in other components of computing system 100, rather than in a dedicated chip.


Note that one or more of the functions described above can be performed by firmware stored in memory and executed by touch processor 148, or stored in program storage 132 and executed by host processor 128. The firmware can also be stored and/or transported within any non-transitory computer-readable storage medium for use by or in connection with an instruction execution system, apparatus, or device, such as a computer-based system, processor-containing system, or other system that can fetch the instructions from the instruction execution system, apparatus, or device and execute the instructions. In the context of this document, a “non-transitory computer-readable storage medium” can be any medium (excluding a signal) that can contain or store the program for use by or in connection with the instruction execution system, apparatus, or device. The non-transitory computer readable medium storage can include, but is not limited to, an electronic, magnetic, optical, electromagnetic, infrared, or semiconductor system, apparatus or device, a portable computer diskette (magnetic), a random access memory (RAM) (magnetic), a read-only memory (ROM) (magnetic), an erasable programmable read-only memory (EPROM) (magnetic), a portable optical disc such a CD, CD-R, CD-RW, DVD, DVD-R, or DVD-RW, or flash memory such as compact flash cards, secured digital cards, USB memory devices, memory sticks, and the like.


The firmware can also be propagated within any transport medium for use by or in connection with an instruction execution system, apparatus, or device, such as a computer-based system, processor-containing system, or other system that can fetch the instructions from the instruction execution system, apparatus, or device and execute the instructions. In the context of this document, a “transport medium” can be any medium that can communicate, propagate or transport the program for use by or in connection with the instruction execution system, apparatus, or device. The transport readable medium can include, but is not limited to, an electronic, magnetic, optical, electromagnetic or infrared wired or wireless propagation medium.


It is to be understood that the system is not limited to the components and configuration of FIG. 1, but can include other or additional components in multiple configurations according to various examples. Additionally, the components of computing system 100 can be included within a single device, or can be distributed between multiple devices.


As discussed above (and in more detail below), computing system 100 can perform various stylus scans and communicate with a stylus. FIG. 2 illustrates an exemplary stylus and exemplary communication between the stylus and an exemplary computing system according to examples of the disclosure. Stylus 200 can include one or more electrodes 202, which can be located, for example, at the stylus tip. Stylus 200 can be an active stylus and include control circuitry 204 to generate one or more stimulation signals at the one or more electrodes 202 to stimulate a touch sensor panel 220 of computing system 100. For example, the stylus can have two electrodes 202 located in the stylus tip and control circuitry 204 that can generate stimulation signals at the two electrodes at frequencies f1 and f2. As described in more detail below, touch sensor panel 220 can receive stimulation signals coupled from stylus 200 to the row and column traces of touch sensor panel 220 and the received signals can be processed by the touch controller 230. Received touch signals can be used to determine a location of stylus 200 on the touch sensor panel 220. The location of stylus 200 can be communicated from touch controller 230 to host processor 240.


In some examples, the control circuitry 204 can include one or more processors. In some examples, one or more of the stylus functions described herein can be performed by firmware stored in memory or in program storage and executed by control circuitry 204.


Stylus 200 can also include a force sensor 208 to detect the amount of force at the tip of the stylus 200. When the stylus tip is touching the touch sensor panel 220, the force sensor 208 can measure the force at the stylus tip. The force information can be stored in the stylus and/or wirelessly transmitted to the computing system 100. The force information can be communicated to host processor 240 in computing system 100. Force information and corresponding location information can be processed together by host processor 240.


Stylus 200 can also include a wireless communication chip 206, although in some examples the wireless communication functionality can be incorporated into other modules within the stylus 200. Wireless communication chip 206 can transmit the above described force sensor information from the stylus 200 to the wireless communication chip 250 of computing system 100 (although as described above, the wireless communication functionality can be incorporated in other components of computing system 100). The wireless communication chip 206 can also receive other information including, but not limited to, information about stylus stimulus frequencies, scan plan information and clock synchronization information. In some examples, information, such as information about stylus stimulation frequencies and scan event plans, can be transmitted from touch controller 230 to wireless communication chip 250 via host processor 240. In other examples, information such as clock synchronization information can be communicated directly from touch controller 230 to wireless communication chip 250.


In some examples, stylus 200 can operate asynchronously from the computing system 100. In an asynchronous example, the stylus can continuously generate stimulation signals or generate stimulation signals at various intervals. In other examples, wireless communication chips 206 and 250 can be used to synchronize the stylus 200 and computing system 100. For example, the stylus 200 can receive clock synchronization information and scan event plans from computing system 100 such that it will only generate stimulation signals when the computing system expects such stimulation signals from the stylus. Additionally, in some examples, the computing system 100 and stylus 200 can synchronize their communication to regular time intervals such that both the computing system 100 and stylus 200 can save power.



FIG. 3 illustrates an exemplary touch controller that can control the various scan operations on a touch sensor panel according to examples of the disclosure. In the example of FIG. 3, touch controller 300 can include transmit section 320 to generate stimulation signals Vstim at various frequencies, phases (e.g., polarities), and magnitudes that can be selectively applied to touch nodes 144 of the touch sensor panel 114 to drive the touch nodes to detect, for example, a touch or hover event. The touch controller 300 can also include receive section 330 to receive and process touch signals (e.g., mutual capacitance Csig) from the touch sensor panel 114, the touch signals indicative of the detected touch or hover event. The touch controller 300 can further include random access memory (RAM) 340 or other memory or storage for storing touch data 344, which can include the processed touch signals, and scan plan 342, which can define a sequence of scan events to be performed at the touch panel. Each scan event can perform one or more scans of the touch panel to detect, for example, touch or hover events caused by an object, and capture the touch signals indicative of the touch or hover event. The scan plan 342 will be described in more detail below.


The touch controller 300 can also include panel scan engine 310 to access the RAM 340 to retrieve and execute the scan plan 342 so as to configure the transmit section 320, the receive section 330, and the RAM 340 to perform the scan sequence defined in the scan plan 342. The scan engine 310 can control the transmit section 320 to generate the stimulation signals Vstim, the receive section 330 to receive and process the touch signals, and where in RAM 340 to store the touch data 344. The scan engine 310 can be programmed to execute the scan plan 342.


It should be understood that the touch controller 300 is not limited to that shown in FIG. 3, but can include other and/or additional components that can configure and control touch circuitry so as to perform various scan events at a touch panel.


As discussed above, the touch controller can configure touch circuitry according to a scan plan, which can define a sequence of scan events to be performed on a touch sensor panel. Several different scan events can be performed at the touch sensor panel 114 including at least one or more of: a mutual capacitance row-to-column or column-to-row scan, a mutual capacitance row-to-row scan, a mutual capacitance column-to-column scan, a self-capacitance row scan, a self-capacitance column scan, a stylus scan, a stylus spectral analysis scan, and a touch spectral analysis scan, although it is to be understood that other scan events can also be performed. The scan engine 310 can configure the transmit section 320, the receive section 330, and the RAM 340 according to the needs of the particular scan event.



FIG. 4A illustrates an exemplary touch sensor panel operable with the touch controller of FIG. 3 to perform a mutual capacitance row-to-column scan according to examples of the disclosure. In the example of FIG. 4A, touch sensor panel 400 can include an array of touch nodes 406 formed at the crossing points of row traces 401 and column traces 402, although as discussed above it should be understood that other touch node configurations can be used. During a mutual capacitance row-to-column scan, a row trace 401 can be coupled to the transmit section 320 to act as a drive line to stimulate the row trace 401 to drive the touch sensor panel 400. One or more column traces 402 can be coupled to the receive section 330 to act as sense lines to transmit mutual capacitance signals thereto. Touch nodes 406 can have a mutual capacitance Cm at the touch nodes 406 when there is no object touching or hovering over touch nodes 406. When an object touches or hovers over the touch node 406 (e.g. a finger or a passive stylus), the mutual capacitance Cm can be reduced by ΔCm, i.e., (Cm−ΔCm), corresponding to the amount of charge shunted through the object to ground. This mutual capacitance change can be transmitted to sense amplifier 408 in the receive section 330, which can be coupled to the column trace 402, to indicate the touch or hover event and its location.



FIG. 4B illustrates an exemplary touch sensor panel operable with the touch controller of FIG. 3 to perform a mutual capacitance column-to-row scan according to examples of the disclosure. In a mutual capacitance column-to-row scan, the column trace 402 can be coupled to the transmit section 320 to act as a drive line to stimulate the column trace 402 and one or more row traces 401 can be coupled to the receive section 330 to act as sense lines to transmit mutual capacitance signals thereto. When an object touches or hovers over the touch node 406, the mutual capacitance Cm can be reduced by ΔCm, i.e., (Cm−ΔCm), corresponding to the amount of charge shunted through the object to ground. This mutual capacitance change can be transmitted to sense amplifier 408 in the receive section 330, which can be coupled to the row trace 401, to indicate the touch or hover event and its location.


In some examples, the row traces 401 or column traces 402 can be stimulated one at a time. In other examples, multiple row traces 401 or column traces 402 can be stimulated simultaneously.



FIGS. 5A and 5B illustrate an exemplary touch sensor panel operable with the touch controller of FIG. 3 to perform a mutual capacitance row-to-row scan according to examples of the disclosure. Touch sensor panel 500 can be configured to form a row-to-row electrode pattern of the first row 501 as a drive trace, the second row 511 as a ground trace, the third row 521 as a sense trace, the fourth row 531 as another ground trace, and the pattern repeated for the remaining rows. The row drive and sense traces 501, 521 can form mutual capacitance Yrr therebetween. The row drive trace 501 can be stimulated by stimulation signals Vstim provided by transmit section 320 (not shown) and the row sense trace 521 can transmit mutual capacitance Yrr to receive section 330 (not shown). When an object touches or hovers over or in between row drive trace 501 and row sense trace 521, the mutual capacitance Yrr can be increased by ΔYrr, i.e., (Yrr+ΔYrr), corresponding to the charge shunted through the object to ground. To ensure that mutual capacitances can be measured for all the rows, the touch sensor panel 500 can be configured to form another row-to-row electrode pattern of the first row 501 as a ground trace, the second row 511 as a drive trace, the third row 521 as another ground trace, the fourth row 531 as a sense trace, and the pattern repeated for the remaining rows, as illustrated in FIG. 5B. Like the previous pattern, the row drive trace 511 can be stimulated and the row sense trace 531 can transmit the mutual capacitance Yrr. Accordingly, the mutual capacitances Yrr can be measured in a first operation at one row-to-row electrode pattern, followed by a second operation at the other row-to-row electrode pattern. In some examples, the row drive traces can be stimulated one at a time. In some examples, multiple row drive traces can be stimulated at the same time. During the mutual capacitance row-to-row scan the column traces can be coupled to ground.


As illustrated in FIGS. 5A and 5B, a row trace can be configured as a ground or static common mode (e.g., DC) voltage trace to separate the row drive and sense traces. This can be done when the traces are very close together so as to avoid strong mutual capacitances between adjacent traces affected by a finger at or proximate thereto, which can adversely affect the trace-to-trace mutual capacitance measurements. In other examples, when the spacing between rows is sufficient, the ground traces can be omitted such that the row-to-row electrode pattern can include the first row as a drive trace, the second row as a sense trace, and the pattern repeated for the remaining rows. In other examples, it is possible to have more than one ground trace in between drive rows and sense rows.



FIGS. 6A and 6B illustrate an exemplary touch sensor panel operable with the touch controller of FIG. 3 to perform a mutual capacitance column-to-column scan according to examples of the disclosure. Touch sensor panel 600 can be configured to form a column-to-column electrode pattern of the first column 602 as a drive trace, the second column 612 as a ground trace, the third column 622 as a sense trace, the fourth column 632 as another ground trace, and the pattern repeated for the remaining columns. The column drive and sense traces 602, 622 can form mutual capacitance Ycc therebetween. The column drive trace 602 can be stimulated by stimulation signals Vstim provided by transmit section 320 (not shown) and the column sense trace 622 can transmit mutual capacitance Ycc to receive section 330 (not shown). When an object touches or hovers over or in between column drive trace 602 and column sense trace 622, the mutual capacitance Ycc can be increased by ΔYcc, i.e., (Ycc+ΔYcc), corresponding to the charge shunted through the object to ground. To ensure that mutual capacitances can be measured for all the columns, the touch sensor panel 600 can be configured to form another column-to-column electrode pattern of the first column 602 as a ground trace, the second column 612 as a drive trace, the third column 622 as another ground trace, the fourth column 632 as a sense trace, and the pattern repeated for the remaining columns, as illustrated in FIG. 6B. Like the previous pattern, the column drive trace 612 can be stimulated and the column sense trace 632 can transmit the mutual capacitance Ycc. Accordingly, the mutual capacitances Ycc can be measured in a first operation at one column-to-column electrode pattern, followed by a second operation at the other column-column electrode pattern. In some examples, the column drive traces can be stimulated one at a time. In some examples, multiple column drive traces can be stimulated at the same time. During the mutual capacitance column-to-column scan the row traces can be coupled to ground.


As illustrated in FIGS. 6A and 6B, a column trace can be configured as a ground trace to separate the column drive and sense traces. This can be done when the traces are very close together so as to avoid strong mutual capacitances between adjacent traces affected by a finger at or proximate thereto, which can adversely affect the trace-to-trace mutual capacitance measurements. In other examples, when the spacing between columns is sufficient, the ground traces can be omitted such that the column-to-column electrode pattern can include the first column as a drive trace, the second column as a sense trace, and the pattern repeated for the remaining rows. In other examples, it is possible to have more than one ground trace in between drive columns and sense columns.


As discussed above with respect to a mutual capacitance row-to-column scan, in mutual capacitance row-to-row and mutual capacitance column-to-column scans, an object touching or hovering over touch nodes (e.g. a finger or a passive stylus) can reduce the mutual capacitance Yrr by ΔYrr or reduce the mutual capacitance Ycc by ΔYcc, corresponding to the amount of charge shunted through the object to ground. This mutual capacitance change can be transmitted to sense amplifiers in the receive section 330, which can indicate the touch or hover event and its location.



FIGS. 7A and 7B illustrate an exemplary touch sensor panel operable with the touch controller of FIG. 3 to perform self-capacitance row scans and self-capacitance column scans according to examples of the disclosure. During a self-capacitance row scan, the row traces 701 of touch sensor panel 700 can act as touch electrodes (or nodes). Row traces 701 can be coupled to the inverting input of sense amplifiers 708 in receive section 330. The non-inverting input of the sense amplifier 708 can be stimulated with an AC stimulus Vstim, which effectively induces Vstim on the row trace coupled to the inverting input of the sense amplifier. Row traces 701 can have a self-capacitance to ground Cg when no object touches or hovers over row trace 701. The self-capacitance to ground Cg can be different for each row trace 701. When an object, such as finger 720 (or a passive stylus), touches or hovers over a row trace 701, an additional self-capacitance Csr can form between the object and the row trace 701, thereby increasing the self-capacitance at the row trace 701. This self-capacitance change can be transmitted to sense amplifier 708 in receive section 330, which can be coupled to the row trace 701, to indicate the touch or hover event and its location.


Similarly, during a self-capacitance column scan, the column traces 702 of touch sensor panel 700 can act as touch electrodes (or nodes). Column traces 702 can be coupled to the inverting input of sense amplifiers 708 in receive section 330. The non-inverting input of the sense amplifier 710 can be stimulated with an AC stimulus Vstim. Column traces 702 can have a self-capacitance to ground Cg when no object touches or hovers over column traces 702. When an object, such as finger 720, touches or hovers over a column traces 702, an additional self-capacitance Csc can form between the object and the column trace 702, thereby increasing the self-capacitance at the column trace 702. This self-capacitance change can be transmitted to sense amplifier 708 in receive section 330, which can be coupled to the column trace 702, to indicate the touch or hover event and its location.


Although the self-capacitance row scan and self-capacitance column scan described above can occur as independent scans, in some examples, the self-capacitance row scans and self-capacitance column scans can occur as concurrent or partially concurrent scans. Additionally, although FIGS. 7A and 7B show all row traces stimulated simultaneously or all column traces stimulated simultaneously, in some examples some or all of the traces can be stimulated individually or in groups.


Parasitic capacitance Cp can be produced by various sources in and around the touch sensor panel and affect how accurately the receive section 330 can detect capacitance changes created by the touching or hovering object. The effects of parasitic capacitance can include lower signal-to-noise ratio of the desired signal, a decreased dynamic sensing range of the desired signal at the panel, higher power requirements, and the like. In FIG. 7A, for example, parasitic capacitance Cp can form between adjacent row traces 701 and can form between row traces 701 and column traces 702 (illustrated as Cm). In FIG. 7B, for example, parasitic capacitance Cp can form between adjacent column traces 702 and between row traces 701 and adjacent column traces 702 (illustrated as Cm). It is to be understood that other sources and locations of parasitic capacitance can also be possible. For example, parasitic capacitances can also form in between column traces or row traces and ground. In the case of self-capacitance scans, cancelation circuitry (not shown) can be located in the transmit section 320, the receive section 330, or both to cancel the effects of the parasitic capacitance Cp on the touch signals from the touch sensor panel 700. The cancellation circuitry can similar to the parasitic capacitance circuits described in U.S. patent application Ser. No. 14/067,870 (Shahparnia et al.) which is hereby incorporated by reference. The scan engine 310 can configure the cancelation circuitry to perform the parasitic capacitance Cp cancelation. In some examples, in conjunction with the self-capacitance row scan, the touch sensor panel can also perform a self-capacitance guard scan on the column traces to cancel parasitic capacitance Cp forming between row traces 701 and column traces 702. During the self-capacitance guard scan, column traces 702 can be coupled to the transmit section 320 to drive the column traces to cancel the parasitic capacitance Cp formed between the column trace 702 and the row traces 701. The self-capacitance guard scan can be similarly performed on row traces 701 during the self-capacitance column scan.


As discussed above, in the case of mutual capacitance row-to-row and column-to-column scans, rows between a driving row trace and a sensing row trace (e.g. row 511 in FIG. 5A) or columns between a driving column trace and a sensing column trace (e.g. column 612 in FIG. 6A) can be grounded such the adjacent rows or columns are not acting as driving and sensing traces to reduce parasitic capacitance effects.



FIG. 8 illustrates an exemplary touch sensor panel operable with the touch controller of FIG. 3 to perform stylus scans according to examples of the disclosure. During a stylus scan, one or more stimulation signals can be injected by stylus 804 at the touch node 806 and can create capacitive coupling Cxr between the stylus 804 and the row traces 801 and Cxc between the stylus 804 and the column traces 802 at the touch node 806. During the stylus scan, the transmit section 320 can be disabled, i.e., no stimulation signals Vstim sent to the touch sensor panel 800. The capacitive coupling can be transmitted to the receive section 330 by the row and column traces of the touch node 806 for processing. As described above, in some examples the one or more stylus stimulation signals can have one or more frequencies. The frequencies can be selected by the touch controller 102 using information from a stylus spectral analysis scan (described below in more detail). This frequency information can be wirelessly communicated to the stylus 804 so that the stylus 804 can generate stimulation signals at the appropriate frequency.



FIG. 9 illustrates an exemplary touch sensor panel operable with the touch controller of FIG. 3 to perform stylus spectral analysis scans or touch spectral analysis scans according to examples of the disclosure. During a stylus spectral analysis scan or a touch spectral analysis scan, the transmit section 320 can be disabled, i.e., no stimulation signals Vstim sent to the touch sensor panel 900, while some or all of the row traces 901 and column traces 902 can be coupled to the receive section 330. The receive section 330 can receive and process touch signals from some or all of the rows and columns of the touch sensor panel 900 in order to determine one or more low noise frequencies for use during subsequent self-capacitance and/or mutual capacitance scans and/or stylus scans. Stylus spectral analysis scans and touch spectral analysis scans are described in more detail below.


When the stylus 200 first connects or reconnects wirelessly to the computing system 100 it can receive frequency information from the computing system 100. A stylus spectral analysis scan can determine one or more clean frequencies for the stylus to use to generate one or more stimulation signals. The computing system 100 and stylus 200 can communicate (including, for example, performing a handshake between the two devices) and computing system 100 can transmit the frequency information to the stylus 200 such that the stylus knows the appropriate one or more frequencies to use to generate one or more stimulation signals.


The stylus 200 can change at least one stimulation frequency as a result of a stylus spectral analysis scan. In some examples the stylus 200 can be synchronous with the computing system 100. A synchronous stylus 200 can save power by generating stimulation signals only during a stylus scan event. Thus, a stylus spectral analysis scan can execute while the stylus 200 is predicted to not be generating a stimulation signal, e.g. when a stylus scan is not executing. After completing the stylus spectral analysis scan, the wireless communication chip 250 can communicate with the wireless communication chip 206 of stylus 200 (including, for example, performing a handshake between the two devices). The communication can cause the stylus 200 to change the one or more stimulation frequencies and indicate to the computing system 100 that the stylus 200 has switched frequencies or will switch frequencies at a known time. The computing system 100 can then switch the one or more frequencies used for demodulating stylus scan events.


In other examples, stylus 200 can be asynchronous such that the stylus 200 can generate one or more stimulation signals at one or more stimulation frequencies irrespective of the timing of the stylus scan event. As a result the stylus 200 can be stimulating the touch sensor panel 220 during the stylus spectral analysis scan. The asynchronous stylus stimulation signals can cause the computing system to detect a signal when demodulating at the frequency of stimulation, which can be interpreted as noise at that frequency and trigger a frequency switch. In order to prevent triggering an unnecessary frequency switch, the computing system 100 can assume that stylus lift off will eventually occur and wait until lift off to initiate a stylus spectral analysis scan. The computing system 100 can predict a lift off condition using the results of other scans, e.g. stylus scans, or stylus force information to predict that the stylus is not on the panel, and then perform a stylus spectral analysis scan.



FIG. 10 illustrates an exemplary transmit section of the touch controller of FIG. 2, where the transmit section can generate stimulation signals Vstim to drive the row or column traces of a touch panel according to examples of the disclosure. In the example of FIG. 10, transmit section 1020 can include transmit numerically-controlled oscillators (NCOs) 1021a, 1021b, transmit digital-to-analog converters (DACs) 1022a, 1022b, transmit buffers 1023a through 1023h, and multiple transmit channels 1029 coupled to bus 1025. The NCOs 1021a, 1021b can provide phase and frequency data for the stimulation signals Vstim, where NCO 1021a can provide one frequency ω1, and NCO 1021b, another frequency ω2, such that the stimulation signals Vstim can have different frequencies. The transmit DACs 1022a, 1022b can be coupled to the NCOs 1021a, 1021b and convert the stimulation signals from NCOs 1021a, 1021b from digital to analog and provide polarities (phases) for the stimulation signals. Accordingly, the transmit DAC 1022a can output a stimulation signal Vstim1+ with a frequency ω1 and a positive (+) polarity, and a stimulation signal Vstim1− with the frequency ω1 and a negative (−) polarity, while the transmit DAC 1022b can output a stimulation signal Vstim2+ with a frequency ω2 and a (+) polarity, and a stimulation signal Vstim2− with the frequency ω2 and a (−) polarity.


The transmit buffers 1023a through 1023h can be coupled to the transmit DACs 1022a, 1022b and buffer the outputted stimulation signals Vstim1+, Vstim1−, Vstim2+, Vstim2−. Transmit buffer 1023c can output Vstim1+ to the bus 1025, transmit buffer 1023d can output Vstim1− to the bus 1025, transmit buffer 1023g can output Vstim2+ to the bus 1025, and transmit buffer 1023h can output Vstim2− to the bus 1025. Similarly, transmit buffer 1023a can output Vstim1+ to the receive section, transmit buffer 1023b can output Vstim1− to the receive section, transmit buffer 1023e can output Vstim2+ to the receive section, and transmit buffer 1023f can output Vstim2− to the receive section, where the Vstim signals can be used to generate signals to cancel parasitic capacitance Cp in the touch signals and to stimulate the non-inverting input of sense amplifiers for self-capacitance row or column scans.



FIG. 10 illustrates two transmit channels 1029. One transmit channel 1029 can be coupled to the bus 1025 and can include multiplexer 1024a, buffer 1026a, and multiplexer 1027a. The first multiplexer 1024a can select which of the stimulation (Vstim) or reference (Vref) signals to transmit. A stimulation matrix (not shown) can provide data to control signal 1a to select which Vstim or Vref signal to transmit. The stimulation matrix can be part of the panel scan engine. The selected signal can be buffered at buffer 1026a and then outputted to the second multiplexer 1027a. The second multiplexer 1027a can select the coupling of a row or column trace during various scan events based on control signal 2a, which can be sent by the panel scan engine. For example, the panel scan engine can select a stimulation signal from multiplexer 1024a using control 1a and couple the signal to the touch sensor panel using the second multiplexer 1027a and control 2a. In some configurations, for example a mutual capacitance row-to-column configuration, coupling the signal to the touch panel can include coupling the stimulation signal to row traces or column traces to drive the touch sensor panel to perform a mutual capacitance scan. In some configurations, for example spectral analysis scans, the row and/or column traces of the touch sensor panel can be coupled to the receive section via multiplexers like multiplexer 1027a. In some configurations, for example, mutual capacitance row-to-row scans, the column traces can be unused and the second multiplexer 1027a can couple the column traces to ground. Although multiplexer 1027a can be a part of transmit channel 1029, in other examples, multiplexer 1027a can be implemented outside of transmit channel 1029.


Another of the transmit channels 1029 can be coupled to the bus 1025 and can include multiplexer 1024b, buffer 1026b, and multiplexer 1027b, which can operate in a similar manner as the transmit channel 1029 described previously. With the transmit channels of FIG. 10, different types of scans can be performed as discussed above. For example, Vstim signals from the transmit section shown in FIGS. 4A through 7B can be coupled to the respective rows, columns, or non-inverting sense amplifier inputs based on the type of scan to be performed.


In an example mutual capacitance row-column scan, the transmit section 1020 can perform as follows. The transmit NCOs 1021a, 1021b can generate digital stimulation signals. The transmit DACs 1022a, 1022b can convert the digital signals into analog signals and transmit the analog stimulation signals to the transmit channels 1029. The transmit channels 1029 can transmit the stimulation signals Vstim to corresponding row (drive) traces of the touch sensor panel. The polarities (and/or other signal parameters) of the stimulation signals Vstim transmitted by the transmit channels 1029 can be set based on data in a stimulation matrix. The stimulation matrix can be used to encode phases of the stimulation signals necessary for simultaneous multi-stimulation of the touch sensor panel. The panel scan engine 310 can configure the transmit section 1020 and control the timing of the stimulation signal transmissions to the drive traces using control signals 1a and 2a.


It should be understood that although each of the transmit channels 1029 are illustrated as having one multiplexer coupled to bus 1025 and one multiplexer coupled to a row or column trace, the number of multiplexers need not be determined based on the number of transmit channels. In some examples, the number of multiplexers coupled to bus 1025 can be the same as the number of DACs (i.e., one multiplexer per DAC). Thus, in the example illustrated in FIG. 10, there can be two transmit DACs 1022a and 1022b and two multiplexers 1024a and 1024b, but in a system with four DACs, for example, there can be four multiplexers connected to bus 1025. The analog stimulation signals can be transmitted from bus 1025 via the multiplexer to one or more transmit channels 1029. The output of multiplexers 1024a and 1024 are illustrated as a bus to indicate that the analog stimulation signals from the respective DACs can be transmitted to a plurality of different traces. The number of multiplexers coupled to row and column traces can be the same as the number of row and column traces (i.e., one multiplexer per trace). Thus, in the example illustrated in FIG. 10, there can be two transmit channels connected to two traces (“to touch row or col.”) and two multiplexers 1027a and 1027b. In a system with 30 transmit channels, there can be 30 multiplexers like multiplexers 1027a and 1027b.


It should be understood that additional and/or other components of the transmit section 1020 can be used to generate stimulation signals Vstim to drive a touch panel.



FIG. 11 illustrates an exemplary receive section of the touch controller of FIG. 3, where the receive section can receive and process touch signals from a touch sensor panel according to examples of the disclosure. In the example of FIG. 11, receive section 1130 can include multiple receive channels 1139. FIG. 11 illustrates one of the receive channels 1139. The receive channel 1139 can include sense amplifier 1131 to receive and amplify the touch signal according to feedback capacitor Cfb and feedback resister Rfb. The sense amplifier 1131 can receive the touch signal at the inverting input and either Vref or Vstim at the non-inverting input. As described previously, to facilitate self-capacitance touch sensing, Vstim can be routed from the transmit section to the receive section, where it is inputted to the non-inverting input of the sense amplifier 1131. The receive channel 1139 can also include a low-pass or band-pass filter 1132 to filter the output of sense amplifier 1131 and analog-to-digital converter (ADC) 1133 to convert the analog touch signal to a digital signal.


The receive channel 1139 can further include one or more in-phase and quadrature (IQ) demodulators. For example, FIG. 11 illustrates a sense channel having four IQ demodulators 1135a through 1135d to demodulate the touch signals. Multiple demodulators can be advantageous because multiple scan events can be performed at the touch panel concurrently or at least partially concurrently with multiple demodulators as will be described in more detail below. IQ demodulators 1135a through 1135d can be coupled to delay compensation logic (DCLs) 1134a through 1134d and accumulators 1136a through 1136d. For example DCL 1134a can receive the digital touch signal from the ADC 1133 to perform any phase adjustments on the signal caused by circuit delays. The IQ demodulator 1135a can receive the touch signal from the DCL 1134a and demodulate the signal. In some examples, the demodulator 1135a can output the in-phase (I) component of the touch signal. In some examples, the demodulator 1135a can output the quadrature (Q) component of the touch signals. In some examples, the demodulator 1135a can output both the I and Q components. Accumulator 1136a can receive the demodulated touch signal from IQ demodulator 1135a. The accumulated signal can be scaled by scaling factor module 1137a. A scaling factor can be determined based on the path of a digital signal processor, for example. The accumulated signal can be operated on by a matrix calculation module 1138a and the signal can be sent to the RAM for storage. The DCLs, IQ demodulators, accumulators, scaling factor modules and matrix calculation modules of the other receive channels 1139 can operate similarly.


The matrix calculation module 1138a can be used to implement multistep accumulation. For example, each accumulated step can be multiplied by a constant and accumulated to the previous value. At the conclusion of a predefined number of steps, for example, the final result can be stored in memory. The constant value used to multiply an accumulation step for a given channel can be derived from the inverse matrix of the stimulation matrix used to encode phases of the stimulation signals. Thus, the matrix calculation can be necessary for decoding phases for a signals generated by simultaneous multi-stimulation of the touch sensor panel.


In an example operation, the receive section 1130 can perform as follows. The receive channels 1139 can receive the touch signals from the touch sensor panel at the sense amplifier 1131. The receive channels 1139 can filter the received touch signals with the bandpass filter 1132, convert the analog touch signals to digital signals with ADC 1133, and transmit the digital signals to the demodulators 1135a through 1135d for further processing. The demodulators 1135a through 1135d can receive phase-adjusted touch signals from DCLs 1134a through 1134d and output the demodulated touch signals to the accumulators 1136a through 1136d, where the touch signals can then be transmitted to the RAM for storage after being scaled and decoded by scaling factor modules 1137a through 1137d and matrix calculation module 1138a through 1138d. The panel scan engine 310 can configure the receive section 1130 and control the processing and transmission of the touch signals.


Although the DCLs illustrated in FIG. 11 can be implemented such that each IQ demodulator has its own DCL 1134a through 1134d applying the total individual delay for the specific demodulator path, in other implementations, a global delay can be applied to the output of the ADC and then the subsequent DCLs 1134a through 1134 can apply an incremental delay specific to each demodulator path. Thus, for example the total delay for each demodulator path can be the sum of the global delay plus a local delay applied by DCL 1134a through 1134d.


It should be understood that additional and/or other components of the receive section 1130 can be used to process touch signals from a touch sensor panel.


During a scan event, the scan engine can couple each row or column electrode to either the transmit section, the receive section or ground. FIGS. 22A and 22B illustrate exemplary coupling between transmit/receive channels and row/column traces according to examples of the disclosure. In some examples, any row or column trace of the touch sensor panel can be coupled to any transmit channel or a receive channel. For example, FIG. 22A illustrates an exemplary touch sensor panel 2200 with four row traces and four column traces. Each row or column trace can be coupled via a multiplexer to one of four transmit channels (Tx1 through Tx4), four receive channels (Rx1 through Rx4) or ground. For example, row trace 2201 can be coupled to the output of multiplexer 2208 at pin R1 2204 and the scan engine can select which Tx, Rx or ground to couple to row trace 2201. Similarly, column trace 2202 can be coupled to a similar multiplexer at pin C1 2206 and the scan engine can select which Tx, Rx or ground to couple to the column trace 2202. In other examples, a given row or column trace can be coupled to fewer than all possible transmit or receive channels.


In other examples, pairs of traces can be coupled to a specific transmit channel and receive channel pair. FIG. 22B illustrates an exemplary pair of traces and an exemplary transmit channel and receive channel pair according to examples of the disclosure. Transmit channel and receive channel pair 2220 can include Tx1 2210 and Rx1 2212. The pair of traces can include row trace 2201 and column trace 2202 coupled to the transmit/receive channel pair 2220 at pins R1 2204 and C1 2206. R1 can be coupled to either Tx1 or Rx1 or ground (not shown) and C1 can be coupled to either Tx1 or Rx1 or ground (not shown). Using a transit/receive channel pair can allow for configuration of the touch sensor panel by axis rather than on a pin by pin basis. For example, if a scan event transmits stimulus signals on row traces (e.g. y-axis) and receives touch signals on column traces (e.g. x-axis), each transmit/receive channel pair 2220 can couple the row trace to the transmit section and the column trace to the receive section. Alternatively, if a scan event transmit stimulus signals on column traces and receives touch signals on row traces, each transmit/receive channel pair 2220 can couple the column trace to the transmit section and the row trace to the receive section.



FIG. 12 illustrates an exemplary scan architecture of a touch controller, e.g., the touch controller 300 of FIG. 3, in which various scan events can be performed at a touch sensor panel under the direction of the touch controller according to examples of the disclosure. In the example of FIG. 12, a panel scan engine of the touch controller can execute a scan plan, which can define a sequence of scan events to be performed at a touch sensor panel, the timing of each scan event, and when the scan events can be interrupted so that a system processor can store scan results in RAM. The panel scan engine can await a SYNC signal from the host processor to begin the scan plan. In a device with an LCD display, for example, the SYNC signal can indicate that the display proximate to the touch sensor panel is in a blanking mode, before starting the scan sequence. In some cases, the display device can interfere with touch signals, particularly when scanning row electrodes, during a display mode. Accordingly, scan events that generate touch signals susceptible to interference from the display can be scheduled to execute during the display's blanking mode rather than its display mode. Alternatively, the firmware on the touch controller can generate an equivalent to the SYNC signals.


Upon receipt of the SYNC signal, the scan engine can start a scan timer and scan plan execution. Between t0 and t1, which can correspond to the display blanking period of the LCD display, the scan engine can configure the touch circuitry, e.g., the transmit section, the receive section, and the RAM, to perform a first scan event, a mutual capacitance row-to-row scan (labeled as “D-D Mutual”). As described above for mutual capacitance row-to-row scans, the scan engine can configure the transmit section to selectively drive the touch sensor panel row traces and the receive section to receive mutual capacitance touch signals on select row traces. The receive section can use one IQ demodulator to demodulate the touch signals.


After the mutual capacitance row-to-row scan completes, the scan engine can configure the second scan event, which can include at least partially concurrent events, including a self-capacitance row scan (labeled as “Self Cap”), a self-capacitance column guard scan (labeled as “Self Cap Guard”), and a stylus scan (labeled as “Pen”). As described above for self-capacitance scans and guard scans, the scan engine can configure the transmit section to drive the non-inverting inputs of sense amplifiers in the receive section with a Vstim to generate the self-capacitance touch signals for the row traces and drive the column traces with the same Vstim to cancel parasitic mutual capacitance Cm that might form between row and column traces. Vstim can have a frequency f1. If a stylus is present, the stylus can inject one or more stimulation signals. For example, the stylus can inject two stimulation signals, one with frequency f2 and one with frequency f3. The scan engine can also configure the receive section to receive the self-capacitance touch signals and the stylus touch signals on the row traces.


Multiple IQ demodulators can be used to concurrently demodulate the touch signals resulting from concurrent or partially concurrent scan events. FIG. 12 illustrates the number of IQ demodulators that can be used below each scan event or concurrent scan events. For example, in the case that the stylus generates two stimulation signals, the receive section can use three IQ demodulators to demodulate the touch signals. One IQ demodulator can be tuned to f1 to demodulate self-capacitance signals on the row traces, and the other two IQ demodulators can be tuned to f2 and f3 to demodulate stylus signals on the row traces.


After the first and second scans complete, the scan engine can then switch the touch circuitry to perform a third scan. The third scan can include a self-capacitance column scan, a self-capacitance row guard scan, and another stylus scan. As described above for self-capacitance scans and guard scans, the scan engine can configure the transmit section to drive the non-inverting inputs of sense amplifiers in the receive section with a Vstim to generate the self-capacitance touch signals for the column traces and drive the row traces with the same Vstim to cancel parasitic capacitance Cp that might form between row and column traces. Vstim can have a frequency f1. The scan engine can also configure the receive section to receive the self-capacitance touch signals and the stylus touch signals on the column traces. As in the second scan event, if the stylus generates two stimulation signals, the receive section can use three IQ demodulators to demodulate the touch signals for the third scan event. One IQ demodulator can be tuned to f1 to demodulate self-capacitance signals on the column traces, and the other two IQ demodulators can be tuned to f2 and f3 to demodulate stylus signals on the column traces.


At t1, which can correspond to the end of the blanking period, the scan engine can generate an interrupt command, signaling to the touch processor that the touch signals received during the previous scan events can be stored in the RAM. The scan engine can configure the RAM to store the touch signals in particular memory locations. To do so, the scan engine can generate a pointer block that can include multiple pointers to the particular memory locations. Accordingly, for the three scans described above between t0 and t1, the scan engine can generate a pointer to a memory location to store the mutual capacitance row-to-row touch signals, a second memory location to store the self-capacitance row touch signals, a third memory location to store the self-capacitance column touch signals, and a fourth memory location to store the stylus touch signals. The touch processor can then retrieve the touch signals from the receive section and store them as directed by the particular pointer.


Between times t1 and t2, the scan engine can direct more scan events. For example, the scan engine can configure the touch circuitry to perform fourth scan, a mutual capacitance column-to-column scan (labeled as “S-S Mutual”). As described above for mutual capacitance column-to-column scans, the scan engine can configure the transmit section to selectively drive the touch sensor panel column traces and the receive section to receive mutual capacitance touch signals on select column traces. The receive section can use one IQ demodulator to demodulate the touch signals. After the fourth scan completes, the scan engine can configure the touch circuitry to perform a fifth scan event, which can include at least partly concurrent scan events including a mutual capacitance row-to-column scan (labeled as “Mutual Drive,” “Mutual Sense”) and a stylus scan (labeled as “Pen”). During the mutual capacitance row-to-column scan, the scan engine can configure the transmit section to drive the row traces with a stimulation signal Vstim and the receive section to receive mutual capacitance touch signals Csig from the column traces. The mutual capacitance row-to-column scan can be performed in multiple steps. For example, a first scan step can stimulate a first row trace and touch signals can be captured on the corresponding column traces, a second step can stimulate a second row trace and touch signals can be captured on the corresponding column traces, a third step can stimulate a third row trace and touch signals can be captured on the corresponding column traces, and so on. In other examples, a scan step can simultaneously stimulate multiple rows with stimulus signals of different amplitude, phase and frequency. In one example, the rows in the upper half of the touch sensor panel can be stimulated using a first frequency f1 and the rows in the lower half of the touch sensor panel can be stimulated using a second frequency f2. In another example, the rows stimulated by frequency f1 and f2 can be interleaved. For example, a first row can be stimulated with frequency f1, a second row can be stimulated with frequency f2, a third row can be stimulated with frequency f1, a fourth row can be stimulated with frequency f2, and so on such that adjacent rows can be stimulated at different frequencies. Alternatively, banks of rows can be stimulated at the same frequency such that a first bank of rows can be stimulated with frequency f1, a second bank of rows can be stimulated with frequency f2, a third bank of rows can be stimulated with frequency f1, an so on. As described above, the scan engine can also configure the receive section to receive the stylus touch signals on the column traces during the at least partially concurrent stylus scan.


The number of demodulators to simultaneously demodulate the partially concurrent scan can change depending on whether the scan events are concurrent or not at a given time. For example when the mutual capacitance row-column scan is occurring without a stylus scan, only one IQ demodulator can be used. However, once the partially concurrent stylus scan begins, additional IQ demodulators can be used to simultaneously demodulate the stylus touch signals. For example, if the stylus generates two stimulation signals, the receive section can use three IQ demodulators to demodulate the touch signals for the concurrent portion of the fifth scan event. One IQ demodulator can be tuned to f1 to demodulate mutual capacitance signals on the column traces, and the other two IQ demodulators can be tuned to f2 and f3 to demodulate stylus signals on the column traces. In other examples, the mutual capacitance row-to-column scan can use two stimulation frequencies and can require two IQ demodulators to demodulate mutual capacitance signals on the column traces.


At t2, the scan engine can generate another interrupt command and generate a new pointer bank that can include pointers to the particular memory locations to store the mutual capacitance column-to-column touch signals, the mutual capacitance row-to-column touch signals, and another set of stylus touch signals. The touch processor can then retrieve the touch signals from the receive section and store them as directed by the particular pointer.


Between times t2 and t3, the scan engine can direct more scan events. The scan engine can configure the touch circuitry to perform a sixth scan event, which can include at least partly concurrent scan events including a stylus scan (labeled as “Pen”) and a touch spectral analysis scan (labeled as “SPA for touch”). During both the stylus scan and the touch spectral analysis scan, the scan engine can configure the transmit section to not drive traces of the touch sensor panel. As discussed above for the touch spectral analysis scan, the receive section can be configured to process touch signals from some or all of the row and column traces in order to find a clean frequency for subsequent touch sensing. In one example, all the row and/or column traces can be configured to detect touch signals. The touch signals can be demodulated at various frequencies according to the number of IQ demodulators available. In one example, there can be eight possible frequencies for touch sensing. The touch signals can be stored and sequentially demodulated at the eight possible frequencies. In other examples, there can be more than one IQ demodulator available allowing for simultaneous demodulation at multiple frequencies. For example, as shown with the at least partially concurrent stylus scan, there can be two IQ demodulators available for the touch spectral analysis scan. As a result, the eight possible frequencies can be used to demodulate the touch signal in four processing steps rather than in eight sequential steps. The touch controller can determine the clean frequency that can be the frequency at which the touch signal can be minimized.


In some examples of touch spectral analysis scans, the touch signals can be detected and demodulated using demodulation windows with durations and timing that match the stimulation signals of Vstim expected during a touch sensing scan such as a mutual capacitance scan. Demodulating the signal using the appropriate demodulation window can result in selecting a clean frequency that reflects noise that can be present in the system during a touch sensing operation. FIG. 13 illustrates the correspondence between an exemplary touch signal and the demodulation window according to examples of the disclosure. FIG. 13 illustrates an example stimulation signal waveform. The waveform can include one or more stimulation signals separated by periods of no stimulation. The stimulation signals can have any phase, though in some examples a phase of 0 or 180 degrees can useful. For example, the waveform can have stimulation signals 1302 and 1304, through a final stimulation signal 1310. Stimulation signal 1302, for example, can have a duration T1. The remaining stimulation signals can have the same or a different duration. The demodulation window for received touch signals in a touch spectral analysis scan can correspond in both duration and timing to the expected stimulation signal waveform. For example, the touch spectral analysis scan can demodulate the received touch signal during demodulation window 1312 having the same duration T1 as the expected stimulation signal waveform 1302. The touch spectral analysis scan can demodulate touch signals using the demodulation window corresponding to the duration and timing of each stimulation signal in the exemplary touch sensing scan waveform. For example, demodulation windows 1312, 1314 through 1320 can correspond to the stimulation signals 1302, 1304 through 1310.


During the stylus scan, the receive section can be configured to process touch signals from some or all of the row and/or column traces. In one example, the receive section can be configured to process touch signals from only the row traces or only the column traces. In other examples, the receive section can be configured to process touch signals from both the row and column traces simultaneously (assuming a sufficient number of receive channels). As described above, in some examples the stylus can generate two stimulation signals that can require two IQ demodulators per receive channel to demodulate the stylus touch signals.


The sixth scan event can use up to four IQ demodulators in a system equipped with four IQ demodulators per receive channel. As described above, two IQ demodulators can be tuned to f1 and f2 to demodulate stylus signals on the row and/or column traces, and one or more of the remaining two IQ demodulators can be tuned to various other frequencies to demodulate touch signals on the row/or column traces, to determine a clean frequency.


The scan engine can then configure the touch circuitry to perform the seventh scan event, which can include at least partly concurrent scan events including a mutual capacitance row-to-column scan (labeled as “Mutual Drive,” “Mutual Sense”) and a stylus spectral analysis scan (labeled “SPA for pen”). The mutual capacitance row-to-column scan can be executed as described above (i.e. configuring the transmit section to stimulate row traces and configuring the receive section to receive touch signals from the column traces). During the stylus spectral analysis scan, the scan engine can configure the receive section to demodulate touch signals from the column traces in order to find a clean frequency for subsequent stylus sensing. The touch signals can be demodulated at various frequencies according to the number of IQ demodulators available. In one example, there can be six possible frequencies for stylus sensing. The touch signals can be stored and sequentially demodulated at the six possible frequencies. In other examples, there can be more than one IQ demodulator available allowing for simultaneous demodulation at multiple frequencies. For example, as shown with the at least partially concurrent mutual capacitance row-to-column scan, there can be three IQ demodulators available for the stylus spectral analysis. As a result, the six possible frequencies can be used to demodulate the touch signal in two processing steps rather than in six sequential steps. The touch controller can determine the one or more clean frequencies that can be the frequencies at which the touch signal can be minimized. The one or more clean frequencies can be communicated to the stylus.


In some examples of stylus spectral analysis scans, the touch signals can be detected and demodulated using demodulation windows matching the duration and timing of the stimulation signals of the stylus during a stylus scan. As described above with regard to FIG. 13 for touch spectral analysis scan, the demodulation window for stylus spectral analysis scans can correspond in both duration and timing to stylus stimulation signals. Demodulating the signal using the appropriate demodulation window can result in selecting a clean frequency that reflects noise that can be present in the system during a stylus scan operation.


The scan engine can then configure the touch circuitry to perform the eighth scan event, a touch spectral analysis scan. The touch spectral analysis scan can execute like the touch spectral analysis scan described previously, with the receive section processing touch signals from the column traces to find a clean frequency. There can be four IQ demodulators available for the touch spectral analysis scan of the eight scan. As a result, the eight possible frequencies can be used to demodulate the touch signal in two processing steps rather than in eight sequential steps.


At t3, the scan engine can generate another interrupt command and generate a new pointer bank that can include pointers to the particular memory locations to store the spectral analysis results, another set of stylus touch signals, and another set of mutual capacitance row-to-column touch signals. The touch processor can then retrieve the results and touch signals from the receive section and store them as directed by the particular pointer. The scan engine can receive another SYNC signal, which can indicate that the LCD display is blanking again.


In some examples, the scan plan can be changed dynamically during execution. In one implementation, the scan plan can be changed in between frames, i.e. between scan events, but in other implementations, the scan plan can be changed at any time such that a scan event is interrupted. In other implementations, the scan plan can be double buffered by the hardware, such that a second copy of the scan plan can be stored in memory and at any point in time the active scan plan under execution can be swapped. In some examples, the active scan plan can be swapped at boundaries between scan events. In other examples the active scan plan can be swapped at any point, even in the middle of an event.



FIG. 14 illustrates the scan plan executed in FIG. 12 according to examples of the disclosure. In the example of FIG. 14, the scan events can be defined, including the start and pause times of the scan events and the interrupt times when the scan results can be stored in the RAM. For example, scan plan 1400 defines a first scan event 1402 corresponding to the mutual capacitance column-to-column scan of the first scan event illustrated in FIG. 12. Similarly, second scan event 1404, third scan event 1406, fourth scan event 1408, fifth scan event 1410, and so on through the conclusion of the eighth scan event 1412 correspond to the respective scan events illustrated in FIG. 12.


Each scan event can define operating parameters and/or settings for components of the transmit section, the receive section, and the RAM used to perform that scan event. The scan engine can then configure the components as defined as the engine executes the scan plan. FIG. 15 illustrates an exemplary method for configuring the components at a scan engine according to examples of the disclosure. In the example of FIG. 15, the scan engine can receive a scan event from a scan plan (1505). For explanatory purposes, the scan event can be assumed to be a touch sensing event, such as a mutual capacitance row-to-column scan, although it should be understood that other events can also be received. Based on the received scan event, the scan engine can then configure the operating parameters and/or settings for the components of the touch circuitry to perform the scan event. Accordingly, the scan engine can configure the transmit section by setting the NCO phases, frequencies, and magnitudes (1510). The scan engine can then configure transmit channels and/or receive channels and couple rows and/or columns to be appropriate transmit or receive channel (1515).


For transmit channels, the scan engine can select which DAC to use to send the stimulation signal Vstim to rows (1520). The scan engine can also set the polarity (+ or −) of the stimulation signal to drive the rows of the touch sensor panel (1525).


For receive channels, the scan engine can set operating parameters for the sense amplifiers, bandpass filters, and ADCs (1530). The scan engine can also set operating parameters for parasitic capacitance Cp cancelation circuitry (1535). The scan engine can set operating parameters for the IQ demodulators, the DCLs, and the accumulators (1540). If there are results from the scan event, e.g., touch signals or spectral analysis results, the scan engine can determine what to do with the results (1545). If the results are to be stored, the scan engine can generate a pointer bank with pointers to the particular storage locations in the RAM (1550). If the results are to be combined to previous results, the scan engine can combine the results (1560). In some cases, the touch circuitry can operate in a master-slave architecture (as will be described below). If the slave receive section has results from the scan event, the scan engine can transmit the results from the slave circuit to the master circuit for further processing.


After configuring the transmit and/or receive channels, the scan engine can determine whether the scan event has completed, i.e., the scan event has paused execution (1565). If not, the scan engine can wait until it does. If the scan event has completed, the scan engine can determine whether an interrupt command should be generated so that the touch processor can store the results to the RAM (1570). If not, the scan engine can receive the next scan event (1505). If so, the scan engine can generate the interrupt for the touch processor to process the results (1575).


It should be understood that additional and/or other methods can also be used that are capable of configuring touch circuitry in a touch sensor panel.



FIG. 16 illustrates an exemplary method for handling a stylus spectral scan event according to examples of the disclosure. In the example of FIG. 16, the scan engine can receive a stylus spectral analysis scan event from a scan plan (1605). The scan engine can then determine a stylus connection or reconnection status (1610). If the stylus is not connected or reconnected, the scan engine can configure the touch circuitry to perform the stylus spectral analysis scan to determine one or more clean frequencies for the stylus (1630) when the stylus is not transmitting. If the stylus is connected or reconnected, the scan engine can then determine whether the stylus is synchronous or asynchronous (1615). If the stylus is synchronous, the scan engine can configure the touch circuitry to perform a stylus spectral analysis scan (1630). If the stylus is asynchronous, the scan engine can determine if the stylus is detected on the panel (1620). If the stylus is detected on the panel, the scan engine can skip the stylus spectral analysis scan (1625). If the stylus is not detected on the panel, the scan engine can configure the touch circuitry to perform a stylus spectral analysis scan (1630). After performing the stylus spectral analysis scan, the computing system can communicate one or more clean stylus frequencies to the stylus and update the one or more stylus frequencies for detection in the touch controller (1635).


As described previously with reference to FIG. 11, each accumulator can receive demodulated touch signals from a corresponding IQ demodulator. For example, accumulator 1136a can receive demodulated touch signals from IQ demodulator 1135a. As described previously, multiple scan events can be performed at least partially concurrently and the touch signals can be simultaneously demodulated, for example, by different demodulators at different frequencies of interest. Accordingly, one accumulator can have touch signals from a stylus scan, while another accumulator can have touch signals from a mutual capacitance row-to-column touch scan, for example. Accordingly, the scan engine can generate the pointer bank to have pointers corresponding to the accumulator results, each pointer linked to a corresponding IQ demodulator and accumulator and then linked to the particular location in the RAM at which that scan event's results can be stored, as illustrated in FIG. 17.



FIG. 17 illustrates an exemplary RAM configuration that can correspond to the scan events in FIG. 12 according to examples of the disclosure. In the example of FIG. 17, the scan engine can generate pointer bank 1748a with pointers linked to the corresponding IQ demodulator and accumulator, e.g., pointer 1749a can link to the first accumulator, pointer 1749b to the second accumulator, pointer 1749c to the third accumulator, and pointer 1749d to the fourth accumulator. From time t0 to t1 in FIG. 12, the scan engine can further link the pointers to the storage locations in the RAM allocated for those scan events. For example, during the first scan event, the scan engine can configure the first IQ demodulator to demodulate the mutual capacitance row-to-row touch signals (labeled as “D-D”) and then link the first pointer 1749a to the storage location 1741 at which row-to-row scan results can be stored. During the second and third scan events, the scan engine can then configure the first demodulator to demodulate the self-capacitance row and column touch signals (labeled as “Self Cap”). Because the scan engine has previously linked the first pointer 1749a to the storage location 1741 during the first scan event, the scan engine can omit performing the linking again to store self-capacitance scan results. The scan engine can also configure the second and third demodulators to demodulate the stylus touch signals (labeled as “Pen Frequency One,” “Pen Frequency Two”) and then link the second pointer 1749b to the storage location 1742 and the third pointer 1749c to the storage location 1742 at which stylus scan results can be stored.


From time t1 to t2 in FIG. 12, the scan engine can again configure the first demodulator to demodulate the mutual capacitance column-to-column touch signals (labeled as “S-S”) during the fourth scan event and keep the link of the first pointer 1749a to the storage location 1741 at which the column-to-column scan results can be stored. The scan engine can configure the fourth demodulator to demodulate the mutual capacitance row-to-column touch signals (labeled “Touch Image”) during the fifth scan event and link the fourth pointer 1749d to the storage location 1744 at which mutual capacitance row-to-column scan results can be stored. The scan engine can configure the second demodulator to demodulate the next set of stylus touch signals (labeled as “Pen Frequency One”) during the fifth scan event and retain the link between the second pointer 1749b and the storage location 1742.


From time t2 to t3 in FIG. 12, the scan engine can generate a new pointer bank 1748b, in which the first pointer 1749a linking the first accumulator to the storage location 1741 can be changed to link to the storage location 1745 so that the stylus and touch spectral analysis results (labeled “Spectral Analysis”) can be stored in their allocated storage location.


The results stored in the RAM can be stored as in-phase and quadrature information, for example, or in other examples, the results can be stored using as magnitude and phase information. In some examples, the receive section can be configured to store results as in-phase and quadrature information for some scan steps and as magnitude and phase information for other steps. The scan engine can change between the two types of information by updating the pointers used to store the scan results. Magnitude and phase can be calculated by the receive section hardware. Magnitude can be calculated as the square root of the sum of the square of the in-phase component and the square of the quadrature component. Phase can be calculated as the inverse tangent of Q divided by I. Mathematically, the magnitude and phase calculations can be expressed as:







magnitude
=



I
2

+

Q
2




;

phase
=


tan

-
1




Q
I







As discussed above and illustrated with respect to FIG. 1, in some examples the touch controller 102 can be implemented using a master-slave configuration. For example, FIG. 18 illustrates an exemplary scan architecture for a touch controller configuring a master-slave circuit, which can include touch circuitry for a master touch circuit and touch circuitry for a slave touch circuit, according to examples of the disclosure. In some examples, the master-slave circuit can be a single package containing two touch controllers, while in other examples, the master-slave circuit can include two separate touch controller chips. In the example of FIG. 18, the scan engine can configure both the master and slave touch circuitry to execute a scan plan together. For example, the master and slave touch circuitry can drive and sense different row and column traces such that the combination scans all of the rows and columns of the touch sensor panel. As illustrated in FIG. 18, during the first scan event, both the master and slave circuitry can be configured to perform mutual capacitance column-column scans on the respective row and column traces. Similarly, the remaining scan events can be performed by the master and slave circuitry. When the panel scan engine generates an interrupt command, the slave circuit can transfer its scan event results to the master circuit, which can then send the results to the RAM for storage. In some examples, the master and slave touch controllers can provide for a bi-directional data transfer to enable both controllers to have the full image of touch. Master-slave configurations can allow for scanning high density touch sensor panels (e.g. a 40×30 array of rows and columns) with low density circuits (master and slave circuits can each stimulate 20 rows and sense touch signals generated by any of the 40 rows on 15 columns).



FIG. 19 illustrates the scan plan executed in FIG. 18 according to examples of the disclosure. In the example of FIG. 19, the scan plan can define the scan events (start and pause) executed by both the master and slave circuits and the interrupt times when the scan results from both the master slave circuits can be transferred to the RAM. In some examples, the data generated by the slave circuit's scan results can be transferred to the master circuit as soon as it is ready. Once the hardware has completed the transmission and processing steps for one or more scan events and the results are ready, an interrupt can be generated to store the scan results in memory. For example, scan plan 1900 defines a first scan event 1902 corresponding to the mutual capacitance column-to-column scan of the first scan event performed by the master and slave circuits illustrated in FIG. 18. Similarly second scan event 1904, third scan event 1906, fourth scan event 1908, fifth scan event 1910, sixth scan event 1912 and so on through eighth scan event 1914 correspond to the respective scan events performed by master and slave circuits illustrated in FIG. 18.


As described above, the panel scan engine can generate one or more pointer banks to have pointers corresponding to the accumulator results, each pointer linked to a corresponding IQ demodulator and accumulator and then linked to the particular location in the RAM at which that scan event's results are to be stored. FIG. 20 illustrates the RAM configuration when the scan events of FIG. 18 are performed. In the example of FIG. 20, both the master and slave scan results can be stored together in the particular storage locations allocated for the scan events.



FIG. 20 illustrates an exemplary RAM configuration that can correspond to the scan events in FIG. 18 according to examples of the disclosure. In the example of FIG. 20, the scan engine can generate pointer bank 2048a with pointers linked to the corresponding IQ demodulator and accumulator, e.g., pointer 2049a can link to the first accumulator, pointer 2049b to the second accumulator, pointer 2049c to the third accumulator, and pointer 2049d to the fourth accumulator. From time t0 to t21 in FIG. 18, the scan engine can further link the pointers to the storage locations in the RAM allocated for those scan events. For example, during the first scan event, the scan engine can configure the first IQ demodulator to demodulate the mutual capacitance row-to-row touch signals (labeled as “D-D”) and then link the first pointer 2049a to the storage location 2041 at which mutual capacitance row-to-row scan results can be stored. During the second and third scan events, the scan engine can then configure the first demodulator to demodulate the self-capacitance row and column touch signals (labeled as “Self Cap”). Because the scan engine has previously linked the first pointer 2049a to the storage location 2041 during the first scan event, the scan engine can omit performing the linking again to store self-capacitance scan results. The scan engine can also configure the second and third demodulators to demodulate the stylus touch signals (labeled as “Pen Frequency One,” “Pen Frequency Two”) and then link the second pointer 2049b to the storage location 2042 and the third pointer 2049c to the storage location 2042 at which stylus scan results can be stored.


From time t6 to t10 in FIG. 18, the scan engine can configure the first demodulator to demodulate the mutual capacitance column-to-column touch signals (labeled as “S-S”) during the fourth scan event and keep the link of the first pointer 2049a to the storage location 2041 at which the column-to-column scan results can be stored. The scan engine can configure the fourth demodulator to demodulate the mutual capacitance row-to-column touch signals (labeled “Touch Image”) during the fifth scan event and link the fourth pointer 2049d to the storage location 2044 at which mutual capacitance row-to-column scan results can be stored. The scan engine can configure the second demodulator to demodulate the next set of stylus touch signals (labeled as “Pen Frequency One”) during the fifth scan event and retain the link between the second pointer 2049b and the storage location 2042.


From time t11 to t21 in FIG. 18, the scan engine can generate a new pointer bank 2048b, in which the first pointer 2049a linking the first accumulator to the storage location 2041 can be changed to link to the storage location 2045 so that the stylus and touch spectral analysis results (labeled “Spectral Analysis”) can be stored in their allocated storage location.



FIGS. 21A-21D illustrate example systems in which touch controller according to examples of the disclosure can be implemented. FIG. 21A illustrates an example mobile telephone 2136 that includes a touch screen 2124 and other computing system blocks that can be configured by a touch controller according to various examples. FIG. 21B illustrates an example digital media player 2140 that includes a touch screen 2126 and other computing system blocks that can be configured by a touch controller according to various examples. FIG. 21C illustrates an example personal computer 2144 that includes a touch screen 2128 and other computing system blocks that can be configured by a touch controller according to various examples. FIG. 21D illustrates an example tablet computing device 2148 that includes a touch screen 2130 and other computing system blocks that can be configured by a touch controller according to various examples. The touch screen and computing system blocks that can be configured by a touch controller can be implemented in other devices including in wearable devices.


The mobile telephone, media player, and personal computer of FIGS. 21A through 21D can advantageously provide more robust and flexible touch circuitry to handle various types of touch events at the panel by using a touch controller to configure the touch circuitry.


Therefore, according to the above, some examples of the disclosure are directed to a touch sensitive device. The touch sensitive device can comprise: a configurable circuit. The configurable circuit can be capable of switching a coupling of a touch sensor panel to components of the circuit in a transmit configuration or components of the circuit in a receive configuration. The circuit in the transmit configuration can be capable of generating stimulation signals having one or more phases and one or more frequencies to drive the touch sensor panel to detect a touch or hover event by an object. The circuit in the receive configuration can be capable of receiving and processing a touch signal indicative of the detected touch or hover event. The touch sensitive device can also comprise a scan engine. The scan engine can be capable of configuring the circuit according to a scan plan. The scan plan can define a sequence of scan events to be performed at the touch sensor panel. Each scan event can define the transmit configuration and the receive configuration for the scan event. Executing the scan plan can cause the sequence of scan events to be performed with the defined transmit and receive configurations for the scan events. Additionally or alternatively to one or more examples disclosed above, the circuit can be capable of driving a first portion of the touch sensor panel with one of the stimulation signals having a first frequency and receiving at least a first touch signal from the first portion, and simultaneously driving a second portion of the touch sensor panel with another of the stimulation signals having a second frequency and receiving at least a second touch signal from the second portion. Additionally or alternatively to one or more examples disclosed above, the touch sensor panel can comprise a plurality of touch nodes. Each touch node can be capable of receiving the stimulation signals from the components of the circuit in the transmit configuration and transmitting the touch signals to components of the circuit in the receive configuration. Additionally or alternatively to one or more examples disclosed above, the touch sensor panel can comprise a plurality of row traces and a plurality of column traces. Additionally or alternatively to one or more examples disclosed above, the scan engine can be capable of configuring the circuit to transmit the stimulation signals to the plurality of row traces in the transmit configuration and to receive the touch signal from the plurality of column traces in the receive configuration. The touch signal can indicate a mutual capacitance between the row traces and the column traces. Additionally or alternatively to one or more examples disclosed above, the scan engine can be capable of configuring the circuit to transmit the stimulation signals to a first set of the row traces in the transmit configuration and to receive the touch signal from a second set of the row traces in the receive configuration. The touch signal can indicate a mutual capacitance between the first and second sets of the row traces. Additionally or alternatively to one or more examples disclosed above, the scan engine can be capable of configuring the circuit to ground one or more row traces between the first set of row traces in the transmit configuration and the second set of row traces in the receive configuration. Additionally or alternatively to one or more examples disclosed above, the scan engine can be capable of configuring the circuit to transmit the stimulation signals to a first set of the column traces in the transmit configuration and to receive the touch signal from a second set of the column traces in the receive configuration. The touch signal can indicate a mutual capacitance between the first and second sets of the column traces. Additionally or alternatively to one or more examples disclosed above, the scan engine can be capable of configuring the circuit to ground one or more column traces between the first set of column traces in the transmit configuration and the second set of column traces in the receive configuration. Additionally or alternatively to one or more examples disclosed above, the scan engine can be capable of configuring the circuit to transmit the stimulation signals to the non-inverting input of sense amplifiers and to receive the touch signal from the row traces in the receive configuration, the row traces in the receive configuration coupled to the inverting input of the sense amplifiers. The touch signal can indicate a self-capacitance between the row traces and an object proximate to the panel. Additionally or alternatively to one or more examples disclosed above, the scan engine can be further capable of configuring the circuit to transmit a guard signal to the column traces in the transmit configuration, the column traces acting as a guard to block interference to the touch signal at the row traces. Additionally or alternatively to one or more examples disclosed above, the scan engine can be capable of configuring the circuit to transmit the stimulation signals to the non-inverting input of sense amplifiers and to receive the touch signal from the column traces in the receive configuration, the column traces in the receive configuration coupled to the inverting input of the sense amplifiers. The touch signal can indicate a self-capacitance between the row traces and an object proximate to the panel. Additionally or alternatively to one or more examples disclosed above, the scan engine can be further capable of configuring the circuit to transmit a guard signal to the row traces in the transmit configuration, the row traces acting as a guard to block interference to the touch signal at the column traces. Additionally or alternatively to one or more examples disclosed above, the object can be a finger or a stylus. Additionally or alternatively to one or more examples disclosed above, the device can further comprise: a display capable of displaying first data and updating to display second data. The scan engine can be capable of receiving a display signal indicating that the display is updating and configuring the circuit to operate on the touch sensor panel during the updating of the display. Additionally or alternatively to one or more examples disclosed above, the circuit can be capable of switching the components to a cancelation configuration, the cancelation configuration being capable of canceling parasitic capacitance from the touch signal. Additionally or alternatively to one or more examples disclosed above, the circuit can comprise two configurable circuits coupled together in a master-slave configuration. Each of the two circuits can be capable of operating in a transmit configuration and a receive configuration. Additionally or alternatively to one or more examples disclosed above, the scan engine can be capable of configuring the circuit to receive a noise signal from the plurality of column traces in the receive configuration and the plurality of row traces in the receive configuration when the circuit is not generating stimulation signals. Additionally or alternatively to one or more examples disclosed above, the noise signal can be demodulated at one or more frequencies. Additionally or alternatively to one or more examples disclosed above, the noise signal can be demodulated using one or more in-phase (I) and quadrature (Q) demodulators. Additionally or alternatively to one or more examples disclosed above, the noise signal can be demodulated using a demodulation window corresponding to stimulation signals generated during a scan event. Additionally or alternatively to one or more examples disclosed above, a noise value can be generated from the demodulated noise signal at the one or more frequencies and one or more low noise frequencies can be determined by selecting the one or more frequencies with the smallest noise value. Additionally or alternatively to one or more examples disclosed above, the device can further comprise wireless communication circuitry capable of transmitting, to a peripheral device, at least one of information about the one or more low noise frequencies, information about the scan plan, or device clock information. Additionally or alternatively to one or more examples disclosed above, the wireless communication circuitry is further capable of receiving force information from the peripheral device. Additionally or alternatively to one or more examples disclosed above, configuring the circuit can include coupling the plurality of row traces and the plurality of column traces to transmit or receive channels. Additionally or alternatively to one or more examples disclosed above, a row trace and a column trace can be paired with a transmit channel and receive channel pair, such that one of the row trace and the column trace can be coupled to a transmit channel of the transmit channel and receive channel pair and the other of the row trace and the column trace can be coupled to a receive channel of the transmit channel and receive channel pair.


Other examples of the disclosure are directed to a method for performing one or more scan events on a touch sensitive device, the method can comprise defining a plurality of scan events; defining a transmit configuration and a receive configuration for each scan event; defining a scan plan that orders and establishes a timing of the plurality of scan events; and performing the plurality of scan events according to the scan plan. Additionally or alternatively to one or more examples disclosed above, the scan engine performs the plurality of scan events at predefined times. Each scan event having associated therewith specific configurations of a transmit section, a receive section, and a memory.


Other examples of the disclosure are directed to a non-transitory computer readable storage medium. The non-transitory computer readable storage medium can have stored therein a scan plan for configuring a touch circuit in a touch sensitive device that when executed by a scan engine can causes the scan engine to: configure a portion of the touch circuit to be a transmit section, the transmit section capable of driving a touch sensor panel to detect a touch or hover event; configure another portion of the touch circuit to be a receive section, the receive section capable of processing the detected touch or hover event; configure a memory having multiple memory locations, the memory capable of storing a touch signal indicative of the processed touch event; and direct a scan sequence at the touch sensitive device according to the scan plan, the scan plan defining the scan sequence. Additionally or alternatively to one or more examples disclosed above, the scan engine can direct the scan sequence including one or more scan events at predefined times. Each scan event can have associated therewith specific configurations of the transmit section, the receive section, and the memory.


Other examples of the disclosure are directed to a touch controller. The touch controller can comprise a configurable transmit section capable of generating one or more stimulation signals having one or more phases and one or more frequencies to drive a touch sensor panel; a configurable receive section capable of receiving and processing one or more touch signals; and a programmable scan engine capable of configuring at least one of the transmit section or the receive section according to a scan plan. The scan plan can define a sequence of scan events to be performed at the touch sensor panel. Each scan event can define at least one of first settings for first components of the transmit section or second settings for second components of the receive section. Additionally or alternatively to one or more examples disclosed above, the controller can further comprise a configurable memory capable of storing the one or more touch signals. The programmable scan engine can be capable of configuring the memory according to the scan plan and a scan event can define storage allocations in the memory. Additionally or alternatively to one or more examples disclosed above, the transmit section can comprise one or more oscillators capable of generating the stimulation signals at one or more frequencies, one or more digital-to-analog converters (DACs) coupled to the oscillators and capable of generating the stimulation signals at one or more phases; and one or more channels coupled to the DAC converters. Each channel can include a first multiplexer capable of selecting one of the stimulation signals having one of the phases and one of the frequencies. The scan engine can also be capable of configuring the first settings for the oscillators, the DAC converters, and the first multiplexers of the one or more channels. Additionally or alternatively to one or more examples disclosed above, the transmit section can further comprise: a second multiplexer capable of routing the selected stimulation signal outputted from the first multiplexer to a row or column trace of the touch sensor panel. The scan engine can be capable of configuring the first settings for the second multiplexers of the one or more channels. Additionally or alternatively to one or more examples disclosed above, the second multiplexer can be capable of coupling the row or column trace of the touch sensor panel to at least one of the selected stimulation signal outputted from the first multiplexer, the receive section, or ground. Additionally or alternatively to one or more examples disclosed above, the receive section can comprises: one or more channels coupled to the touch sensor panel. Each channel can include a sense amplifier capable of receiving at least one touch signal from the touch sensor panel; and one or more demodulators capable of demodulating the at least one touch signal to output at least one of an in-phase (I) component, a quadrature (Q) component, or an in-phase-quadrature (IQ) component. The scan engine can be capable of configuring the second settings for the sense amplifiers and the demodulators of the channels. Additionally or alternatively to one or more examples disclosed above, each demodulator can be capable of demodulating the at least one touch signal at a phase and frequency of interest corresponding to the phase and frequency of at least one stimulation signal or at least one stylus stimulation signal. Additionally or alternatively to one or more examples disclosed above, the memory can comprise: a pointer bank including one or more pointers. Each pointer can be capable of pointing to locations allocated in the memory to store the touch signal. The scan engine can be capable of configuring the pointer bank and the locations allocated in the memory. Additionally or alternatively to one or more examples disclosed above, the one or more touch signals can include at least one of a mutual capacitance signal or a self-capacitance signal. Additionally or alternatively to one or more examples disclosed above, the scan events can include at least one of a mutual capacitance scan, a self-capacitance scan, or a stylus scan. Additionally or alternatively to one or more examples disclosed above, the scan engine can be capable of executing the scan plan so as to cause the sequence of scan events to be performed at the configurations for the scan events. Additionally or alternatively to one or more examples disclosed above, the scan engine can be capable of dynamically changing the scan plan during execution. Additionally or alternatively to one or more examples disclosed above, the scan events can include at least one mutual capacitance scan. The scan engine can be capable of configuring the transmit section to stimulate a plurality of row traces and configuring the receive section to receive touch signals from a plurality of column traces. The touch signals can be indicative of a mutual capacitance between the row and column traces. Additionally or alternatively to one or more examples disclosed above, the scan engine can be capable of configuring the transmit section to stimulate the plurality of column traces and configuring the receive section to receive touch signals from the plurality of row traces. The touch signals can be indicative of a mutual capacitance between the row and column traces. Additionally or alternatively to one or more examples disclosed above, the scan engine can be capable of configuring the transmit section to stimulate a first set of the plurality of row traces and configuring the receive section to receive touch signals from a second set of the plurality of row traces. The touch signals can be indicative of a mutual capacitance between row traces in the first and second sets of the row traces. Additionally or alternatively to one or more examples disclosed above, the scan engine can be capable of configuring the transmit section to stimulate a first set of the plurality of column traces and configuring the receive section to receive touch signals from a second set of the plurality of column traces. The touch signals indicative of a mutual capacitance between column traces in the first and second sets of the column traces. Additionally or alternatively to one or more examples disclosed above, the scan events can include at least one self-capacitance scan. The scan engine can be capable of configuring the transmit section to stimulate a non-inverting input of sense amplifiers in the receive section and configuring the receive section to receive touch signals from a plurality of row traces, the plurality of row traces coupled to the inverting input of the sense amplifiers. The touch signal can be indicating a self-capacitance between the row traces and an object proximate to the panel. Additionally or alternatively to one or more examples disclosed above, the scan engine can be capable of configuring the transmit section to stimulate a non-inverting input of sense amplifiers in the receive section and configuring the receive section to receive touch signals from a plurality of column traces, the plurality of column traces coupled to the inverting input of the sense amplifiers. The touch signal can be indicating a self-capacitance between the column traces and the object proximate to the panel. Additionally or alternatively to one or more examples disclosed above, the scan engine can further be capable of configuring the transmit section to apply a guard signal to unused row or column traces to block interference with the touch signals. Additionally or alternatively to one or more examples disclosed above, the scan events can include at least one of a touch spectral analysis scan, a stylus spectral analysis scan or a stylus scan. The scan engine can be capable of configuring the receive section to receive touch signals from one or more of row and column traces when the controller is not generating any stimulation signals. Additionally or alternatively to one or more examples disclosed above, the configurable transmit and receive sections can be implemented in a master-slave configuration, such that a first portion of the configurable transmit section and a first portion of the configurable receive section can be implemented in a master touch controller, and a second portion of the configurable transmit section and a second portion of the configurable receive section can be implemented in a slave touch controller. Additionally or alternatively to one or more examples disclosed above, the transmit section can be capable of driving a first portion of the touch sensor panel with first stimulation signals having a first frequency and simultaneously driving a second portion of the touch sensor panel with second stimulation signals having a second frequency.


Other examples of the disclosure are directed to a non-transitory computer readable storage medium. The non-transitory computer readable storage medium can have stored thereon a scan plan for configuring a touch controller in a touch sensitive device that when executed by a scan engine can cause the scan engine to: configure a portion of the touch controller to be a transmit section, the transmit section capable of driving a touch sensor panel to detect a touch or hover event; configure another portion of the touch controller to be a receive section, the receive section capable of processing the detected touch or hover event; and direct a scan sequence at the touch sensitive device according to the scan plan, the scan plan defining the scan sequence.


The non-transitory computer readable storage medium of claim 18, wherein the scan engine directs the scan sequence including one or more scan events at predefined times, each scan event having associated therewith specific configurations of the transmit section and the receive section. Additionally or alternatively to one or more examples disclosed above, the scan engine can be capable of dynamically changing the scan sequence. Additionally or alternatively to one or more examples disclosed above, the transmit section can be capable of driving a first portion of the touch sensor panel with first stimulation signals having a first frequency and simultaneously driving a second portion of the touch sensor panel with second stimulation signals having a second frequency.


Other examples of the disclosure are directed to a method for configuring a touch controller in a touch sensitive device. The method can comprise: configuring portions of the touch controller to be a transmit section or a receive section. The transmit section can be capable of driving a touch sensor panel to detect a touch or hover event and the receive section can be capable of processing the detected touch or hover event. The method can also comprise, performing the one or more scan events according to a scan plan. The scan plan can define the scan sequence. Each scan event can define a transmit configuration and a receive configuration for that particular scan event. Additionally or alternatively to one or more examples disclosed above, the scan engine can perform the one or more scan events at predefined times. Each scan event can have associated therewith specific configurations of the transmit section and the receive section. Additionally or alternatively to one or more examples disclosed above, the scan engine can be capable of dynamically changing the scan sequence. Additionally or alternatively to one or more examples disclosed above, the transmit section can be capable of driving a first portion of the touch sensor panel with first stimulation signals having a first frequency and simultaneously driving a second portion of the touch sensor panel with second stimulation signals having a second frequency.


Other examples of the disclosure are directed to an active stylus. The active stylus can comprise one or more electrodes at a distal end of the stylus; control circuitry coupled to the one or more electrodes capable of generating one or more stimulation signals; and wireless communication circuitry coupled to the control circuitry capable of receiving information from a peripheral device. Additionally or alternatively to one or more examples disclosed above, the control circuitry can be capable of generating the one or more stimulation signals at a first frequency and at a second frequency. Additionally or alternatively to one or more examples disclosed above, the signals generated at the first frequency and the second frequency can generated simultaneously. Additionally or alternatively to one or more examples disclosed above, the received information can include one or more stimulation frequencies. Additionally or alternatively to one or more examples disclosed above, the received information can include clock information. Additionally or alternatively to one or more examples disclosed above, the received information can include information about one or more scan events. Additionally or alternatively to one or more examples disclosed above, the stylus can further comprise a force sensor at the tip of the stylus configured to detect an amount of force at the tip of the stylus. Additionally or alternatively to one or more examples disclosed above, the wireless communication circuitry can be capable of transmitting the amount of force to the peripheral device. Additionally or alternatively to one or more examples disclosed above, the one or more stimulation signals can be generated only during a stylus scan event. Additionally or alternatively to one or more examples disclosed above, the stylus can further comprise an internal clock coupled to at least one of the control circuitry or wireless communication circuitry. The internal clock can be capable of being synchronized with the peripheral device based the received clock information. Additionally or alternatively to one or more examples disclosed above, the wireless communication circuitry can be capable of being synchronized with the peripheral device such that the wireless communication circuitry can transmit or receive information at predetermined times. Additionally or alternatively to one or more examples disclosed above, the one or more stimulation frequencies can correspond to one or more low noise frequencies determined at the peripheral device.


Other examples of the disclosure are directed to a method for operating an active stylus capable of stimulating a touch sensitive device. The method can comprise: receiving information from the touch sensitive device via wireless communication circuitry in the stylus; generating, at control circuitry in the stylus, one or more stimulation signals based on the received information; and applying the one or more stimulation signals to one or more electrodes at a distal end of the stylus. Additionally or alternatively to one or more examples disclosed above, the one or more stimulation signals can include signals at a first frequency and at a second frequency. Additionally or alternatively to one or more examples disclosed above, the one or more stimulation signals at the first frequency and the second frequency can be generated simultaneously. Additionally or alternatively to one or more examples disclosed above, the received information can include one or more stimulation frequencies. Additionally or alternatively to one or more examples disclosed above, the received information can include clock information. Additionally or alternatively to one or more examples disclosed above, the received information can include information about one or more scan events. Additionally or alternatively to one or more examples disclosed above, the method can also comprise detecting, via a force sensor, an amount of force at the tip of the stylus. Additionally or alternatively to one or more examples disclosed above, the method can also comprise transmitting, via the wireless communication circuitry, the amount of force to the peripheral device. Additionally or alternatively to one or more examples disclosed above, the one or more stimulation signals can be generated only during a stylus scan event. Additionally or alternatively to one or more examples disclosed above, the method can also comprise, synchronizing a clock within the stylus based on the received clock information. Additionally or alternatively to one or more examples disclosed above, the wireless communication circuitry can be synchronized so as to transmit and receive information at predetermined times. Additionally or alternatively to one or more examples disclosed above, the one or more stimulation frequencies can correspond to one or more low noise frequencies determined at the touch sensitive device.


Other examples of the disclosure are directed to a non-transitory computer readable storage medium. The non-transitory computer readable storage medium can have stored therein instructions, which when executed by an active stylus capable of stimulating a touch sensitive device, can cause the stylus to perform a method. The method can comprise: receiving information from the touch sensitive device via wireless communication circuitry in the stylus; generating, at control circuitry in the stylus, one or more stimulation signals based on the received information; and applying the one or more stimulation signals to one or more electrodes at a distal end of the stylus.


Although the disclosure and examples have been fully described with reference to the accompanying drawings, it is to be noted that various changes and modifications will become apparent to those skilled in the art. Such changes and modifications are to be understood as being included within the scope of the disclosure and examples as defined by the appended claims.

Claims
  • 1. A touch controller comprising: a configurable transmit section configured to generate one or more stimulation signals having one or more phases and one or more frequencies to drive a touch sensor panel;a configurable receive section configured to receive and process one or more touch signals; anda programmable scan engine configured to configure at least one of the transmit section or the receive section according to a scan plan, the scan plan defining a sequence of scan events to be performed at the touch sensor panel, each of the scan events defining one or more first settings for first components of the transmit section or one or more second settings for second components of the receive section;wherein the sequence of scan events including at least one concurrent scan event, the at least one concurrent scan event including a first scan event and a second scan event to be performed concurrently at the touch sensor panel, wherein the first scan event is a self-capacitance scan or a mutual capacitance scan and the second scan event is a stylus scan or a stylus spectral analysis scan, wherein the one or more stimulation signals generated by the components of the circuit in the transmit configuration during the concurrent scan event have a first frequency, the first frequency different than a second frequency used to detect a stylus during the stylus scan.
  • 2. The controller of claim 1, further comprising a configurable memory configure to store the one or more touch signals, wherein the programmable scan engine is configured to configure the memory according to the scan plan and a scan event of the scan events defines storage allocations in the memory.
  • 3. The controller of claim 1, wherein the transmit section comprises: one or more oscillators configured to generate the one or more stimulation signals at the one or more frequencies;one or more digital-to-analog converters (DACs) coupled to the one or more oscillators and configured to generate the one or more stimulation signals at the one or more phases; andone or more channels coupled to the one or more DACs, each of the one or more channels including a first multiplexer configured to select one of the one or more stimulation signals having one of the one or more phases and one of the one or more frequencies and outputting the selected one of the one or more simulation signals;wherein the scan engine is configured to configure the one or more first settings for the one or more oscillators, the one or more DACs, and the first multiplexer of each of the one or more channels.
  • 4. The controller of claim 3, wherein each of the one or more channels further including a second multiplexer configured to route the selected one of the one or more stimulation signals outputted from the first multiplexer to a row trace of the touch sensor panel or a column trace of the touch sensor panel; wherein the scan engine is configured to configure the one or more first settings for the second multiplexer of each of the one or more channels.
  • 5. The controller of claim 4, wherein the second multiplexer is configured to couple the row trace of the touch sensor panel or the column trace of the touch sensor panel to at least one of the selected one of the one or more stimulation signals outputted from the first multiplexer, the receive section, or a ground.
  • 6. The controller of claim 1, wherein the receive section comprises: one or more channels coupled to the touch sensor panel, each of the one or more channels including: a sense amplifier configured to receive at least one of the one or more touch signals from the touch sensor panel; andone or more demodulators configured to demodulate the at least one of the one or more touch signals to output at least one of an in-phase (I) component, a quadrature (Q) component, or an in-phase-quadrature (IQ) component;wherein the scan engine is configured to configure the one or more second settings for the sense amplifier and the one or more demodulators of the each of the one or more channels.
  • 7. The controller of claim 6, wherein each of the one or more demodulators is configured to demodulate the at least one of the one or more touch signals at a phase and a frequency corresponding to at least one of the one or more stimulation signals or corresponding to a stylus stimulation signal.
  • 8. The controller of claim 2, wherein the memory comprises: a pointer bank including one or more pointers, each of the one or more pointers configured to point to locations allocated in the memory to store the one or more touch signals;wherein the scan engine is configured to configure the pointer bank and the locations allocated in the memory.
  • 9. The controller of claim 1, wherein the scan engine is configured to execute the scan plan so as to cause the sequence of scan events to be performed at a plurality of configurations corresponding to the scan events.
  • 10. The controller of claim 1, wherein the scan engine is configured to dynamically change the scan plan during an execution.
  • 11. The controller of claim 1, wherein the scan events include at least one mutual capacitance scan, wherein the scan engine is configured to: configure the transmit section to stimulate a plurality of row traces of the touch sensor panel and configure the receive section to receive the one or more touch signals from a plurality of column traces of the touch sensor panel, the one or more touch signals indicative of a mutual capacitance between the plurality of row traces of the touch sensor panel and the plurality of column traces of the touch sensor panel.
  • 12. The controller of claim 1, wherein the scan events include at least one self-capacitance scan, wherein the scan engine is configured to: configure the transmit section to stimulate a non-inverting input of sense amplifiers in the receive section and configure the receive section to receive the one or more touch signals from a plurality of row traces, the plurality of row traces coupled to an inverting input of the sense amplifiers, the one or more touch signals indicating a self-capacitance between the row traces and an object over the panel.
  • 13. The controller of claim 12, wherein the scan engine is further configured to configure the transmit section to apply a guard signal to a plurality of column traces to block an interference with the one or more touch signals.
  • 14. The controller of claim 1, wherein the scan events include at least one of a touch spectral analysis scan, the stylus spectral analysis scan or the stylus scan, wherein the scan engine is configured to: configure the receive section to receive the one or more touch signals from one or more of a plurality of row traces and one or more of a plurality of column traces and configure the transmit section to not generate any of the one or more stimulation signals during the at least one of the touch spectral analysis scan, the stylus spectral analysis scan or the stylus scan.
  • 15. The controller of claim 1, wherein the configurable transmit section and the configurable receive section are implemented in a master-slave configuration, such that a first portion of the configurable transmit section and a first portion of the configurable receive section are implemented in a master touch controller, and a second portion of the configurable transmit section and a second portion of the configurable receive section are implemented in a slave touch controller.
  • 16. The controller of claim 1, wherein the transmit section is configured to drive a first portion of the touch sensor panel with a first of the one or more stimulation signals having a first of the one or more frequencies and simultaneously drive a second portion of the touch sensor panel with a second of the one or more stimulation signals having a second of the one or more frequencies.
  • 17. The controller of claim 1, wherein the scan events include at least one mutual capacitance scan, wherein the scan engine is configured to: configure the transmit section to stimulate a plurality of column traces of the touch sensor panel and configure the receive section to receive the one or more touch signals from a plurality of row traces of the touch sensor panel, the one or more touch signals indicative of a mutual capacitance between the plurality of row traces of the touch sensor panel and the plurality of column traces of the touch sensor panel.
  • 18. The controller of claim 1, wherein the scan events include at least one mutual capacitance scan, wherein the scan engine is configured to: configure the transmit section to stimulate a first set of a plurality of row traces of the touch sensor panel and configure the receive section to receive the one or more touch signals from a second set of the plurality of row traces of the touch sensor panel, the one or more touch signals indicative of a mutual capacitance between row traces of the touch sensor panel in the first set of the plurality of row traces of the touch sensor panel and the second set of the plurality of row traces of the touch sensor panel.
  • 19. The controller of claim 1, wherein the scan events include at least one mutual capacitance scan, wherein the scan engine is configured to: configure the transmit section to stimulate a first set of a plurality of column traces of the touch sensor panel and configure the receive section to receive the one or more touch signals from a second set of the plurality of column traces of the touch sensor panel, the one or more touch signals indicative of a mutual capacitance between column traces of the touch sensor panel in the first set of the plurality of column traces of the touch sensor panel and the second set of the plurality of column traces of the touch sensor panel.
  • 20. The controller of claim 1, wherein the scan events include at least one self-capacitance scan, wherein the scan engine is configured to: configure the transmit section to stimulate a non-inverting input of sense amplifiers in the receive section and configure the receive section to receive the one or more touch signals from a plurality of column traces, the plurality of column traces coupled to an inverting input of the sense amplifiers, the one or more touch signals indicating a self-capacitance between the column traces and an object over the panel.
US Referenced Citations (637)
Number Name Date Kind
3462692 Bartlett Aug 1969 A
3970846 Schofield et al. Jul 1976 A
4220815 Gibson et al. Sep 1980 A
4281407 Tosima Jul 1981 A
4289927 Rodgers Sep 1981 A
4320292 Oikawa et al. Mar 1982 A
4334219 Paülus et al. Jun 1982 A
4345248 Togashi et al. Aug 1982 A
4405921 Mukaiyama Sep 1983 A
4439855 Dholakia Mar 1984 A
4476463 Ng et al. Oct 1984 A
4481510 Hareng et al. Nov 1984 A
4484179 Kasday Nov 1984 A
4490607 Pease et al. Dec 1984 A
4496981 Ota Jan 1985 A
4520357 Castleberry et al. May 1985 A
4542375 Alles et al. Sep 1985 A
4602321 Bornhorst Jul 1986 A
4603356 Bates Jul 1986 A
4642459 Casewell et al. Feb 1987 A
4644338 Aoki et al. Feb 1987 A
4655552 Togashi et al. Apr 1987 A
4662718 Masubuchi May 1987 A
4671671 Suetaka Jun 1987 A
4677428 Bartholow Jun 1987 A
4679909 Hamada et al. Jul 1987 A
4684939 Streit Aug 1987 A
4698460 Krein et al. Oct 1987 A
4705942 Budrikis et al. Nov 1987 A
4720869 Wadia Jan 1988 A
4736203 Sidlauskas Apr 1988 A
4740782 Aoki et al. Apr 1988 A
4749879 Peterson et al. Jun 1988 A
4759610 Yanagisawa Jul 1988 A
4767192 Chang et al. Aug 1988 A
4772101 Liu Sep 1988 A
4782327 Kley et al. Nov 1988 A
4782328 Denlinger Nov 1988 A
4785564 Gurtler Nov 1988 A
4794634 Torihata et al. Dec 1988 A
4814760 Johnston et al. Mar 1989 A
4823178 Suda Apr 1989 A
4838655 Hunahata et al. Jun 1989 A
4846559 Kniffler Jul 1989 A
4877697 Vollmann et al. Oct 1989 A
4893120 Doering et al. Jan 1990 A
4904056 Castleberry Feb 1990 A
4917474 Yamazaki et al. Apr 1990 A
4940901 Henry et al. Jul 1990 A
5003356 Wakai et al. Mar 1991 A
5037119 Takehara et al. Aug 1991 A
5039206 Wiltshire Aug 1991 A
5051570 Tsujikawa et al. Sep 1991 A
5063379 Fabry et al. Nov 1991 A
5083175 Hack et al. Jan 1992 A
5105186 May Apr 1992 A
5113041 Blonder et al. May 1992 A
5117071 Greanias et al. May 1992 A
5140153 Heikkinen et al. Aug 1992 A
5151688 Tanaka et al. Sep 1992 A
5153420 Hack et al. Oct 1992 A
5172104 Tanigaki et al. Dec 1992 A
5182661 Ikeda et al. Jan 1993 A
5204661 Hack et al. Apr 1993 A
5236850 Zhang Aug 1993 A
5237314 Knapp Aug 1993 A
5239152 Caldwell et al. Aug 1993 A
5243332 Jacobson Sep 1993 A
5276538 Monji et al. Jan 1994 A
5301048 Huisman Apr 1994 A
5308964 Kwon May 1994 A
5339090 Crossland et al. Aug 1994 A
5339091 Yamazaki et al. Aug 1994 A
5341133 Savoy et al. Aug 1994 A
5349174 Van Berkel et al. Sep 1994 A
5360426 Muller et al. Nov 1994 A
5365461 Stein et al. Nov 1994 A
5369262 Dvorkis et al. Nov 1994 A
5376948 Roberts Dec 1994 A
5381251 Nonomura et al. Jan 1995 A
5386543 Bird Jan 1995 A
5387445 Horiuchi et al. Feb 1995 A
5414283 den Boer et al. May 1995 A
5422693 Vogeley et al. Jun 1995 A
5430462 Katagiri et al. Jul 1995 A
5445871 Murase et al. Aug 1995 A
5446564 Mawatari et al. Aug 1995 A
5461400 Ishii et al. Oct 1995 A
5475398 Yamazaki et al. Dec 1995 A
5483261 Yasutake Jan 1996 A
5483263 Bird et al. Jan 1996 A
5485177 Shannon et al. Jan 1996 A
5488204 Mead et al. Jan 1996 A
5502514 Vogeley et al. Mar 1996 A
5510916 Takahashi Apr 1996 A
5515186 Fergason et al. May 1996 A
5525813 Miyake et al. Jun 1996 A
5532743 Komobuchi Jul 1996 A
5559471 Black Sep 1996 A
5568292 Kim Oct 1996 A
5581378 Kulick et al. Dec 1996 A
5585817 Itoh et al. Dec 1996 A
5589961 Shigeta et al. Dec 1996 A
5598004 Powell et al. Jan 1997 A
5608390 Gasparik Mar 1997 A
5610629 Baur Mar 1997 A
5635982 Zhang et al. Jun 1997 A
5637187 Takasu et al. Jun 1997 A
5652600 Khormaei et al. Jul 1997 A
5659332 Ishii et al. Aug 1997 A
5677744 Yoneda et al. Oct 1997 A
5709118 Ohkubo Jan 1998 A
5712528 Barrow et al. Jan 1998 A
5734491 Debesis Mar 1998 A
5736980 Iguchi et al. Apr 1998 A
5751453 Baur May 1998 A
5757522 Kulick et al. May 1998 A
5767623 Friedman et al. Jun 1998 A
5777713 Kimura Jul 1998 A
5778108 Coleman, Jr. Jul 1998 A
5790106 Hirano et al. Aug 1998 A
5793342 Rhoads Aug 1998 A
5796121 Gates Aug 1998 A
5796473 Murata et al. Aug 1998 A
5812109 Kaifu et al. Sep 1998 A
5818037 Redford et al. Oct 1998 A
5818553 Koenck et al. Oct 1998 A
5818956 Tuli Oct 1998 A
5825352 Bisset et al. Oct 1998 A
5831693 McCartney, Jr. et al. Nov 1998 A
5834765 Ashdown Nov 1998 A
5835079 Shieh Nov 1998 A
5838290 Kuijk Nov 1998 A
5838308 Knapp et al. Nov 1998 A
5852487 Fujimori et al. Dec 1998 A
5854448 Nozaki et al. Dec 1998 A
5854881 Yoshida et al. Dec 1998 A
5877735 King et al. Mar 1999 A
5880411 Gillespie et al. Mar 1999 A
5883715 Steinlechner et al. Mar 1999 A
5890799 Yiu et al. Apr 1999 A
5917464 Stearns Jun 1999 A
5920309 Bisset et al. Jul 1999 A
5920360 Coleman, Jr. Jul 1999 A
5923320 Murakami et al. Jul 1999 A
5926238 Inoue et al. Jul 1999 A
5930591 Huang Jul 1999 A
5940049 Hinman et al. Aug 1999 A
5942761 Tuli Aug 1999 A
5956020 D'Amico et al. Sep 1999 A
5959617 Bird et al. Sep 1999 A
5959697 Coleman, Jr. Sep 1999 A
5962856 Zhao et al. Oct 1999 A
5966108 Ditzik Oct 1999 A
5973312 Curling et al. Oct 1999 A
5990980 Golin Nov 1999 A
5990988 Hanihara et al. Nov 1999 A
5995172 Ikeda et al. Nov 1999 A
6002387 Ronkka et al. Dec 1999 A
6020590 Aggas et al. Feb 2000 A
6020945 Sawai et al. Feb 2000 A
6023307 Park Feb 2000 A
6028581 Umeya Feb 2000 A
6049428 Khan et al. Apr 2000 A
6061117 Fujimoto May 2000 A
6064374 Fukuzaki May 2000 A
6067062 Takasu et al. May 2000 A
6067140 Woo et al. May 2000 A
6069393 Hatanaka et al. May 2000 A
6078378 Lu et al. Jun 2000 A
6087599 Knowles Jul 2000 A
6091030 Tagawa et al. Jul 2000 A
6100538 Ogawa Aug 2000 A
6118435 Fujita et al. Sep 2000 A
6133906 Geaghan Oct 2000 A
6163313 Aroyan et al. Dec 2000 A
6177302 Yamazaki et al. Jan 2001 B1
6181394 Sanelle et al. Jan 2001 B1
6182892 Angelo et al. Feb 2001 B1
6184863 Sibert et al. Feb 2001 B1
6184873 Ward Feb 2001 B1
6188391 Seely et al. Feb 2001 B1
6188781 Brownlee Feb 2001 B1
6232607 Huang May 2001 B1
6236053 Shariv May 2001 B1
6236063 Yamazaki et al. May 2001 B1
6239788 Nohno et al. May 2001 B1
6242729 Izumi et al. Jun 2001 B1
6262408 Izumi et al. Jul 2001 B1
6265792 Granchukoff Jul 2001 B1
6271813 Palalau Aug 2001 B1
6278423 Wald et al. Aug 2001 B1
6278444 Wilson et al. Aug 2001 B1
6284558 Sakamoto Sep 2001 B1
6295113 Yang Sep 2001 B1
6300977 Waechter Oct 2001 B1
6310610 Beaton et al. Oct 2001 B1
6316790 Kodaira et al. Nov 2001 B1
6320617 Gee et al. Nov 2001 B1
6323490 Ikeda et al. Nov 2001 B1
6323846 Westerman et al. Nov 2001 B1
6326956 Jaeger et al. Dec 2001 B1
6327376 Harkin Dec 2001 B1
6333544 Toyoda et al. Dec 2001 B1
6351076 Yoshida et al. Feb 2002 B1
6351260 Graham et al. Feb 2002 B1
6357939 Baron Mar 2002 B1
6364829 Fulghum Apr 2002 B1
6377249 Mumford Apr 2002 B1
6380995 Kim Apr 2002 B1
6392254 Liu et al. May 2002 B1
6399166 Khan et al. Jun 2002 B1
6400359 Katabami Jun 2002 B1
6441362 Ogawa Aug 2002 B1
6453008 Sakaguchi et al. Sep 2002 B1
6454482 Silverbrook et al. Sep 2002 B1
6465824 Kwasnick et al. Oct 2002 B1
6476447 Yamazaki et al. Nov 2002 B1
6489631 Young et al. Dec 2002 B2
6495387 French Dec 2002 B2
6504530 Wilson et al. Jan 2003 B1
6518561 Miura Feb 2003 B1
6521109 Bartic et al. Feb 2003 B1
6529189 Colgan et al. Mar 2003 B1
6552745 Perner Apr 2003 B1
6597348 Yamazaki et al. Jul 2003 B1
6603867 Sugino et al. Aug 2003 B1
6642238 Hester, Jr. Nov 2003 B2
6646636 Popovich et al. Nov 2003 B1
6667740 Ely et al. Dec 2003 B2
6679702 Rau Jan 2004 B1
6681034 Russo Jan 2004 B1
6690156 Weiner et al. Feb 2004 B1
6690387 Zimmerman et al. Feb 2004 B2
6700144 Shimazaki et al. Mar 2004 B2
6720594 Rahn et al. Apr 2004 B2
6738031 Young et al. May 2004 B2
6738050 Comiskey et al. May 2004 B2
6741655 Chang et al. May 2004 B1
6762741 Weindorf Jul 2004 B2
6762752 Perski et al. Jul 2004 B2
6803906 Morrison et al. Oct 2004 B1
6815716 Sanson et al. Nov 2004 B2
6831710 den Boer Dec 2004 B2
6862022 Slupe Mar 2005 B2
6864882 Newton Mar 2005 B2
6879344 Nakamura et al. Apr 2005 B1
6879710 Hinoue et al. Apr 2005 B1
6888528 Rai et al. May 2005 B2
6947017 Gettemy Sep 2005 B1
6947102 den Boer et al. Sep 2005 B2
6956564 Williams Oct 2005 B1
6972753 Kimura et al. Dec 2005 B1
6995743 den Boer et al. Feb 2006 B2
7006080 Gettemy Feb 2006 B2
7009663 Abileah et al. Mar 2006 B2
7015833 Bodenmann et al. Mar 2006 B1
7015894 Morohoshi Mar 2006 B2
7023503 den Boer Apr 2006 B2
7053967 Abileah et al. May 2006 B2
7068254 Yamazaki et al. Jun 2006 B2
7075521 Yamamoto et al. Jul 2006 B2
7098894 Yang et al. Aug 2006 B2
7109465 Kok et al. Sep 2006 B2
7157649 Hill Jan 2007 B2
7164164 Nakamura et al. Jan 2007 B2
7176905 Baharav et al. Feb 2007 B2
7177026 Perlin Feb 2007 B2
7184009 Bergquist Feb 2007 B2
7184064 Zimmerman et al. Feb 2007 B2
7190461 Han et al. Mar 2007 B2
7205988 Nakamura et al. Apr 2007 B2
7208102 Aoki et al. Apr 2007 B2
7242049 Forbes et al. Jul 2007 B2
7250596 Reime Jul 2007 B2
7292229 Morag et al. Nov 2007 B2
7298367 Geaghan et al. Nov 2007 B2
7348946 Booth, Jr. et al. Mar 2008 B2
7372455 Perski et al. May 2008 B2
7408598 den Boer et al. Aug 2008 B2
7418117 Kim et al. Aug 2008 B2
7450105 Nakamura et al. Nov 2008 B2
7456812 Smith et al. Nov 2008 B2
7463297 Yoshida et al. Dec 2008 B2
7483005 Nakamura et al. Jan 2009 B2
7522149 Nakamura et al. Apr 2009 B2
7535468 Uy May 2009 B2
7536557 Murakami et al. May 2009 B2
7545371 Nakamura et al. Jun 2009 B2
7598949 Han Oct 2009 B2
7609862 Black Oct 2009 B2
7612767 Griffin et al. Nov 2009 B1
7629945 Baudisch Dec 2009 B2
7649524 Haim et al. Jan 2010 B2
7649527 Cho et al. Jan 2010 B2
7663607 Hotelling et al. Feb 2010 B2
7719515 Fujiwara et al. May 2010 B2
7786978 Lapstun et al. Aug 2010 B2
7843439 Perski et al. Nov 2010 B2
7848825 Wilson et al. Dec 2010 B2
7859519 Tulbert Dec 2010 B2
7868873 Palay et al. Jan 2011 B2
7902840 Zachut et al. Mar 2011 B2
7924272 den Boer et al. Apr 2011 B2
8031094 Hotelling et al. Oct 2011 B2
8059102 Rimon et al. Nov 2011 B2
8094128 Vu et al. Jan 2012 B2
8169421 Wright et al. May 2012 B2
8174273 Geaghan May 2012 B2
8228311 Perski et al. Jul 2012 B2
8232977 Zachut et al. Jul 2012 B2
8269511 Jordan Sep 2012 B2
8278571 Orsley Oct 2012 B2
8373677 Perski et al. Feb 2013 B2
8390588 Vu et al. Mar 2013 B2
8400427 Perski et al. Mar 2013 B2
8479122 Hotelling et al. Jul 2013 B2
8481872 Zachut Jul 2013 B2
8493331 Krah et al. Jul 2013 B2
8536471 Stern et al. Sep 2013 B2
8537126 Yousefpor et al. Sep 2013 B2
8552986 Wong et al. Oct 2013 B2
8581870 Bokma et al. Nov 2013 B2
8605045 Mamba et al. Dec 2013 B2
8659556 Wilson Feb 2014 B2
8698769 Coulson et al. Apr 2014 B2
8723825 Wright et al. May 2014 B2
8816985 Tate et al. Aug 2014 B1
8847899 Washburn et al. Sep 2014 B2
8928635 Harley et al. Jan 2015 B2
8933899 Shahparnia et al. Jan 2015 B2
9013429 Krekhovetskyy et al. Apr 2015 B1
9092086 Krah et al. Jul 2015 B2
9146414 Chang et al. Sep 2015 B2
9170681 Huang et al. Oct 2015 B2
9201523 Hwang et al. Dec 2015 B1
9310923 Krah et al. Apr 2016 B2
9310943 Omelchuk et al. Apr 2016 B1
9329703 Falkenburg et al. May 2016 B2
9377905 Grivna et al. Jun 2016 B1
9519361 Harley et al. Dec 2016 B2
9557845 Shahparnia Jan 2017 B2
9582105 Krah et al. Feb 2017 B2
9652090 Tan et al. May 2017 B2
9921684 Falkenburg et al. Mar 2018 B2
9939935 Shahparnia Apr 2018 B2
10048775 Shahparnia et al. Aug 2018 B2
10061449 Shahparnia et al. Aug 2018 B2
10061450 Shahparnia et al. Aug 2018 B2
10067580 Shahparnia Sep 2018 B2
10067618 Verma et al. Sep 2018 B2
20010000026 Skoog Mar 2001 A1
20010000676 Zhang et al. May 2001 A1
20010003711 Coyer Jun 2001 A1
20010044858 Rekimoto et al. Nov 2001 A1
20010046013 Noritake et al. Nov 2001 A1
20010052597 Young et al. Dec 2001 A1
20010055008 Young et al. Dec 2001 A1
20020027164 Mault et al. Mar 2002 A1
20020030581 Janiak et al. Mar 2002 A1
20020030768 Wu Mar 2002 A1
20020052192 Yamazaki et al. May 2002 A1
20020063518 Okamoto et al. May 2002 A1
20020067845 Griffis Jun 2002 A1
20020071074 Noritake et al. Jun 2002 A1
20020074171 Nakano et al. Jun 2002 A1
20020074549 Park et al. Jun 2002 A1
20020080123 Kennedy et al. Jun 2002 A1
20020080263 Krymski Jun 2002 A1
20020126240 Seiki et al. Sep 2002 A1
20020149571 Roberts Oct 2002 A1
20020175903 Fahraeus et al. Nov 2002 A1
20030020083 Hsiung et al. Jan 2003 A1
20030038778 Noguera Feb 2003 A1
20030103030 Wu Jun 2003 A1
20030103589 Nohara et al. Jun 2003 A1
20030117369 Spitzer et al. Jun 2003 A1
20030127672 Rahn et al. Jul 2003 A1
20030137494 Tulbert Jul 2003 A1
20030151569 Lee et al. Aug 2003 A1
20030156087 den Boer et al. Aug 2003 A1
20030156100 Gettemy Aug 2003 A1
20030156230 den Boer et al. Aug 2003 A1
20030174256 Kim et al. Sep 2003 A1
20030174870 Kim et al. Sep 2003 A1
20030179323 Abileah et al. Sep 2003 A1
20030183019 Chae Oct 2003 A1
20030197691 Fujiwara et al. Oct 2003 A1
20030205662 den Boer et al. Nov 2003 A1
20030218116 den Boer et al. Nov 2003 A1
20030231277 Zhang Dec 2003 A1
20030234759 Bergquist Dec 2003 A1
20040008189 Clapper et al. Jan 2004 A1
20040046900 den Boer et al. Mar 2004 A1
20040081205 Coulson Apr 2004 A1
20040095333 Morag et al. May 2004 A1
20040113877 Abileah et al. Jun 2004 A1
20040125430 Kasajima et al. Jul 2004 A1
20040140962 Wang et al. Jul 2004 A1
20040189587 Jung et al. Sep 2004 A1
20040191976 Udupa et al. Sep 2004 A1
20040252867 Lan et al. Dec 2004 A1
20050040393 Hong Feb 2005 A1
20050091297 Sato et al. Apr 2005 A1
20050110777 Geaghan et al. May 2005 A1
20050117079 Pak et al. Jun 2005 A1
20050134749 Abileah Jun 2005 A1
20050146517 Robrecht et al. Jul 2005 A1
20050173703 Lebrun Aug 2005 A1
20050179706 Childers Aug 2005 A1
20050200603 Casebolt et al. Sep 2005 A1
20050206764 Kobayashi et al. Sep 2005 A1
20050231656 den Boer et al. Oct 2005 A1
20050270590 Izumi et al. Dec 2005 A1
20050275616 Park et al. Dec 2005 A1
20050285985 den Boer et al. Dec 2005 A1
20060007224 Hayashi et al. Jan 2006 A1
20060007336 Yamaguchi Jan 2006 A1
20060010658 Bigley Jan 2006 A1
20060012580 Perski et al. Jan 2006 A1
20060034492 Siegel et al. Feb 2006 A1
20060120013 Dioro et al. Jun 2006 A1
20060125971 Abileah et al. Jun 2006 A1
20060159478 Kikuchi Jul 2006 A1
20060170658 Nakamura et al. Aug 2006 A1
20060176288 Pittel et al. Aug 2006 A1
20060187367 Abileah et al. Aug 2006 A1
20060197753 Hotelling Sep 2006 A1
20060202975 Chiang Sep 2006 A1
20060249763 Mochizuki et al. Nov 2006 A1
20060250381 Geaghan Nov 2006 A1
20060279690 Yu et al. Dec 2006 A1
20060284854 Cheng et al. Dec 2006 A1
20070030258 Pittel et al. Feb 2007 A1
20070062852 Zachut et al. Mar 2007 A1
20070109239 den Boer et al. May 2007 A1
20070109286 Nakamura et al. May 2007 A1
20070131991 Sugawa Jun 2007 A1
20070146349 Errico et al. Jun 2007 A1
20070216905 Han et al. Sep 2007 A1
20070229468 Peng et al. Oct 2007 A1
20070279346 den Boer et al. Dec 2007 A1
20070285405 Rehm Dec 2007 A1
20070291012 Chang Dec 2007 A1
20080012835 Rimon et al. Jan 2008 A1
20080012838 Rimon Jan 2008 A1
20080029691 Han Feb 2008 A1
20080046425 Perski Feb 2008 A1
20080048995 Abileah et al. Feb 2008 A1
20080049153 Abileah et al. Feb 2008 A1
20080049154 Abileah et al. Feb 2008 A1
20080055507 den Boer et al. Feb 2008 A1
20080055295 den Boer et al. Mar 2008 A1
20080055496 Abileah et al. Mar 2008 A1
20080055497 Abileah et al. Mar 2008 A1
20080055498 Abileah et al. Mar 2008 A1
20080055499 den Boer et al. Mar 2008 A1
20080062156 Abileah et al. Mar 2008 A1
20080062157 Abileah et al. Mar 2008 A1
20080062343 den Boer et al. Mar 2008 A1
20080066972 Abileah et al. Mar 2008 A1
20080084374 Abileah et al. Apr 2008 A1
20080111780 Abileah et al. May 2008 A1
20080128180 Perski et al. Jun 2008 A1
20080129909 den Boer et al. Jun 2008 A1
20080129913 den Boer et al. Jun 2008 A1
20080129914 den Boer et al. Jun 2008 A1
20080142280 Yamamoto et al. Jun 2008 A1
20080158165 Geaghan Jul 2008 A1
20080158167 Hotelling et al. Jul 2008 A1
20080158172 Hotelling et al. Jul 2008 A1
20080158180 Krah et al. Jul 2008 A1
20080162997 Vu et al. Jul 2008 A1
20080165311 Abileah et al. Jul 2008 A1
20080170046 Rimon et al. Jul 2008 A1
20080238885 Zachut et al. Oct 2008 A1
20080278443 Schelling et al. Nov 2008 A1
20080284925 Han Nov 2008 A1
20080297487 Hotelling et al. Dec 2008 A1
20080309625 Krah Dec 2008 A1
20080309628 Krah et al. Dec 2008 A1
20080309631 Westerman et al. Dec 2008 A1
20090000831 Miller et al. Jan 2009 A1
20090009483 Hotelling et al. Jan 2009 A1
20090027354 Perski et al. Jan 2009 A1
20090065269 Katsurahira Mar 2009 A1
20090066665 Lee Mar 2009 A1
20090078476 Rimon et al. Mar 2009 A1
20090095540 Zachut et al. Apr 2009 A1
20090128529 Izumi et al. May 2009 A1
20090135492 Kusuda et al. May 2009 A1
20090153152 Maharyta et al. Jun 2009 A1
20090153525 Lung Jun 2009 A1
20090167713 Edwards Jul 2009 A1
20090167728 Geaghan et al. Jul 2009 A1
20090184939 Wohlstadter et al. Jul 2009 A1
20090189867 Krah et al. Jul 2009 A1
20090225210 Sugawa Sep 2009 A1
20090251434 Rimon et al. Oct 2009 A1
20090262637 Badaye et al. Oct 2009 A1
20090273579 Zachut et al. Nov 2009 A1
20090322685 Lee Dec 2009 A1
20090322696 Yaakoby et al. Dec 2009 A1
20100001978 Lynch et al. Jan 2010 A1
20100006350 Elias Jan 2010 A1
20100013793 Abileah et al. Jan 2010 A1
20100013794 Abileah et al. Jan 2010 A1
20100013796 Abileah et al. Jan 2010 A1
20100020037 Narita et al. Jan 2010 A1
20100020044 Abileah et al. Jan 2010 A1
20100033766 Marggraff Feb 2010 A1
20100045904 Katoh et al. Feb 2010 A1
20100051356 Stern et al. Mar 2010 A1
20100053113 Wu Mar 2010 A1
20100059296 Abileah et al. Mar 2010 A9
20100060590 Wilson et al. Mar 2010 A1
20100066692 Noguchi et al. Mar 2010 A1
20100066693 Sato et al. Mar 2010 A1
20100073323 Geaghan Mar 2010 A1
20100085325 King-Smith et al. Apr 2010 A1
20100118237 Katoh et al. May 2010 A1
20100127991 Yee May 2010 A1
20100155153 Zachut Jun 2010 A1
20100160041 Grant et al. Jun 2010 A1
20100194692 Orr et al. Aug 2010 A1
20100252335 Orsley Oct 2010 A1
20100271332 Wu et al. Oct 2010 A1
20100289754 Sleeman et al. Nov 2010 A1
20100302419 den Boer et al. Dec 2010 A1
20100309171 Hsieh et al. Dec 2010 A1
20100315384 Hargreaves et al. Dec 2010 A1
20100315394 Katoh et al. Dec 2010 A1
20100321320 Hung et al. Dec 2010 A1
20100322484 Hama et al. Dec 2010 A1
20100327882 Shahparnia et al. Dec 2010 A1
20100328249 Ningrat et al. Dec 2010 A1
20110001708 Sleeman Jan 2011 A1
20110007029 Ben-David Jan 2011 A1
20110042152 Wu Feb 2011 A1
20110043489 Yoshimoto Feb 2011 A1
20110063993 Wilson et al. Mar 2011 A1
20110084857 Marino et al. Apr 2011 A1
20110084937 Chang et al. Apr 2011 A1
20110090146 Katsurahira Apr 2011 A1
20110090181 Maridakis Apr 2011 A1
20110153263 Oda et al. Jun 2011 A1
20110155479 Oda et al. Jun 2011 A1
20110157068 Parker et al. Jun 2011 A1
20110169771 Fujioka et al. Jul 2011 A1
20110175834 Han et al. Jul 2011 A1
20110193776 Oda et al. Aug 2011 A1
20110216016 Rosener Sep 2011 A1
20110216032 Oda et al. Sep 2011 A1
20110254807 Perski et al. Oct 2011 A1
20110273398 Ho et al. Nov 2011 A1
20110304577 Brown et al. Dec 2011 A1
20110304592 Booth et al. Dec 2011 A1
20120013555 Maeda et al. Jan 2012 A1
20120019488 McCarthy Jan 2012 A1
20120050207 Westhues et al. Mar 2012 A1
20120050216 Kremin et al. Mar 2012 A1
20120056822 Wilson et al. Mar 2012 A1
20120062497 Rebeschi et al. Mar 2012 A1
20120062500 Miller et al. Mar 2012 A1
20120068964 Wright Mar 2012 A1
20120086664 Leto Apr 2012 A1
20120105357 Li et al. May 2012 A1
20120105361 Kremin et al. May 2012 A1
20120105362 Kremin et al. May 2012 A1
20120146958 Oda et al. Jun 2012 A1
20120154295 Hinckley et al. Jun 2012 A1
20120154324 Wright Jun 2012 A1
20120154340 Vuppu et al. Jun 2012 A1
20120182259 Han Jul 2012 A1
20120212421 Honji Aug 2012 A1
20120242603 Engelhardt et al. Sep 2012 A1
20120274580 Sobel et al. Nov 2012 A1
20120293464 Adhikari Nov 2012 A1
20120320000 Takatsuka Dec 2012 A1
20120327040 Simon Dec 2012 A1
20120327041 Harley Dec 2012 A1
20120331546 Falkenburg Dec 2012 A1
20130021294 Maharyta et al. Jan 2013 A1
20130027361 Perski et al. Jan 2013 A1
20130033461 Silverbrook Feb 2013 A1
20130069905 Krah et al. Mar 2013 A1
20130088465 Geller et al. Apr 2013 A1
20130100071 Wright et al. Apr 2013 A1
20130106714 Shahparnia et al. May 2013 A1
20130106722 Shahparnia et al. May 2013 A1
20130113707 Perski et al. May 2013 A1
20130113762 Geaghan May 2013 A1
20130127757 Mann et al. May 2013 A1
20130141342 Bokma et al. Jun 2013 A1
20130155007 Huang et al. Jun 2013 A1
20130176273 Li et al. Jul 2013 A1
20130176274 Sobel et al. Jul 2013 A1
20130207938 Ryshtun et al. Aug 2013 A1
20130215049 Lee Aug 2013 A1
20130257793 Zeliff et al. Oct 2013 A1
20140028576 Shahparnia Jan 2014 A1
20140028577 Krah Jan 2014 A1
20140028607 Tan Jan 2014 A1
20140077827 Seguine Mar 2014 A1
20140132556 Huang May 2014 A1
20140146009 Huang May 2014 A1
20140168142 Sasselli et al. Jun 2014 A1
20140168143 Hotelling et al. Jun 2014 A1
20140184554 Walley Jul 2014 A1
20140253462 Hicks Sep 2014 A1
20140253469 Hicks et al. Sep 2014 A1
20140267071 Shahparnia Sep 2014 A1
20140267075 Shahparnia et al. Sep 2014 A1
20140267184 Bathiche et al. Sep 2014 A1
20140347311 Joharapurkar et al. Nov 2014 A1
20140354555 Shahparnia et al. Dec 2014 A1
20140375612 Hotelling et al. Dec 2014 A1
20150022485 Chen et al. Jan 2015 A1
20150035769 Shahparnia Feb 2015 A1
20150035797 Shahparnia Feb 2015 A1
20150103049 Harley et al. Apr 2015 A1
20150177868 Morein et al. Jun 2015 A1
20150338950 Ningrat et al. Nov 2015 A1
20150363012 Sundara-Rajan et al. Dec 2015 A1
20160014598 Westhues Jan 2016 A1
20160077667 Chiang et al. Mar 2016 A1
20160162011 Verma Jun 2016 A1
20160162101 Pant et al. Jun 2016 A1
20160162102 Shahparnia et al. Jun 2016 A1
20160179281 Krah et al. Jun 2016 A1
20160337496 Jeganathan et al. Nov 2016 A1
20160357343 Falkenburg et al. Dec 2016 A1
20160378220 Westhues et al. Dec 2016 A1
20170097695 Ribeiro et al. Apr 2017 A1
20170115816 Chang Apr 2017 A1
20170344174 Pant et al. Nov 2017 A1
20190095006 Shahparnia et al. Mar 2019 A1
Foreign Referenced Citations (98)
Number Date Country
1243282 Feb 2000 CN
1278348 Dec 2000 CN
1518723 Aug 2004 CN
101393488 Oct 2009 CN
201329722 Oct 2010 CN
201837984 May 2011 CN
036 02 796 Aug 1987 DE
197 20 925 Dec 1997 DE
0 306 596 Mar 1989 EP
0 366 913 May 1990 EP
0 384 509 Aug 1990 EP
0 426 362 May 1991 EP
0 426 469 May 1991 EP
0 464 908 Jan 1992 EP
0 488 455 Jun 1992 EP
0 490 683 Jun 1992 EP
0 491 436 Jun 1992 EP
0 509 589 Oct 1992 EP
0 545 709 Jun 1993 EP
0 572 009 Dec 1993 EP
0 572 182 Dec 1993 EP
0 587 236 Mar 1994 EP
0 601 837 Jun 1994 EP
0 618 527 Oct 1994 EP
0 633 542 Jan 1995 EP
0 762 319 Mar 1997 EP
0 762 319 Mar 1997 EP
0 770 971 May 1997 EP
0 962 881 Dec 1999 EP
1 022 675 Jul 2000 EP
1 128 170 Aug 2001 EP
1 884 863 Feb 2008 EP
2 040 149 Mar 2009 EP
2 172 834 Apr 2010 EP
2 221 659 Aug 2010 EP
2 660 689 Nov 2013 EP
55-074635 Jun 1980 JP
57-203129 Dec 1982 JP
60-179823 Sep 1985 JP
64-006927 Jan 1989 JP
64-040004 Feb 1989 JP
1-196620 Aug 1989 JP
2-182581 Jul 1990 JP
2-211421 Aug 1990 JP
5-019233 Jan 1993 JP
5-173707 Jul 1993 JP
05-243547 Sep 1993 JP
8-166849 Jun 1996 JP
9-001279 Jan 1997 JP
9-185457 Jul 1997 JP
9-231002 Sep 1997 JP
9-274537 Oct 1997 JP
10-027068 Jan 1998 JP
10-040004 Feb 1998 JP
10-133817 May 1998 JP
10-133819 May 1998 JP
10-186136 Jul 1998 JP
10-198515 Jul 1998 JP
11-110110 Apr 1999 JP
11-242562 Sep 1999 JP
2000-020241 Jan 2000 JP
2000-163031 Jun 2000 JP
2002-342033 Nov 2002 JP
2005-129948 May 2005 JP
2005-352490 Dec 2005 JP
2009-054141 Mar 2009 JP
10-2013-0028360 Mar 2013 KR
10-2013-0109207 Oct 2013 KR
200743986 Dec 2007 TW
200925944 Jun 2009 TW
201115414 May 2011 TW
201118682 Jun 2011 TW
201324242 Jun 2013 TW
201419103 May 2014 TW
201504874 Feb 2015 TW
WO-9740488 Oct 1997 WO
WO-9921160 Apr 1999 WO
WO-9922338 May 1999 WO
WO-0145283 Jun 2001 WO
WO-2006104214 Oct 2006 WO
WO-2007145346 Dec 2007 WO
WO-2007145347 Dec 2007 WO
WO-2008018201 Feb 2008 WO
WO-2008044368 Apr 2008 WO
WO-2008044369 Apr 2008 WO
WO-2008044370 Apr 2008 WO
WO-2008044371 Apr 2008 WO
WO-2008047677 Apr 2008 WO
WO-2009081810 Jul 2009 WO
WO-2011008533 Jan 2011 WO
WO-2012177567 Dec 2012 WO
WO-2012177571 Dec 2012 WO
WO-2012177573 Dec 2012 WO
WO-2012177569 Mar 2013 WO
WO-2012177569 Mar 2013 WO
WO-2014018233 Jan 2014 WO
WO-2014143430 Sep 2014 WO
WO-2015017196 Feb 2015 WO
Non-Patent Literature Citations (178)
Entry
Non-Final Office Action dated Dec. 4, 2015, for U.S. Appl. No. 14/333,461, filed Jul. 16, 2014, 15 pages.
Notice of Allowance dated Dec. 15, 2015, for U.S. Appl. No. 13/560,973, filed Jul. 27, 2012, nine pages.
Final Office Action dated Jan. 12, 2015, for U.S. Appl. No. 13/560,973, filed Jul. 27, 2012, six pages.
Non-Final Office Action dated Jan. 30, 2015, for U.S. Appl. No. 13/166,711, filed Jun. 22, 2011, 12 pages.
Final Office Action dated Feb. 1, 2016, for U.S. Appl. No. 13/560,963, filed Jul. 27, 2012, 12 pages.
Final Office Action dated Feb. 3, 2016, for U.S. Appl. No. 13/166,699, filed Jun. 22, 2011, 15 pages.
Non-Final Office Action dated Feb. 11, 2016, for U.S. Appl. No. 14/578,051, filed Dec. 19, 2014, nine pages.
Notice of Allowance dated Jan. 14, 2016, for U.S. Appl. No. 13/166,711, filed Jun. 22, 2011, five pages.
Final Office Action dated Mar. 9, 2016, for U.S. Appl. No. 13/831,318, filed Mar. 14, 2013, nine pages.
Final Office Action dated Dec. 2, 2014, for U.S. Appl. No. 13/560,963, filed Jul. 27, 2012, ten pages.
Final Office Action dated Dec. 16, 2014, for U.S. Appl. No. 13/560,958, filed Jul. 27, 2012, 12 pages.
Final Office Action dated May 4, 2015, for U.S. Appl. No. 13/166,699, filed Jun. 22, 2011, 17 pages.
European Search Report dated May 2, 2016, for EP Application No. 15196245.3, filed Nov. 25, 2015, twelve pages.
Final Office Action dated Jun. 3, 2016, for U.S. Appl. No. 14/333,461, filed Jul. 16, 2014, eight pages.
Non-Final Office Action dated May 13, 2016, for U.S. Appl. No. 15/057,035, filed Feb. 29, 2016, six pages.
Non-Final Office Action dated May 17, 2016, for U.S. Appl. No. 14/333,382, filed Jul. 16, 2014, sixteen pages.
Notice of Allowance dated May 24, 2016, for U.S. Appl. No. 13/560,958, filed Jul. 27, 2012, ten pages.
Non-Final Office Action dated May 14, 2015, for U.S. Appl. No. 13/560,963, filed Jul. 27, 2012, twelve pages.
Non-Final Office Action dated May 22, 2015, for U.S. Appl. No. 13/831,318, filed Mar. 14, 2013, eight pages.
Abileah, A. et al. (2004). “59.3: Integrated Optical Touch Panel in a 14.1′ AMLCD,” SID '04 Digest (Seattle) pp. 1544-1547.
Abileah, A. et al. (2006). “9.3: Optical Sensors Embedded within AMLCD Panel: Design and Applications,” ADEAC '06, SID (Atlanta) pp. 102-105.
Abileah, A. et al. (2007). “Optical Sensors Embedded within AMLCD Panel: Design and Applications,” Siggraph-07, San Diego, 5 pages.
Anonymous. (2002). “Biometric Smart Pen Project,” located at http://www.biometricsmartpen.de/ . . . , last visited Apr. 19, 2011, one page.
Bobrov, Y. et al. (2002). “5.2 Manufacturing of a Thin-Film LCD,” Optiva, Inc., San Francisco, CA. 4 pages.
Brown, C. et al. (2007). “7.2: A 2.6 inch VGA LCD with Optical Input Function using a 1-Transistor Active-Pixel Sensor,” ISSCC 2007 pp. 132-133, 592.
Den Boer, W. et al. (2003). “56.3: Active Matrix LCD with Integrated Optical Touch Screen,” SID'03 Digest (Baltimore) pp. 1-4.
Echtler, F. et al. (Jan. 2010). “An LED-based Multitouch Sensor for LCD Screens,” Cambridge, MA ACM 4 pages.
Final Office Action dated Mar. 4, 2004, for U.S. Appl. No. 10/217,798, filed Aug. 12, 2002, 17 pages.
Final Office Action dated Jan. 21, 2005, for U.S. Appl. No. 10/329,217, filed Dec. 23, 2002, 13 pages.
Final Office Action dated Aug. 9, 2005, for U.S. Appl. No. 10/442,433, filed May 20, 2003, six pages.
Final Office Action dated Aug. 23, 2005, for U.S. Appl. No. 10/217,798, filed Aug. 12, 2002, 10 pages.
Final Office Action dated Dec. 13, 2005, for U.S. Appl. No. 10/371,413, filed Feb. 20, 2003, six pages.
Final Office Action dated May 23, 2007, for U.S. Appl. No. 11/137,753, filed May 25, 2005, 11 pages.
Final Office Action dated Oct. 18, 2007, for U.S. Appl. No. 11/351,098, filed Feb. 8, 2006, six pages.
Final Office Action dated Oct. 31, 2007, for U.S. Appl. No. 10/217,798, filed Aug. 12, 2002, nine pages.
Final Office Action dated Mar. 24, 2009, for U.S. Appl. No. 11/351,098, filed Feb. 8, 2006, 10 pages.
Final Office Action dated Feb. 10, 2011, for U.S. Appl. No. 11/901,649, filed Sep. 18, 2007, 20 pages.
Final Office Action dated May 18, 2011, for U.S. Appl. No. 11/978,031, filed Oct. 25, 2007, 17 pages.
Final Office Action dated Jun. 15, 2011, for U.S. Appl. No. 11/595,071, filed Nov. 8, 2006, 9 pages.
Final Office Action dated Jun. 24, 2011, for U.S. Appl. No. 11/978,006, filed Oct. 25, 2007, 12 pages.
Final Office Action dated Jul. 5, 2011, for U.S. Appl. No. 11/977,279, filed Oct. 24, 2007, 12 pages.
Final Office Action dated Sep. 29, 2011, for U.S. Appl. No. 11/977,911, filed Oct. 26, 2007, 22 pages.
Final Office Action dated Oct. 11, 2012, for U.S. Appl. No. 12/566,455, filed Sep. 24, 2009, 8 pages.
Final Office Action dated Oct. 25, 2012, for U.S. Appl. No. 12/568,302, filed Sep. 28, 2009, 13 pages.
Final Office Action dated Oct. 25, 2012, for U.S. Appl. No. 12/568,316, filed Sep. 28, 2009, 15 pages.
Final Office Action dated Jul. 26, 2013, for U.S. Appl. No. 13/166,726, filed Jun. 22, 2011, ten pages.
Final Office Action dated Oct. 31, 2013, for U.S. Appl. No. 13/166,699, filed Jun. 22, 2011, 13 pages.
Final Office Action dated Jan. 13, 2014, for U.S. Appl. No. 12/568,316, filed Sep. 28, 2009, 15 pages.
Final Office Action dated Apr. 28, 2014, for U.S. Appl. No. 13/652,007, filed Oct. 15, 2012, 16 pages.
Final Office Action dated Jul. 14, 2014, for U.S. Appl. No. 13/166,711, filed Jun. 22, 2011, 12 pages.
Hong, S.J. et al. (2005). “Smart LCD Using a-Si Photo Sensor,” IMID'05 Digest pp. 280-283.
International Preliminary Report on Patentability and Written Opinion dated Oct. 8, 2004, for PCT Application No. PCT/US03/05300, filed Feb. 20, 2003, 15 pages.
International Preliminary Report on Patentability and Written Opinion dated Dec. 30, 2004, for PCT Application No. PCT/US02/25573, filed Aug. 12, 2002, 16 pages.
International Preliminary Report on Patentability and Written Opinion dated May 14, 2008, for PCT Application No. PCT/US06/43741, filed Nov. 10, 2006, four pages.
International Search Report dated Apr. 14, 2003, for PCT Application No. PCT/US02/25573, filed Aug. 12, 2002 two pages.
International Search Report dated Jun. 16, 2003, for PCT Application No. PCT/US03/05300, filed Feb. 20, 2003, two pages.
International Search Report dated Nov. 11, 2003, for PCT Application No. PCT/US03/03277, filed Feb. 4, 2003, three pages.
International Search Report dated Sep. 21, 2007, for PCT Application No. PCT/US06/43741, filed Nov. 10, 2006, one page.
International Search Report dated Oct. 17, 2012, for PCT Application No. PCT/US2012/043019, filed Jun. 18, 2012, five pages.
International Search Report dated Oct. 17, 2012, for PCT Application No. PCT/US2012/043023, filed Jun. 18, 2012, six pages.
International Search Report dated Jan. 16, 2013, for PCT Application No. PCT/US2012/043021, filed Jun. 18, 2012, six pages.
International Search Report dated Sep. 12, 2013, for PCT Application No. PCT/US2013/048977, filed Jul. 1, 2013, six pages.
International Search Report dated Apr. 23, 2014, for PCT Application No. PCT/US2014/013927, filed Jan. 30, 2014, four pages.
Kim, J.H. et al. (May 14, 2000). “24.1: Fingerprint Scanner Using a-Si: H TFT-Array,” SID '00 Digest pp. 353-355.
Kis, A. (2006). “Tactile Sensing and Analogic Algorithms,” Ph.D. Dissertation, Péter Pázmány Catholic University, Budapest, Hungary 122 pages.
Lee, S.K. et al. (Apr. 1985). “A Multi-Touch Three Dimensional Touch-Sensitive Tablet,” Proceedings of CHI: ACM Conference on Human Factors in Computing Systems, pp. 21-25.
Non-Final Office Action dated Apr. 15, 2005, for U.S. Appl. No. 10/371,413, filed Feb. 20, 2003, four pages.
Non-Final Office Action dated Jun. 4, 2003, for U.S. Appl. No. 10/217,798, filed Aug. 12, 2002, 16 pages.
Non-Final Office Action dated May 21, 2004, for U.S. Appl. No. 10/329,217, filed Dec. 23, 2002, 13 pages.
Non-Final Office Action dated Sep. 21, 2004, for U.S. Appl. No. 10/442,433, filed May 20, 2003, six pages.
Non-Final Office Action dated Nov. 26, 2004, for U.S. Appl. No. 10/307,106, filed Nov. 27, 2002, eight pages.
Non-Final Office Action dated Dec. 10, 2004, for U.S. Appl. No. 10/217,798, filed Aug. 12, 2002, nine pages.
Non-Final Office Action dated Jan. 21, 2005, for U.S. Appl. No. 10/347,149, filed Jan. 17, 2003, nine pages.
Non-Final Office Action dated Jun. 22, 2005, for U.S. Appl. No. 10/739,455, filed Dec. 17, 2003, 10 pages.
Non-Final Office Action dated Jul. 12, 2005, for U.S. Appl. No. 10/347,149, filed Jan. 17, 2003, four pages.
Non-Final Office Action dated Jan. 13, 2006, for U.S. Appl. No. 10/217,798, filed Aug. 12, 2002, nine pages.
Non-Final Office Action dated May 12, 2006, for U.S. Appl. No. 10/217,798, filed Aug. 12, 2002, seven pages.
Non-Final Office Action dated Aug. 28, 2006, for U.S. Appl. No. 10/371,413, filed Feb. 20, 2003, six pages.
Non-Final Office Action dated Jun. 28, 2007, for U.S. Appl. No. 11/351,098, filed Feb. 8, 2006, 12 pages.
Non-Final Office Action dated Jun. 29, 2007, for U.S. Appl. No. 10/217,798, filed Aug. 12, 2002, 10 pages.
Non-Final Office Action dated Feb. 25, 2008, for U.S. Appl. No. 11/137,753, filed May 25, 2005, 15 pages.
Non-Final Office Action dated Jun. 24, 2008, for U.S. Appl. No. 11/351,098, filed Feb. 8, 2006, 11 pages.
Non-Final Office Action dated Jun. 25, 2009, for U.S. Appl. No. 11/980,029, filed Oct. 29, 2007, 9 pages.
Non-Final Office Action dated Nov. 23, 2009, for U.S. Appl. No. 11/407,545, filed Apr. 19, 2006, five pages.
Non-Final Office Action dated Jul. 29, 2010, for U.S. Appl. No. 11/901,649, filed Sep. 18, 2007, 20 pages.
Non-Final Office Action dated Oct. 13, 2010, for U.S. Appl. No. 11/978,006, filed Oct. 25, 2007, eight pages.
Non-Final Office Action dated Oct. 14, 2010, for U.S. Appl. No. 11/595,071, filed Nov. 8, 2006, seven pages.
Non-Final Office Action dated Nov. 26, 2010, for U.S. Appl. No. 11/977,279, filed Oct. 24, 2007, nine pages.
Non-Final Office Action dated Nov. 26, 2010, for U.S. Appl. No. 11/977,830, filed Oct. 26, 2007, seven pages.
Non-Final Office Action dated Dec. 13, 2010, for U.S. Appl. No. 11/977,339, filed Oct. 24, 2007, eight pages.
Non-Final Office Action dated Feb. 1, 2011, for U.S. Appl. No. 11/978,031, filed Oct. 25, 2007, 18 pages.
Non-Final Office Action dated Apr. 29, 2011, for U.S. Appl. No. 11/977,911, filed Oct. 26, 2007, 19 pages.
Non-Final Office Action dated Jun. 21, 2011, for U.S. Appl. No. 11/977,339, filed Oct. 24, 2007, 10 pages.
Non-Final Office Action dated Jun. 28, 2011, for U.S. Appl. No. 12/852,883, filed Aug. 8, 2010, 16 pages.
Non-Final Office Action dated Nov. 2, 2011, for U.S. Appl. No. 12/568,316, filed Sep. 28, 2009, 31 pages.
Non-Final Office Action dated Nov. 4, 2011, for U.S. Appl. No. 12/568,302, filed Sep. 28, 2009, 29 pages.
Non-Final Office Action dated Nov. 17, 2011, for U.S. Appl. No. 11/977,339, filed Oct. 24, 2007, nine pages.
Non-Final Office Action dated Jan. 10, 2012, for U.S. Appl. No. 11/977,864, filed Oct. 26, 2007, six pages.
Non-Final Office Action dated Jan. 31, 2012, for U.S. Appl. No. 12/566,477, filed Sep. 24, 2009, 11 pages.
Non-Final Office Action dated Feb. 29, 2012, for U.S. Appl. No. 11/978,031, filed Oct. 25, 2007, 20 pages.
Non-Final Office Action dated Apr. 20, 2012, for U.S. Appl. No. 12/566,455, filed Sep. 24, 2009, eight pages.
Non-Final Office Action dated Jun. 5, 2012, for U.S. Appl. No. 11/595,071, filed Nov. 8, 2006, 14 pages.
Non-Final Office Action dated Jun. 19, 2012, for U.S. Appl. No. 11/977,864, filed Oct. 26, 2007, seven pages.
Non-Final Office Action dated Nov. 15, 2012, for U.S. Appl. No. 12/566,477, filed Sep. 24, 2009, 11 pages.
Non-Final Office Action dated Mar. 5, 2013, for U.S. Appl. No. 13/166,726, filed Jun. 22, 2011, 14 pages.
Non-Final Office Action dated Mar. 29, 2013, for U.S. Appl. No. 13/166,699, filed Jun. 22, 2011, 12 pages.
Non-Final Office Action dated Jun. 17, 2013, for U.S. Appl. No. 13/166,711, filed Jun. 22, 2011, 8 pages.
Non-Final Office Action dated Sep. 18, 2013, for U.S. Appl. No. 13/652,007, filed Oct. 15, 2012, 16 pages.
Non-Final Office Action dated Dec. 16, 2013, for U.S. Appl. No. 13/166,711, filed Jun. 22, 2011, 12 pages.
Non-Final Office Action dated Feb. 27, 2014, for U.S. Appl. No. 11/977,279, filed Oct. 24, 2007, 11 pages.
Non-Final Office Action dated Mar. 14, 2014, for U.S. Appl. No. 11/977,339, filed Oct. 24, 2007, 10 pages.
Non-Final Office Action dated Apr. 24, 2014, for U.S. Appl. No. 13/560,958, filed Jul. 27, 2012, nine pages.
Non-Final Office Action dated May 8, 2014, for U.S. Appl. No. 13/560,973, filed Jul. 27, 2012, six pages.
Non-Final Office Action dated Jun. 4, 2014, for U.S. Appl. No. 13/560,963, filed Jul. 27, 2012, nine pages.
Non-Final Office Action dated Jun. 27, 2014, for U.S. Appl. No. 13/166,699, filed Jun. 22, 2011, 13 pages.
Notice of Allowance dated Feb. 3, 2014, for U.S. Appl. No. 13/166,726, filed Jun. 22, 2011, nine pages.
Notice of Allowance dated May 12, 2014, for U.S. Appl. No. 13/166,726, filed Jun. 22, 2011, nine pages.
Notification of Reasons for Rejection dated Dec. 19, 2011, for JP Patent Application No. 2008-540205, with English Translation, six pages.
Pye, A. (Mar. 2001). “Top Touch-Screen Options,” located at http://www.web.archive.org/web/20010627162135.http://www.industrialtechnology.co.uk/2001/mar/touch.html, last visited Apr. 29, 2004, two pages.
Rossiter, J. et al. (2005). “A Novel Tactile Sensor Using a Matrix of LEDs Operating in Both Photoemitter and Photodetector Modes,” IEEE pp. 994-997.
Rubine, D.H. (Dec. 1991). “The Automatic Recognition of Gestures,” CMU-CS-91-202, Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in Computer Science at Carnegie Mellon University, 285 pages.
Rubine, D.H. (May 1992). “Combining Gestures and Direct Manipulation,” CHI '92, pp. 659-660.
U.S. Appl. No. 60/359,263, filed Feb. 20, 2002, by den Boer et al.
U.S. Appl. No. 60/383,040, filed May 23, 2002, by Abileah et al.
U.S. Appl. No. 60/736,708, filed Nov. 14, 2005, by den Boer et al.
U.S. Appl. No. 60/821,325, filed Aug. 3, 2006, by Abileah et al.
Westerman, W. (Spring 1999). “Hand Tracking, Finger Identification, and Chordic Manipulation on a Multi-Touch Surface,” A Dissertation Submitted to the Faculty of the University of Delaware in Partial Fufillment of the Requirements for the Degree of Doctor of Philosophy in Electrical Engineering, 364 pages.
Yamaguchi, M. et al. (Jan. 1993). “Two-Dimensional Contact-Type Image Sensor Using Amorphous Silicon Photo-Transistor,” Jpn. J. Appl. Phys. 32(Part 1, No. 1B):458-461.
Search Report dated Jun. 12, 2014, for ROC (Taiwan) Patent Application No. 101122110, one page.
Final Office Action dated Aug. 20, 2015, for U.S. Appl. No. 13/166,711, filed Jun. 22, 2011, six pages.
TW Search Report dated Jul. 8, 2014, for TW Patent Application No. 101122107, filed Jun. 20, 2012, one page.
Non-Final Office Action dated Aug. 28, 2015, for U.S. Appl. No. 13/560,958, filed Jul. 27, 2012, 11 pages.
Notice of Allowance dated Sep. 4, 2014, for U.S. Appl. No. 13/166,726, filed Jun. 22, 2011, nine pages.
TW Search Report dated Jul. 7, 2014, for TW Patent Application No. 101122109, filed Jun. 20, 2012, one page.
Chinese Search Report dated Sep. 6, 2015, for CN Application No. CN 201280030349.9, with English translation, six pages.
Non-Final Office Action dated Sep. 24, 2015, for U.S. Appl. No. 13/166,699, filed Jun. 22, 2011, 14 pages.
International Search Report dated Oct. 30, 2014, for PCT Application No. PCT/US2014/047658, filed Jul. 22, 2014, four pages.
Chinese Search Report dated Oct. 23, 2015, for CN Application No. CN 201280030351.6, with English translation, four pages.
TW Search Report dated Nov. 20, 2015, for TW Patent Application No. 103126285, one page.
Non-Final Office Action dated Jan. 11, 2017, for U.S. Appl. No. 14/869,982, filed Sep. 29, 2015, nine pages.
Non-Final Office Action dated Jan. 12, 2017, for U.S. Appl. No. 14/869,980, filed Sep. 29, 2015, ten pages.
Non-Final Office Action dated Jan. 23, 2017, for U.S. Appl. No. 14/333,382, filed Jul. 16, 2014, sixteen pages.
Notice of Allowance dated Oct. 26, 2107, for U.S. Appl. No. 14/333,461, filed Jul. 16, 2014, seven pages.
Final Office Action dated Jun. 21, 2017, for U.S. Appl. No. 14/333,382, filed Jul. 16, 2014, 17 pages.
Final Office Action dated May 31, 2017, for U.S. Appl. No. 13/166,699, filed Jun. 22, 2011, 16 pages.
Final Office Action dated May 4, 2017, for U.S. Appl. No. 15/144,615, filed May 2, 2016, five pages.
Non-Final Office Action dated Jul. 28, 2016, for U.S. Appl. No. 13/560,963, filed Jul. 27, 2012, twelve pages.
Non-Final Office Action dated Sep. 27, 2016, for U.S. Appl. No. 15/144,615, filed May 2, 2016, five pages.
Non-Final Office Action dated Oct. 20, 2016, for U.S. Appl. No. 13/166,699, filed Jun. 22, 2011, 16 pages.
Notice of Allowance dated Aug. 10, 2016, for U.S. Appl. No. 14/578,051, filed Dec. 19, 2014, seven pages.
Notice of Allowance dated Sep. 9, 2016, for U.S. Appl. No. 13/560,958, filed Jul. 27, 2012, eight pages.
Notice of Allowance dated Oct. 31, 2016, for U.S. Appl. No. 15/057,035, filed Feb. 29, 2016, ten pages.
TW Search Report dated Jun. 23, 2016, for TW Patent Application No. 104135140, with English Translation, two pages.
Non-Final Office Action dated Nov. 25, 2016, for U.S. Appl. No. 13/831,318, filed Mar. 14, 2013, eight pages.
Notice of Allowance dated Feb. 14, 2017, for U.S. Appl. No. 13/560,963, filed Jul. 27, 2012, nine pages.
Non-Final Office Action dated Apr. 6, 2107, for U.S. Appl. No. 14/333,461, filed Jul. 16, 2014, six pages.
Final Office Action dated Aug. 7, 2017, for U.S. Appl. No. 14/869,980, filed Sep. 29, 2015, twelve pages.
Final Office Action dated Aug. 16, 2017, for U.S. Appl. No. 14/869,982, filed Sep. 29, 2015, ten pages.
Final Office Action dated Aug. 21, 2017, for U.S. Appl. No. 13/831,318, filed Mar. 14, 2013, nine pages.
Notice of Allowance dated Jun. 6, 2018, for U.S. Appl. No. 14/869,980, filed Sep. 29, 2015, five pages.
Notice of Allowance dated Jun. 13, 2018, for U.S. Appl. No. 14/869,982, filed Sep. 29, 2015, five pages.
Notice of Allowance dated Jun. 14, 2018, for U.S. Appl. No. 14/869,975, filed Sep. 29, 2015, eight pages.
Non-Final Office Action dated Dec. 14, 2017, for U.S. Appl. No. 15/169,679, filed May 31, 2016, 24 pages.
Non-Final Office Action dated Jan. 2, 2018, for U.S. Appl. No. 14/869,980, filed Sep. 29, 2015, eleven pages.
Non-Final Office Action dated Jan. 17, 2018, for U.S. Appl. No. 14/869,975, filed Sep. 29, 2015, 17 pages.
Non-Final Office Action dated Feb. 22, 2018, for U.S. Appl. No. 14/869,982, filed Sep. 29, 2015, ten pages.
Notice of Allowance dated Nov. 9, 2017, for U.S. Appl. No. 14/333,382, filed Jul. 16, 2014, eight pages.
Notice of Allowance dated Nov. 29, 2017, for U.S. Appl. No. 15/144,615, filed May 2, 2016, eight pages.
Notice of Allowance dated Apr. 18, 2018, for U.S. Appl. No. 13/831,318, filed Mar. 14, 2013, ten pages.
Final Office Action dated Oct. 1, 2018, for U.S. Appl. No. 15/169,679, filed May 31, 2016, 33 pages.
Non-Final Office Action dated Apr. 2, 2019, for U.S. Appl. No. 16/114,023, filed Aug. 27, 2018, nine pages.
Corrected Notice of Allowance received for U.S. Appl. No. 14/333,382, dated Nov. 29, 2017, 2 pages.
Corrected Notice of Allowance received for U.S. Appl. No. 14/869,982, dated Aug. 2, 2018, 2 pages.
Final Office Action received for U.S. Appl. No. 16/114,023, dated Dec. 5, 2019, 11 pages.
Notice of Allowance received for U.S. Appl. No. 14/333,382, dated Feb. 23, 2018, 5 pages.
Notice of Allowance received for U.S. Appl. No. 14/333,461, dated Jul. 11, 2018, 6 pages.
Notice of Allowance received for U.S. Appl. No. 15/169,679, dated Jun. 26, 2019, 22 pages.
Notice of Allowance received for U.S. Appl. No. 16/114,023, dated Feb. 3, 2020, 7 pages.
Related Publications (1)
Number Date Country
20150035768 A1 Feb 2015 US
Provisional Applications (1)
Number Date Country
61860816 Jul 2013 US