The present invention relates generally to interactive input systems and in particular, to a touch panel for an interactive input system and to an interactive input system incorporating the same.
Interactive input systems that allow users to inject input (i.e. digital ink, mouse events etc.) into an application program using an active pointer (eg. a pointer that emits light, sound or other signal), a passive pointer (eg. a finger, cylinder or other suitable object) or other suitable input device such as for example, a mouse or trackball, are known. These interactive input systems include but are not limited to: touch systems comprising touch panels employing analog resistive or machine vision technology to register pointer input such as those disclosed in U.S. Pat. Nos. 5,448,263; 6,141,000; 6,337,681; 6,747,636; 6,803,906; 7,232,986; 7,236,162; and 7,274,356 assigned to SMART Technologies ULC of Calgary, Alberta, Canada, assignee of the subject application, the contents of which are incorporated by reference; touch systems comprising touch panels employing electromagnetic, capacitive, acoustic or other technologies to register pointer input; tablet personal computers (PCs); laptop PCs; personal digital assistants (PDAs); and other similar devices.
Multi-touch interactive input systems that receive and process input from multiple pointers using machine vision are also known. One such type of multi-touch interactive input system exploits the well-known optical phenomenon of frustrated total internal reflection (FTIR). According to the general principles of FTIR, the total internal reflection (TIR) of light traveling through an optical waveguide is frustrated when an object such as a pointer touches the waveguide surface, due to a change in the index of refraction of the waveguide, causing some light to escape from the touch point. In a multi-touch interactive input system, the machine vision system captures images including the point(s) of escaped light, and processes the images to identify the position of the pointers on the waveguide surface based on the point(s) of escaped light for use as input to application programs.
One example of an FTIR multi-touch interactive input system is disclosed in United States Patent Application Publication No. 2008/0029691 to Han. Han discloses an optical waveguide in the form of a clear acrylic sheet, directly against a side of which multiple high-power infrared LEDs (light emitting diodes) are placed. The infrared light emitted by the LEDs into the acrylic sheet is trapped between the upper or lower surfaces of the acrylic sheet due to total internal reflection. A diffuser display surface is disposed alongside the non-contact side of the acrylic sheet with a small gap between the two in order to keep the diffuser from frustrating the total internal reflection. According to one embodiment, a compliant surface overlay is disposed adjacent the contact surface of the acrylic sheet, with another small gap between the two layers in order to prevent the compliant surface overlay from frustrating the total internal reflection unless it has been touched. When touched, the compliant surface overlay in turn touches the acrylic sheet and frustrates the total internal reflection.
Improvements in FTIR touch panels are desired. For example, the configurations proposed by Han include at least one dedicated spacing layer for ensuring that the diffuser does not contact the acrylic sheet. Creating the spacing layer and tensioning the diffuser accordingly create manufacturing challenges and increase the thickness and complexity of the touch panel. In Han's embodiments that include a compliant surface overlay, there is the similar additional consideration of ensuring suitable spacing between the compliant surface overlay and the acrylic sheet. Furthermore, wear and tear, and changes in relative humidity typically affect the compliant surface overlay, causing it to sag. This can result in errant contacts with the acrylic sheet, and thus false touches.
It is therefore an object of the present invention to provide a novel touch panel for an interactive input system and a novel interactive input system incorporating the same.
Accordingly, in one aspect there is provided a touch panel for an interactive input system comprising:
an optical waveguide layer; and
a resilient diffusion layer against the optical waveguide layer causing light traveling within the optical waveguide layer to escape only when compressed against the optical waveguide layer at one or more touch points.
According to another aspect there is provided an interactive input system comprising:
a touch panel comprising:
processing structure responsive to touch input made on said touch panel and updating the image presented on said display surface to reflect user input based on the one or more touch points.
The touch panel provides advantages over prior systems due at least in part to its use of the resilient diffusion layer against the optical waveguide layer obviating the need for an air gap and thus simplifying manufacturing.
Embodiments will now be described more fully with reference to the accompanying drawings in which:
a is a sectional view of a table top and touch panel for the interactive input system of
b is a sectional view of the touch panel of
In the following, a touch panel for an interactive input system and an interactive input system incorporating the same are described. The touch panel cooperates with other components of the interactive input system to provide touch information from one or multiple simultaneous pointers at high spatial and temporal resolutions, thereby exhibiting excellent response characteristics.
Turning now to
Cabinet 16 supports the table top 12 and touch panel 14, and houses a processing structure 20 (see
The processing structure 20 in this embodiment is a general purpose computing device in the form of a computer. The computer comprises for example, a processing unit, system memory (volatile and/or non-volatile memory), other non-removable or removable memory (a hard disk drive, RAM, ROM, EEPROM, CD-ROM, DVD, flash memory etc.) and a system bus coupling the various computer components to the processing unit.
The processing structure 20 runs a host software application/operating system which, during execution, presents a graphical user interface comprising a canvas page or palette (i.e. a background), upon which graphic widgets are displayed. In this embodiment, the graphical user interface is presented on the touch panel 14, such that freeform or handwritten ink objects and other objects can be input and manipulated via pointer interaction with the display surface 15 of the touch panel 14.
The imaging device 32 is aimed at mirror 30 and thus sees a reflection of the display surface 15 in order to mitigate the appearance of hotspot noise in captured images that typically must be dealt with in systems having imaging devices that are aimed directly at the display surface 15. Imaging device 32 is positioned within the cabinet 16 by the bracket 33 so that it does not interfere with the light path of the projected image.
During operation of the touch table 10, processing structure 20 outputs video data to projector 22 which, in turn, projects images through the IR filter 24 onto the first mirror 26. The projected images, now with IR light having been substantially filtered out, are reflected by the first mirror 26 onto the second mirror 28. Second mirror 28 in turn reflects the images to the third mirror 30. The third mirror 30 reflects the projected video images onto the display (bottom) surface of the touch panel 14. The video images projected on the bottom surface of the touch panel 14 are viewable through the touch panel 14 from above. The system of three mirrors 26, 28, configured as shown provides a compact path along which the projected image can be channeled to the display surface. Projector 22 is oriented horizontally in order to preserve projector bulb life, as commonly-available projectors are typically designed for horizontal placement.
An external data port/switch 34, in this embodiment a Universal Serial Bus (USB) port/switch, extends from the interior of the cabinet 16 through the cabinet wall to the exterior of the touch table 10 providing access for insertion and removal of a USB key 36, as well as switching of functions.
The USB port/switch 34, projector 22, and imaging device 32 are each connected to and managed by the processing structure 20. A power supply (not shown) supplies electrical power to the electrical components of the touch table 10. The power supply may be an external unit or, for example, a universal power supply within the cabinet 16 for improving portability of the touch table 10. The cabinet 16 fully encloses its contents in order to restrict the levels of ambient visible and infrared light entering the cabinet 16 thereby to facilitate satisfactory signal to noise performance. However, provision is made for the flow of air into and out of the cabinet 16 for managing the heat generated by the various components housed inside the cabinet 16.
It is desired to reduce the amount of interfering ambient light entering the cabinet 14. However, doing this can compete with various techniques for managing heat within the cabinet 16. The touch panel 14, the projector 22, and the processing structure 20 are all sources of heat, and such heat if contained within the cabinet 16 for extended periods of time can reduce the life of components, affect performance of components, and create heat waves that can distort the optical components of the touch table 10. As such, provisions for managing heat by introducing cooler ambient air while exhausting hot air are provided.
As set out above, the touch panel 14 of touch table 10 operates based on the principles of frustrated total internal reflection (FTIR).
Touch panel 14 comprises an optical waveguide layer 144 that, according to this embodiment, is a sheet of acrylic. A resilient diffusion layer 146, in this embodiment a layer of V-CARE® V-LITE® barrier fabric manufactured by Vintex Inc. of Mount Forest, Ontario, Canada, lies against the optical waveguide layer 144. V-CARE® V-LITE® barrier fabric comprises a durable, lightweight polyvinylchloride (PVC) coated yarn that suitably diffuses visible light for displaying projected images. V-CARE® V-LITE® barrier fabric also has a rubberized backing with, effectively, tiny bumps enabling the material to sit directly on the surface of the optical waveguide layer 144 without causing significant, if any, frustration of the total internal reflection of IR light in the optical waveguide layer 144 until such time as it is compressed against the surface of the optical waveguide layer 144. The rubberized backing also grips the optical waveguide layer 144 to resist its sliding relative to the optical waveguide layer 144 as a pointer 11 is moved along the resilient diffusion layer 146, thereby resisting bunching up.
The lightweight weave of the V-CARE® V-LITE® barrier fabric along with the tiny bumps obviate the requirement to specifically engineer an air gap between the diffusion layer 146 and the optical waveguide layer 144 and to deal with tensioning the diffusion layer 146 so as not to sag into the air gap and cause a false touch.
Another advantage of the V-CARE® V-LITE® barrier fabric is that it is highly resilient and therefore well-suited to touch sensitivity; it very quickly regains its original shape when pressure from a pointer is removed, due to the natural tensioning of the weave structure, abruptly ceasing the release of IR light from the optical waveguide layer 144 that occurs at the touch points. As a result, the touch panel 14 is able to handle touch points with high spatial and temporal resolution. The weave structure also diffuses light approaching the touch table 10 from above, thereby inhibiting the ingress of visible light into the cabinet 16.
Another attribute of the V-CARE® V-LITE® barrier fabric is that it reflects escaping IR light suitably towards mirror 30, and also permits, within an operating range, emission of varying amounts of escaping light as a function of the degree to which it is compressed against the optical waveguide layer 144. As such, image processing algorithms can gauge a relative level of pressure applied based on the amount of light being emitted from a touch point, and can provide this information as input to application programs thereby providing increased degrees of control over certain applications. The diffusion layer 146 substantially reflects the IR light escaping the optical waveguide layer 144 down into the cabinet 16, and diffuses visible light being projected onto it in order to display the projected image.
Overlying the resilient diffusion layer 146 on the opposite side of the optical waveguide layer 144 is a clear, protective layer 148 having a smooth touch surface. In this embodiment, the protective layer 148 is a thin sheet of polycarbonate material over which is applied a hardcoat of Marnot® material, produced by Tekra Corporation of New Berlin, Wisconsin, U.S.A. While the touch panel 14 may function without the protective layer 148, the protective layer 148 permits use of the touch panel 14 without undue discoloration, snagging or creasing of the underlying diffusion layer 146, and without undue wear on users' fingers. Furthermore, the protective layer 148 provides abrasion, scratch and chemical resistance to the overall touch panel 14, as is useful for panel longevity.
The protective layer 148, diffusion layer 146, and optical waveguide layer 144 are clamped together at their edges as a unit and mounted within the table top 12. Over time, prolonged use may wear one or more of the layers. As desired, the edges of the layers may be unclamped in order to inexpensively provide replacements for the worn layers. It will be understood that the layers may be kept together in other ways, such as by use of one or more of adhesives, friction fit, screws, nails, or other fastening methods.
A bank of infrared light emitting diodes (LEDs) 142 is positioned along at least one side surface of the optical waveguide layer 144 (into the page in
In operation, IR light is introduced via the flame-polished side surface of the optical waveguide layer 144 in a direction generally parallel to its large upper and lower surfaces. The IR light does not escape through the upper or lower surfaces of the optical waveguide layer 144 due to total internal reflection (TIR) because its angle of incidence at the upper and lower surfaces is not sufficient to allow for its escape. The IR light reaching other side surfaces is generally reflected entirely back into the optical waveguide layer 144 by the reflective tape 143 at the other side surfaces.
As shown in
As each touch point is moved along the display surface 15, compression of the resilient diffusion layer 146 against the optical waveguide layer 144 occurs and thus escaping of IR light tracks the touch point movement. During touch point movement or upon removal of the touch point, decompression of the diffusion layer 146 where the touch point had previously been due to the resilience of the diffusion layer 146, causes escape of IR light from optical waveguide layer 144 to once again cease. As such, IR light escapes from the optical waveguide layer 144 only at touch point location(s).
Imaging device 32 captures two-dimensional, IR video images of the third mirror 30. IR light having been filtered from the images projected by projector 22, in combination with the cabinet 16 substantially keeping out ambient light, ensures that the background of the images captured by imaging device 32 is substantially black. When the display surface 15 of the touch panel 14 is contacted by one or more pointers as described above, the images captured by IR camera 32 comprise one or more bright points corresponding to respective touch points. The processing structure 20 receives the captured images and performs image processing to detect the coordinates and characteristics of the one or more bright points in the captured images, as described in further detail in U.S. patent application Ser. No. (ATTORNEY DOCKET NO. 6355-243) entitled “METHOD AND SYSTEM FOR CALIBRATING AN INTERACTIVE INPUT SYSTEM AND INTERACTIVE INPUT SYSTEM EXECUTING THE METHOD” to Holmgren et al. filed on even date herewith and assigned to the assignee of the subject application, the content of which is incorporated herein by reference in its entirety. The detected coordinates are then mapped to display coordinates as described in the Holmgren et al. reference referred to above, and provided to the host application.
The host application tracks each touch point based on the received touch point data, and handles continuity processing between image frames. More particularly, the host application receives touch point data from frames and based on the touch point data determines whether to register a new touch point, modify an existing touch point, or cancel/delete an existing touch point. Thus, the host application registers a Contact Down event representing a new touch point when it receives touch point data that is not related to an existing touch point, and accords the new touch point a unique identifier. Touch point data may be considered unrelated to an existing touch point if it characterizes a touch point that is a threshold distance away from an existing touch point, for example. The host application registers a Contact Move event representing movement of the touch point when it receives touch point data that is related to an existing pointer, for example by being within a threshold distance of, or overlapping an existing touch point, but having a different focal point. The host application registers a Contact Up event representing removal of the touch point from the display surface 15 of the touch panel 14 when touch point data that can be associated with an existing touch point ceases to be received from subsequent images. The Contact Down, Contact Move and Contact Up events are passed to respective elements of the user interface such as graphical objects, widgets, or the background/canvas, based on the element with which the touch point is currently associated, and/or the touch point's current position.
Although an embodiment of the touch table has been described above with reference to the drawings, it will be understood that alternative embodiments are possible. For example, in alternative embodiments, the shape of the table top and/or touch panel may be customized to suit various needs and/or requirements.
The table top 12 may be made of any rigid, semi-rigid or combination of rigid and malleable materials such as plastics, resins, wood or wood products, metal, or other suitable material or materials. For example, the table top 12 could be made of plastic and coated with malleable material such as closed cell neoprene. This combination would provide rigidity while offering a padded surface for users.
In alternative embodiments, processing structure 20 may be located external to cabinet 16, and may communicate with the other components of the touch table 10 via a wired connection such as Ethernet, RS-232, or USB, and the like, and/or a wireless connection such as Bluetooth™, or WiFi, and the like.
Alternatives to the three mirror system shown herein may include various optical systems comprising one or multiple mirrors that function to effectively project an image onto the resilient diffusion layer 146. Furthermore, multiple imaging devices 32 could be used to capture images for a larger touch panel 14 or multiple touch panels 14, each directed at a single mirror such as mirror 30, or at respective different mirrors. In such a case, multiple projectors 22 may be employed with projected images having been stitched for continuous display.
Alternative embodiments include an imaging device 32 mounted against the interior wall of cabinet 16, and directed at mirror 30, as opposed to being mounted on the bracket 33. Still other alternatives include mounting the imaging device 32 so as to be directed at any of the mirrors 26, 28 or 30 without interfering with the light path. Such alternatives may comprise employing a half-mirror towards the back of which is directed an imaging device 32.
Though it has been found to be advantageous to avoid having imaging device 32 directly view the diffusion layer 146 itself due to the consideration of having to process out image artifacts due to “hot spots”, in an alternative embodiment, imaging device 32 could indeed be positioned to directly view the diffusion layer 146. In order to further reduce the appearance of hot spots, a polarizer may be placed between the imaging device 32 and the diffusion layer 146, and/or mirror 30 may be polarized.
V-CARE® V-LITE® barrier fabric described above for use as a resilient diffusion layer 144 diffuses visible light, reflects infrared light, resists sliding relative to the optical waveguide layer 144, can sit against the optical waveguide layer 144 without false touches, and is highly resilient so as to enable high spatial and temporal resolution of a touch point. It will be understood however that alternative resilient materials having suitable properties may be employed. For example, certain of the above properties could be provided by one or more material layers alone or in a combination. For example, a resilient diffusion layer could comprise a visible diffusion layer for displaying the projected images, overlying an infrared reflecting layer for reflecting infrared light escaping from the optical waveguide layer 144, which itself overlies a gripping layer facing the optical waveguide layer 144 for resisting sliding while leaving a suitable air gap for not significantly frustrating total internal reflection until pressed against the optical waveguide layer 144.
One alternative material is Darlexx® fabric provided by Shawmut Advanced Material Solutions of West Bridgewater, MA, U.S.A. However, it has been found that Darlexx® does not tend to rebound as quickly as does V-CARE® V-LITE® barrier fabric.
Other material for resilient diffusion layer 146 may be employed that, for example, is smooth enough to provide advantages similar to those of the additional protective layer 148 described above.
Alternative embodiments may employ a Fresnel lens along the side of the optical waveguide layer 144 opposite the resilient diffusion layer 146, in order to brighten the projected image while reducing reflections back into cabinet 16 off of the optical waveguide layer 144.
It will also be understood that the optical waveguide layer 144 may be formed from a transparent or semi-transparent material other than acrylic, such as glass.
While a generally planar touch panel 14 has been described, it will be understood that the principles set out above may be applied to create non-planar touch panels or touch panels having multiple intersection planes or facets where total internal reflection of a non- or multi-planar optical waveguide layer is frustrated by compression of a resilient diffusion layer that is against and follows the surface contour of the optical waveguide layer. Examples of non-planar shapes include arcs, semi-circles, or other regular or irregular shapes. A single or multiple imaging devices 32 could receive images corresponding to respective touch surfaces, and a single or multiple projectors 22 could be project images on the multiple surfaces.
While a bank of infrared LEDs 142 has been described as the infrared light source directly emitting light into the optical waveguide layer 144 for the touch table, it will be understood that alternatives are available. For example, a Fresnel lens could be employed to collimate the emitted light into the optical waveguide layer 144. Alternatively or in some combination, a prism could be employed in between the LEDs and the optical waveguide layer 144 in order to reduce heat transmission to the optical waveguide layer 144. As seen in
While individual touch points have been described above as being characterized as ellipses, it will be understood that touch points may be characterized as rectangles, squares, or other shapes. It may be that all touch points in a given session are characterized as having the same shape, such as a square, with different sizes and orientations, or that different simultaneous touch points be characterized as having different shapes depending upon the shape of the pointer itself. By supporting characterizing of different shapes, different actions may be taken for different shapes of pointers, increasing the ways by which application programs may be controlled.
While the USB port/switch 34 described herein operates according to the ubiquitous Universal Serial Bus standard, other external data port/switch devices employing technologies such as Secure Digital, Compact Flash, MemoryStick, and so forth, may be employed. Furthermore, alternative or complementary security and configuration measures may be employed. For example, the recognition of a fingerprint on the touch surface may cause the touch table 10 to permit the user to use the touch table 10, and accordingly be configured for that user. The user's profile would be stored on a network accessible from processing structure 20, or directly stored on processing structure 20, for example.
As an alternative to the external port/switch 34, or in some combination with it, a wireless device in contact with or in the vicinity of the touch table 10 could communicate with the processing structure 20 to provide configuration information to the touch table 10, making use of technologies such as RFID (Radio Frequency Identification), Wireless USB, Bluetooth™, or other. The touch table 10 could initiate communications with the wireless device upon detecting placement of the wireless device on the touch panel 14, for example.
Although embodiments have been described with reference to the drawings, those of skill in the art will appreciate that variations and modifications may be made without departing from the spirit and scope thereof as defined by the appended claims.