This is the first application filed for the present technology.
The present technology relates generally to touch-screen devices and, more particularly, to handheld electronic devices having touch screens.
Touch-screen devices are becoming increasingly popular on various types of mobile devices, including, for example, wireless communications devices, smartphones, personal digital assistants (PDAs), palmtops, tablets, GPS navigation units, MP3 players, and other handheld electronic devices.
A touch-screen device is any computing device that has a touch-sensitive display that detects the location of touches (from a finger or stylus) on the display screen and converts these touches into user input for controlling software applications running on the device or for controlling other functionalities of the device. This technology therefore enables the display to be used as a user input device, rendering redundant the keyboard or keypad that would conventionally be used as the primary user input device for manipulating and interacting with the content displayed on the display screen.
A variety of touch-screen technologies are now known in the art, for example resistive, surface acoustic wave, capacitive, infrared, strain gauge, optical imaging, dispersive signal technology, acoustic pulse recognition, frustrated total internal reflection, and diffused laser imaging.
Irrespective of the specific touch-screen technology that is used, onscreen ergonomics remain an important consideration in ensuring a favourable user experience. In particular, the ability to manipulate applications on a touch-screen device is an area where further improvements would be desirable.
Further features and advantages of the present technology will become apparent from the following detailed description, taken in combination with the appended drawings, in which:
It will be noted that throughout the appended drawings, like features are identified by like reference numerals.
In general, the present technology provides a novel technique for triggering the displaying of an escape key (or back key) on a touch-sensitive display of a touch-screen device when an open application is to be closed. When an application is to be closed, the touch-sensitive display is touched to cause the escape key to appear onscreen. The escape key is then touched or “tapped” in order to complete the request to close the application.
This escape key or back key is referred to herein as a soft escape key or a soft back key, respectively, because it has no hardware implementation as a key on the keypad or keyboard or other physical input device but is rather merely represented onscreen as a touch-sensitive button, icon or other visual element, such as, for example, a small box with a back arrow or a small box with an X.
The displaying of the escape key (or back key) can be triggered in different ways, for example, by touching the screen in substantially the same spot for a period of time exceeding a predetermined time threshold, by performing a swiping movement over the screen using a stylus or finger, by performing a predefined gesture (that can be customized by the user or system administrator), or by performing any other recognizable gesture or combination of touches that signals to the device that it should now display the soft escape key onscreen. The soft escape key can optionally be made to automatically disappear if the escape key is not touched within a predetermined period of time.
Thus, a main aspect of the present technology is a method of closing an open application or window on a touch-screen device. The method comprises steps of receiving a touch input on a touch-sensitive display of the touch-screen device, and in response to the touch input, displaying on the touch-sensitive display an escape icon that can be tapped to cause the device to close the open application executing on the device.
In one implementation of this aspect of the technology, the step of receiving the touch input comprises touching the touch-sensitive display in a substantially fixed location on the display for a period of time that exceeds a predetermined time threshold as a precondition for triggering the step of displaying the escape icon.
In another implementation of this aspect of the technology, the step of receiving the touch input on the touch-sensitive display comprises receiving a stylus swipe that traverses a length of the touch-sensitive display exceeding a predetermined length as a precondition for triggering the step of displaying the escape icon.
In yet another implementation of this aspect of the technology, the step of receiving the touch input on the touch-sensitive display comprises receiving a user-predefined gesture on the screen as a precondition for triggering the step of displaying the escape icon.
Another main aspect of the present technology is a computer program product that includes code adapted to perform the steps of any of the foregoing methods when the computer program product is loaded into memory and executed on a processor of a wireless communications device. Various versions of this computer program product can be coded to perform the various implementations of the novel method described above.
Yet another main aspect of the present technology is a touch-screen device, such as a handheld electronic device, comprising a processor operatively coupled to a memory for storing and executing an application, and a touch-sensitive display screen for receiving a touch input for triggering a displaying of an escape key on the display screen.
In one implementation of this aspect of the technology, the escape key is displayed only after the touch-sensitive display screen has been touched for a period of time exceeding a predetermined time threshold.
In another implementation of this aspect of the technology, the escape key is displayed only after the touch-sensitive display screen has been touched by swiping a stylus across a portion of the screen that exceeds a predetermined threshold.
In yet another implementation of this aspect of the technology, the escape key is displayed only after the touch-sensitive display screen has been touched by applying a predefined customized gesture to the screen.
The details and particulars of these aspects of the technology will now be described below, by way of example, with reference to the attached drawings.
For the purposes of this specification, the expression “touch-screen device” is meant to encompass a broad range of portable, handheld or mobile electronic devices such as smart phones, cell phones, satellite phones, wireless-enabled PDA's or wireless-enabled Pocket PCs or tablets, and any other wireless communications device that is capable of exchanging data over a radiofrequency channel or wireless link, tablets, laptops, PDAs, MP3 players, GPS navigation units, etc., or any hybrid or multifunction device. The expression “touch-screen device” is also meant to include any fixed or stationary (non-portable) devices such as desktop computers or workstations having touch-sensitive screens, as well as kiosks or terminals, such as information kiosks or automated teller machines that utilize touch screens.
As shown in
As an optional feature, the escape key can be made to linger only for a predetermined period of time. With this option, if the escape key is not touched within the allotted time, then the escape key disappears. Step 260 shows the cancellation of the soft escape key as operations cycle back to step 210 to await further user input. Accordingly, step 260 is a step of causing the escape key to disappear after a predetermined period of time has elapsed without the escape key being touched.
On the other hand, as shown in
It should be understood from the foregoing disclosure that, in certain implementations, the touching of the screen does not per se trigger the appearance of the soft escape key. In other words, in some cases, a further action, event, condition or criterion (i.e. a further “co-trigger”) is required or must be satisfied to cause the escape key to be displayed onscreen. For example, this further action, event, condition, or criterion (“co-trigger”) can be a time-based or temporal criterion. For example, the device can be configured so that the touch input on the touch-sensitive display must occur in a substantially fixed location on the display for a period of time that exceeds a predetermined time threshold in order to trigger the appearance onscreen of the soft escape key. In this example, a “touch and hold” for a given period of time is a precondition for triggering the step of displaying the escape icon. For example, a time period of between 0.25 and 0.60 seconds has been found to provide good ergonomics; however, it should be appreciated that any suitable time period can be utilized. Thus, in one implementation, the method of displaying the soft escape key involves receiving touch input on the device for a predetermined time that exceeds a predetermined temporal threshold. In this particular implementation, any ephemeral touch input that does not endure for more than the predetermined temporal threshold is dismissed (i.e. not acted on) by the device as a stray gesture or unintended input. As will be appreciated, other conditions, criteria or events can be defined as “co-triggers” to preclude displaying the soft escape key in cases that are likely to be stray gestures or unintended input.
As noted above, in most implementations, the trigger that causes the appearance of the escape key is the touching of the touch-sensitive display screen in an area of the screen that is not an application input element, i.e. not a button, menu, icon or other input element that enables the user to provide input to the application that is currently open and active on the device. As noted above, in most implementations, if the user touches an application input element, then the input is registered in the usual manner for the application that is open and active. If the user touches the backdrop portion of the touch-sensitive screen, i.e. an inactive area of the screen, this will trigger the displaying of the soft escape key (or exit button). In a variant on this, however, it is possible to define one or more specific areas of the screen that must be touched in order to trigger the appearance of the soft escape key. For example, the screen may have predefined target areas, such as the upper right corner or the upper left corner that must be touched to trigger the appearance of the soft escape key irrespective whether there are other inactive areas of backdrop available onscreen.
From the foregoing, it should be apparent that most implementations require touching of the backdrop. However, in a different implementation, the touching (and holding) on an application input element can also be a trigger to cause the appearance onscreen of the soft escape key, not just the touching of the backdrop. In this alternative implementation, the tap gesture (touch with quick release) is distinguished from the touch and hold gesture. In this alternative implementation, tapping will invoke the application input element whereas touching and holding will not affect the application input element, but will bring up the escape key. In this case, the gesture that invokes the escape key (touch and hold) is unique on the input element, thus making it recognizable by the device for the purposes of triggering the appearance of the soft escape key.
To escape from the MP3 application 300, the user (using his finger, as shown in
For the sake of further illustration,
In one implementation of this technology, the step of receiving the touch input on the touch-sensitive display comprises receiving a stylus swipe that traverses a length of the touch-sensitive display exceeding a predetermined length as a precondition for triggering the step of displaying the escape icon. One example of this swiping action is the diagonal swipe shown in
In another implementation, the step of receiving the touch input on the touch-sensitive display comprises receiving a user-predefined gesture on the screen as a precondition for triggering the step of displaying the escape icon. This user-predefined gesture can be any recognizable movement onscreen that the user wishes to record for the purposes of signalling to the device that an escape key is to be displayed. For example, this gesture can be an X or a cross traced out on the screen.
As another example,
As yet a further example,
As another example, the gesture can involve two sequential taps (a double tap) that are very close in time. As another example, the gesture can involve touching the screen simultaneously using two fingers or thumbs.
As will be appreciated, these gestures are presented merely as examples. Any another recognizable onscreen gesture can be used to trigger the appearance onscreen of the escape key or exit button.
In the implementations described above, the soft escape key (which may also be referred to as the escape key, escape button, exit key, exit button, back key, or back button) can be used not only to close an application but also to close a window within an application for which no existing exit button is already presented onscreen.
This new technology has been described in terms of specific implementations and configurations which are intended to be exemplary only. The scope of the exclusive right sought by the Applicant is therefore intended to be limited solely by the appended claims.