Touch screen stack-ups

Information

  • Patent Grant
  • 10521065
  • Patent Number
    10,521,065
  • Date Filed
    Friday, September 23, 2016
    7 years ago
  • Date Issued
    Tuesday, December 31, 2019
    4 years ago
Abstract
A multi-touch sensor panel is disclosed that can include a glass subassembly having a plurality of column traces of substantially transparent conductive material that can be formed on the back side, wherein the glass subassembly can also act as a cover that can be touched on the front side. Row traces of the same or different substantially transparent conductive material can then be located near the column traces, and a layer of dielectric material can be coupled between the column traces and the row traces. The row and column traces can be oriented to cross over each other at crossover locations separated by the dielectric material, and the crossover locations can form mutual capacitance sensors for detecting one or more touches on the front side of the glass subassembly.
Description
FIELD OF THE INVENTION

This relates to touch screens, and more particularly, to the stack-up of materials comprising the touch screens.


BACKGROUND OF THE INVENTION

Many types of input devices are presently available for performing operations in a computing system, such as buttons or keys, mice, trackballs, touch panels, joysticks, touch screens and the like. Touch screens, in particular, are becoming increasingly popular because of their ease and versatility of operation as well as their declining price. Touch screens can include a touch panel, which can be a clear panel with a touch-sensitive surface. The touch panel can be positioned in front of a display screen so that the touch-sensitive surface covers the viewable area of the display screen. Touch screens can allow a user to make selections and move a cursor by simply touching the display screen via a finger or stylus. In general, the touch screen can recognize the touch and position of the touch on the display screen, and the computing system can interpret the touch and thereafter perform an action based on the touch event.


Touch panels can include an array of touch sensors capable of detecting touch events (the touching of fingers or other objects upon a touch-sensitive surface). Future panels may be able to detect multiple touches (the touching of fingers or other objects upon a touch-sensitive surface at distinct locations at about the same time) and near touches (fingers or other objects within the near-field detection capabilities of their touch sensors), and identify and track their locations. Examples of multi-touch panels are described in Applicant's co-pending U.S. application Ser. No. 10/842,862 entitled “Multipoint Touchscreen,” filed on May 6, 2004 and published as U.S. Published Application No. 2006/0097991 on May 11, 2006, the contents of which are incorporated by reference herein.


Various materials, adhesives, and processing steps are required to make a touch screen stackup that can be functional, cost-effective, and space-efficient.


SUMMARY OF THE INVENTION

This relates to a multi-touch sensor panel that can include a glass subassembly that can have a plurality of column traces of substantially transparent conductive material formed on the back side, the glass subassembly also acting in some embodiments as a cover that can be touched on the front side. Row traces of the same or different substantially transparent conductive material can then be located near the column traces, with a layer of dielectric material that can be coupled between the column traces and the row traces. The row and column traces can be oriented to cross over each other at crossover locations separated by the dielectric material, wherein the crossover locations can form mutual capacitance sensors for detecting one or more touches on the front side of the glass subassembly.


Alternative touch screen sensor panel embodiments can be fabricated with (1) rows and columns on the back side of a cover glass, (2) columns on the back side of a cover glass and rows on the bottom side of a separate polyethylene terephthalate (PET) film, (3) columns and rows formed on opposite sides of a single substrate, (4) columns and rows formed on two separate PET films, and (5) columns on the back side of a cover glass and rows on the top side of a separate PET film.





BRIEF DESCRIPTION OF THE DRAWINGS


FIGS. 1a-1d illustrate various exemplary touch screen sensor panel stackups with rows and columns that can be formed on the back side of a cover glass according to one embodiment of this invention.



FIGS. 2a-2d illustrate various exemplary touch screen sensor panel stackups with columns that can be formed on the back side of a cover glass and rows that can be formed on the bottom side of a separate PET film according to one embodiment of this invention.



FIGS. 3a-3c illustrate various exemplary touch screen sensor panel stackups with columns and rows that can be formed on opposite sides of a single substrate according to one embodiment of this invention.



FIGS. 4a-4d illustrate various exemplary touch screen sensor panel stackups with rows and columns that can be formed on the back side of a cover glass according to one embodiment of this invention.



FIGS. 5a and 5b illustrate various exemplary touch screen sensor panel stackups with columns that can be formed on the back side of a cover glass and rows that can be formed on the bottom side of a separate PET film according to one embodiment of this invention.



FIGS. 6a and 6b illustrate various exemplary touch screen sensor panel stackups with columns that can be formed on the back side of a cover glass and rows that can be formed on the bottom side of a separate PET film according to one embodiment of this invention.



FIGS. 7a-7d illustrate various exemplary touch screen sensor panel stackups with columns and rows that can be formed on opposite sides of a single substrate according to one embodiment of this invention.



FIG. 8 illustrates an exemplary touch screen sensor panel stackup with columns that can be formed on the back side of a cover glass and rows that can be formed on the bottom side of a separate PET film according to one embodiment of this invention.



FIG. 9 illustrates an exemplary touch screen sensor panel stackup with columns and rows that can be formed on opposite sides of a single substrate according to one embodiment of this invention.



FIG. 10 illustrates an exemplary touch screen sensor panel stackup with columns that can be formed on the back side of a cover glass and rows that can be formed on the top side of a separate glass substrate according to one embodiment of this invention.



FIGS. 11a-1c illustrate various exemplary touch screen sensor panel stackups with columns and rows that can be formed on opposite sides of a single substrate according to one embodiment of this invention.



FIG. 12 illustrates a side view of an exemplary flexible printed circuit (FPC) stackup according to one embodiment of this invention.



FIGS. 13a and 13b illustrate top views of an exemplary FPC design according to one embodiment of this invention.



FIG. 14 illustrates top views of exemplary FPC designs that can connect to the rows and columns of the sensor panel according to one embodiment of this invention.



FIG. 15 illustrates a side view of an exemplary flexible printed circuit (FPC) stackup according to one embodiment of this invention.



FIGS. 16a-16c illustrate top views of an exemplary FPC design according to one embodiment of this invention.



FIG. 17a illustrates an exemplary partially fabricated cover for a touch screen sensor panel according to one embodiment of this invention.



FIG. 17b illustrates an exemplary top PET film according to one embodiment of this invention.



FIG. 17c illustrates an exemplary touch screen sensor panel stackup with columns and rows that can be formed on two separate PET films according to one embodiment of this invention.



FIG. 18 illustrates an exemplary computing system that can be operable with the touchscreen stackups according to one embodiment of this invention.



FIG. 19a illustrates an exemplary mobile telephone that can include the touchscreen stackups and computing system according to embodiments of the invention.



FIG. 19b illustrates an exemplary digital audio/video player that can include the touchscreen stackups and computing system according to embodiments of the invention.





DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT

In the following description of preferred embodiments, reference is made to the accompanying drawings which form a part hereof, and in which it is shown by way of illustration specific embodiments in which the invention may be practiced. It is to be understood that other embodiments may be utilized and structural changes may be made without departing from the scope of the preferred embodiments of the present invention.


It should be understood that in all of the figures and descriptions that follow, the listed materials, properties and dimensions (listed in units of millimeters unless otherwise noted) are merely exemplary in nature and are not intended to limit the scope of the invention.



FIGS. 1a-1d illustrate various exemplary touchscreen sensor panel stackups with rows and columns that can be formed on the back side of a cover glass according to one embodiment of this invention.



FIG. 1a shows window 116 that can be formed in 0.8 to 1.0 polycarbonate (PC) housing 118. Within window 116 can be a stack-up in which the row and column traces can be formed on the back side of a cover glass. Substantially transparent glass subassembly 100 can have a front or top side capable of sensing when the user touches the window above it, and a back side opposite the front side. Glass subassembly 100 can have a stackup of layers that can include, in order from top to bottom, substantially transparent anti-glare (AG) coating 113 (shown as a dashed line at the top of the subassembly) (or this can be anti-reflective (AR) coating, or just plain glass or plastic surface of the window), substantially transparent 0.7 borosilicate or aluminum silicate glass, black mask (in limited areas), substantially transparent conductive material such as patterned Indium Tin Oxide (ITO) (15 to 200 ohms per square max, with 0.3 lines and 0.030 spaces) formed as columns, a substantially transparent 0.025 dielectric layer (e.g. sol-gel TIO2) with vias, and another layer of substantially transparent conductive material such as patterned ITO (15 to 200 ohm max, with 0.3 lines and 0.030 spaces) formed as rows. The two layers of patterned substantially transparent conductive material can be of the same or different composition. The black mask (or a mask of any color) can be used to hide the electrical interconnect such as metal traces located in the border areas of the touchscreen. The dielectric layer can be used as a planarization layer to enable the one layer of patterned ITO to be formed on top of another. Note that these patterned ITO layers and the dielectric layer in between are symbolically illustrated in FIG. 1a as a dashed line representing patterning 102.


Substantially transparent PET subassembly 106 can be bonded to glass subassembly 100 using pressure sensitive adhesive (PSA) 108. One purpose of PET subassembly 106 can be to support a 0.188 continuous sheet of ITO (500 ohm max) that can be formed on the bottom of the PET film which can be used to shield the glass subassembly from LCD 110, and also to provide a low capacitive spacing between the shield layer of ITO and the rows and columns. Together, glass subassembly 100 through PET film subassembly 100, and any intervening layers, can form the touchscreen.


Flexible printed circuit (FPC) 104 can be bonded using anisotropic conductive film (ACF) (0.003 after bonding) to the back side of glass subassembly 100. Conductive tape 112 can be used to ground the ITO formed on the bottom of the PET subassembly 106. Substantially transparent PSA 114 of 0.125 thickness can be used to bond PET film subassembly 106 to the LCD module, which can include a 0.2 polarizer layer 115 and liquid crystals 117. The complete assembly can then be mounted into window 116 in housing 118. Note that when the complete assembly is mounted in housing 118, glass subassembly 100 can be either even with or slightly recessed (0.3 Z step) from the top of the window.



FIG. 1b is similar to FIG. 1a, except that PET film subassembly 106 is not fully laminated to LCD module 110. Instead, air gap 120 can be formed between them, and a ring of Poron 122 can be formed around the perimeter of the touchscreen. The air gap can allow for easier separation of the touchscreen from the LCD module in case repair, replacement or upgrading is needed. Anti-reflective (AR) coating can be applied to one or both surfaces adjacent to the air-gap to minimize reflections and associated contrast ratio degradation.



FIG. 1c is similar to FIG. 1b in that it includes air gap 120, but it can be mounted into an enclosure having overhanging bezel 124. This can be less expensive because bezel 124 can hide electrical interconnect formed in the border areas of the touchscreen, which can eliminate the need for blackmask. In addition, it can be less expensive because the housing can cover the edges of the touchglass, eliminating the need for grinding and polishing steps. Glass subassembly 132 can be identical to glass subassembly 100 in FIG. 1.



FIG. 1d is a hybrid of FIGS. 1a and 1c, wherein overhanging bezel 124 can allow the blackmask step to be eliminated, and full lamination can be used (see full layer of PSA 108). Note that full lamination can result in a mechanically stiffer and stronger stackup, but the benefit of having an air gap is that it can make the parts separable and replaceable.



FIGS. 2a-2d illustrate various exemplary touch screen sensor panel stackups with columns that can be formed on the back side of a cover glass and rows that can be formed on the bottom side of a separate PET film according to one embodiment of this invention.



FIG. 2a shows window 216 that can be formed in 0.8 to 1.0 PC housing 218. Within window 216 can be a stack-up in which the column traces can be formed on the back side of a cover glass and row traces can be formed on the bottom side of a separate PET film. Substantially transparent glass subassembly 234 can have a stackup of layers that can include, in order from top to bottom, substantially transparent AG coating 213 (shown as a dashed line at the top of the subassembly), substantially transparent 0.7 borosilicate or aluminum silicate glass, black mask (in limited areas), and substantially transparent conductive material such as patterned ITO (15 to 200 ohm max, with 0.3 lines and 0.030 spaces) formed as columns. Note that the patterned ITO layer is symbolically illustrated in FIG. 2a as a dashed line representing patterning 250. Substantially transparent PET subassembly 236 of thickness 0.188 can be bonded to glass subassembly 234 using PSA 208. One purpose of PET subassembly 236 can be to support a substantially transparent layer of conductive material such as patterned ITO (75 to 500 ohm max, with 5.0 lines and 0.050 spaces) formed as rows, and also to provide a low capacitive layer between the rows and columns. The two layers of patterned substantially transparent conductive material can be of the same or different composition. Together, glass subassembly 234 through PET film subassembly 236, and any intervening layers, can form the touchscreen.


FPC 204 can be bonded using ACF (0.003 after bonding) to the back side of glass subassembly 234. FPC 226 can be also bonded using ACF to the rows that can be formed on the bottom of PET subassembly 236. Substantially transparent PSA 214 of 0.125 thickness can be used to bond PET film subassembly 236 to LCD module 210, which can include a 0.2 polarizer layer 215 and liquid crystals 217. The complete assembly can then be mounted into window 216 in housing 218. Note that when the complete assembly is mounted in housing 218, glass subassembly 234 can be either even with or slightly recessed (0.3 Z step) from the top of the window.



FIG. 2b is similar to FIG. 2a, except that PET film subassembly 236 is not fully laminated to LCD module 210. Instead, air gap 220 can be formed between them, and a ring of Poron 222 can be formed around the perimeter of the touchscreen.



FIG. 2c is similar to FIG. 2b in that it includes air gap 220, but it can be mounted into an enclosure having overhanging bezel 224.



FIG. 2d is a hybrid of FIGS. 2a and 2c, wherein overhanging bezel 224 can allow the blackmask step to be eliminated, and full lamination can be used (see full layer of PSA 208).



FIGS. 3a and 3b illustrate various exemplary touch screen sensor panel stackups with columns and rows that can be formed on opposite sides of a single substrate according to one embodiment of this invention.



FIG. 3a shows an approximately 0.9 substantially transparent PC (or glass) housing 318. Bonded to housing 318 using 0.100 substantially transparent PSA 308 can be a stack-up in which the column traces and row traces can be formed on opposite sides of a single substrate. Substantially transparent glass subassembly 338 can have a stackup of layers that can include, in order from top to bottom, for example, substantially transparent conductive material such as patterned ITO (15 to 200 ohm max, with 0.3 lines and 0.030 spaces) formed as columns, substantially transparent 0.7 borosilicate or aluminum silicate or chemically strengthened soda lime glass, and substantially transparent conductive material such as patterned ITO (75 to 200 ohm max, with 5.0 lines and 0.050 spaces) formed as rows. The two layers of patterned substantially transparent conductive material can be of the same or different composition. Note that the patterned ITO layers are symbolically illustrated in FIG. 3a as dashed lines representing patterning 319 and 350.


FPC 330 can be bonded using ACF (0.003 after bonding) to the rows on the back side of glass subassembly 338, and also another FPC (not shown in FIG. 3a) can be bonded to the columns which are on the front or top side of the glass. Clear PSA 314 of 0.100 thickness can be used to bond glass subassembly 338 to LCD module 310, which can include polarizer layer 315 and liquid crystals 317.



FIG. 3b is similar to FIG. 3a, except that glass subassembly 338 is not fully laminated to LCD module 310. Instead, air gap 320 can be formed between them, and a ring of Poron 322 can be formed around the perimeter of glass subassembly 338. AR films or coatings can be applied to the back of the touch glass, and the front of the polarizer, to minimize optical losses.



FIG. 3c is similar to FIG. 3a, except that passivation layers 301 are formed between patterning 319 and PSA 309, and between patterning 350 and PSA 314. Passiviation layers 301 can be formed from silicon oxide, and can serve to prevent acid in the PSA from attacking the patterned ITO. Passivation layers 301 can also physically protect the ITO and metal layers from other corrosive agents, such as sweat from an assembly operator during the manufacturing process, and can physically protect the ITO and metal layers from scratches during assembly. It should be understood that although the use of passivation layers between ITO patterning and the PSA is only shown in FIG. 3c, a passivation layer can be formed between the ITO or metal and the PSA in any of the embodiments described and shown herein.



FIGS. 4a-4d illustrate various exemplary touch screen sensor panel stackups with rows and columns that can be formed on the back side of a cover glass according to one embodiment of this invention.



FIG. 4a shows window 416 that can be formed in 0.8 to 1.0 substantially transparent PC housing 418. Within window 416 can be a stack-up in which the column and row traces can be formed on the back side of a cover glass. Substantially transparent glass subassembly 442 can have a stackup of layers that can include, in order from top to bottom, for example, substantially transparent AG coating 413 (shown as a dashed line at the top of the subassembly), substantially transparent 0.7 borosilicate or aluminum silicate glass, black mask (in limited areas), substantially transparent conductive material such as patterned ITO (15 to 200 ohm max, with 0.3 lines and 0.030 spaces) formed as columns, 0.025 mm substantially transparent dielectric (sol-gel TIO2) with vias, patterned metal (0.025 ohm max, 0.030 lines and 0.030 spaces), and a 0.188 layer of substantially transparent conductive material such as patterned ITO (75 to 200 ohm max, with 0.3 lines and 0.030 spaces) formed as rows. The patterned metal can be formed in the border areas of the touchscreen to connect to the rows and/or columns and route them to an edge of the touchscreen. The two layers of patterned substantially transparent conductive material can be of the same or different composition. Note that the patterned ITO layers, dielectric and metal are symbolically illustrated in FIG. 4a as a dashed line representing patterning 444. Substantially transparent PET subassembly 406 can be bonded to glass subassembly 442 using substantially transparent PSA 408. One purpose of PET subassembly 406 can be to support a 0.188 continuous sheet of ITO (500 ohm). Together, glass subassembly 442 through PET film subassembly 406, and any intervening layers, can form the touchscreen.


FPC 404 can be bonded using ACF (0.003 after bonding) to the back side of glass subassembly 442. Conductive tape 412 can also be bonded using ACF to PET subassembly 406 to ground the continuous sheet of ITO. Substantially transparent PSA 414 of 0.125 thickness can be used to bond PET film subassembly 406 to LCD module 410, which can include a 0.2 polarizer layer 415 and liquid crystals 417. The complete assembly can then be mounted into window 416 in housing 418. Note that when the complete assembly is mounted in housing 418, glass subassembly 442 can be either even with or slightly recessed (0.3 Z step) from the top of the window.


Chip on glass 446 can be connected to metal border traces, rows and column traces on glass subassembly 442. Chip on glass 446 can be supported in a hole or cutout on PET film subassembly 406, and can contain one or more components of a sensor panel subsystem, including one or more processors, drivers, analog channels, and the like. The polarizer may also have a hole or cutout to allow the presence of the chip on glass. Chip on glass 446 can enable only a very small flex connector to be attached to the touchscreen to communicate with the system processor, because now most of the circuitry can be contained on the touchscreen.



FIG. 4b is similar to FIG. 4a, except that PET film subassembly 406 is not fully laminated to LCD module 410. Instead, air gap 420 can be formed between them, and a ring of Poron 422 can be formed around the perimeter of the touchscreen. AR coating can also be used to minimize losses.



FIG. 4c is similar to FIG. 4b in that it includes air gap 420, but it is mounted into clear PC housing 424 having overhanging bezel. A sealing ring of Poron 422 can be formed between the bezel and glass subassembly 442.



FIG. 4d is a hybrid of FIGS. 4a and 4c, wherein an overhanging bezel can allow the blackmask on glass subassembly 442 to be eliminated, and full lamination can be used (see full layer of PSA 414).



FIGS. 5a and 5b illustrate various exemplary touch screen sensor panel stackups with columns that can be formed on the back side of a cover glass and rows that can be formed on the bottom side of a separate PET film according to one embodiment of this invention.



FIG. 5a shows window 516 that can be formed in 0.8 to 1.0 PC housing 518. Within window 516 can be a stack-up in which the column traces can be formed on the back side of a cover glass and row traces can be formed on the bottom side of a separate PET film. Substantially transparent glass subassembly 534 can have a stackup of layers that can include, in order from top to bottom, substantially transparent AG coating 513 (shown as a dashed line at the top of the subassembly), substantially transparent 0.7 borosilicate or aluminum silicate glass, black mask (in limited areas), and substantially transparent conductive material such as patterned ITO (15 ohm max, with 0.3 lines and 0.030 spaces) formed as columns. Note that the patterned ITO layer is symbolically illustrated in FIG. 5a as a dashed line representing patterning 550. Substantially transparent PET subassembly 536 can be bonded to glass subassembly 534 using substantially transparent PSA 508. One purpose of PET subassembly 536 can be to support a 0.188 layer of substantially transparent conductive material such as patterned ITO (150 ohm max, with 5.0 lines and 0.050 spaces) formed as rows, and also to provide a low capacitive layer between the rows and columns. The two layers of patterned substantially transparent conductive material can be of the same or different composition. Chip on glass 546 can be connected to column traces on glass subassembly 534, and to row traces on PET film subassembly 536. Chip on glass 546 can be supported in a hole on PET film subassembly 536, and can contain one or more components of a sensor panel subsystem, including one or more processors, drivers, analog channels, and the like. Together, glass subassembly 534 through PET film subassembly 536, chip on glass 546 and any intervening layers, can form the touchscreen.


FPC 504 can be bonded using 0.125 thick (max) ACF to the back side of glass subassembly 534. FPC can also be bonded using ACF to the rows formed on the bottom of PET subassembly 536. Substantially transparent PSA 514 of 0.125 thickness can be used to bond PET film subassembly 536 to LCD module 510, which can include a 0.2 polarizer layer 515 and liquid crystals 517. The complete assembly can then be mounted into window 516 in housing 518. Note that when the complete assembly is mounted in housing 518, glass subassembly 534 can be either even with or slightly recessed (0.3 Z step) from the top of the window.



FIG. 5b is similar to FIG. 5a, except that PET film subassembly 536 is not fully laminated to LCD module 510. Instead, air gap 520 can be formed between them, and a ring of Poron 522 can be formed around the perimeter of the touchscreen.



FIGS. 6a and 6b illustrate various exemplary touch screen sensor panel stackups with columns that can be formed on the back side of a cover glass and rows that can be formed on the bottom side of a separate PET film according to one embodiment of this invention.



FIG. 6a shows PC housing 624 having an overhanging bezel. A sealing ring of Poron 622 can be formed between the bezel and substantially transparent glass subassembly 652. Glass subassembly 652 can be part of a stack-up in which the column traces can be formed on the back side of the glass subassembly and row traces can be formed on the bottom side of a separate PET film. Glass subassembly 652 has a stackup of layers that can include, in order from top to bottom, substantially transparent AG coating 613 (shown as a dashed line at the top of the subassembly), substantially transparent 0.7 borosilicate or aluminum silicate glass, black mask (in limited areas), substantially transparent conductive material such as patterned ITO (15 ohm max, with 0.3 lines and 0.030 spaces) formed as columns, and patterned metal (0.025 ohm max, with 0.030 lines and 0.030 spaces). Note that the patterned ITO and metal layer is symbolically illustrated in FIG. 6a as a dashed line representing patterning 654. Substantially transparent PET subassembly 636 can be bonded to glass subassembly 652 using substantially transparent PSA 608. One purpose of PET subassembly 636 can be to support a 0.188 layer of substantially transparent conductive material such as patterned ITO (150 ohm max, with 5.0 lines and 0.050 spaces) formed as rows, and also to provide a low capacitive layer between the rows and columns. The two layers of patterned substantially transparent conductive material can be of the same or different composition. Chip on glass 646 can be connected to column traces on glass subassembly 652, and to row traces on PET film subassembly 636. Chip on glass 646 can be supported in a hole on PET film subassembly 636, and can contain one or more components of a sensor panel subsystem, including one or more processors, drivers, analog channels, and the like. Together, glass subassembly 652 through PET film subassembly 636, chip on glass 646 and any intervening layers, can form the touchscreen.


FPC 604 can be bonded using 0.125 thick (max) ACF to the back side of glass subassembly 652. FPC 604 can also be bonded using ACF to the rows formed on the bottom of PET subassembly 636. Air gap 620 can be formed between PET film subassembly 636 and LCD module 610, which can include a 0.2 polarizer layer 615 and liquid crystals 617, and a ring of Poron 622 can be formed around the perimeter of the touchscreen.



FIG. 6b is similar to FIG. 6a, except that PET film subassembly 636 can be fully laminated to LCD module 610 using PSA 614.



FIGS. 7a-7d illustrate various exemplary touch screen sensor panel stackups with columns and rows that can be formed on opposite sides of a single substrate according to one embodiment of this invention.



FIG. 7a shows 0.9 substantially transparent PC (or glass) housing 718. Bonded to housing 718 using 0.100 substantially transparent PSA 708 can be a stack-up in which the column traces and row traces can be formed on opposite sides of a single substrate. Substantially transparent glass subassembly 756 can have a stackup of layers that can include, in order from top to bottom, substantially transparent conductive material such as patterned ITO (15 to 200 ohm max, with 0.3 lines and 0.030 spaces) formed as columns, substantially transparent 0.5 borosilicate or aluminum silicate glass, and substantially transparent conductive material such as patterned ITO (75 ohm max, with 0.5 lines and 0.050 spaces) formed as rows. The two layers of patterned substantially transparent conductive material can be of the same or different composition. Note that the patterned ITO layers are symbolically illustrated in FIG. 7a as dashed lines representing patterning 719 and 750.


FPC 730 and 704 can be bonded using 0.125 thick (max) ACF to the columns and rows on either side of glass subassembly 756. Substantially transparent PSA 714 of 0.100 thickness can be used to bond glass subassembly 756 to LCD module 710, which can include polarizer layer 715 and liquid crystals 717.



FIG. 7b is similar to FIG. 7a, except that glass subassembly 756 is not fully laminated to LCD module 710. Instead, air gap 720 can be formed between them, and a ring of Poron 722 can be formed around the perimeter of glass subassembly 756.



FIG. 7c is similar to FIG. 7a, but additionally shows an implementation of wings 758 on FPC 760 (see thumbnail at lower left corner). Each FPC 760 can be generally long and slender to provide maximum panel utilization. In the thumbnail of FIG. 7c, the upper FPC 704 can get folded back, as can the lower FPC 730, and they can be connected together behind the panel.



FIG. 7d is similar to FIG. 7b, but additionally shows an implementation of wings 758 on FPC 760 (see thumbnail at lower left corner). Each FPC 760 can be generally long and slender to provide maximum panel utilization. In the thumbnail of FIG. 7c, the upper FPC 704 can get folded back, as can the lower FPC 730, and they can be connected together behind the panel.



FIG. 8 illustrates an exemplary touch screen sensor panel stackup with columns that can be formed on the back side of a cover glass and rows that can be formed on the bottom side of a separate PET film according to one embodiment of this invention.



FIG. 8 shows window 816 formed in 0.9 PC housing 818. Within window 816 can be a stack-up in which the column traces can be formed on the back side of a cover glass and row traces can be formed on the bottom side of a separate PET film. Substantially transparent glass subassembly 862 can have a stackup of layers that can include, in order from top to bottom, for example, substantially transparent AG coating 813 (shown as a dashed line at the top of the subassembly), substantially transparent 0.7 borosilicate or aluminum silicate glass, black mask (in limited areas), and substantially transparent conductive material such as patterned ITO (15 ohm max, with 0.3 lines and 0.030 spaces) formed as columns. Note that the patterned ITO layer is symbolically illustrated in FIG. 8 as a dashed line representing patterning 864. Substantially transparent PET subassembly 868 of thickness 0.188 can be bonded to glass subassembly 862 using PSA 808. One purpose of PET subassembly 868 can be to support a layer of substantially transparent conductive material such as patterned ITO (75 ohm max, with 5.0 lines and 0.050 spaces) that can be formed as rows, and also to provide a low capacitive layer between the rows and columns. The two layers of patterned substantially transparent conductive material can be of the same or different composition. Together, glass subassembly 862 through PET film subassembly 868, and any intervening layers, can form the touchscreen.


FPC 804 can be bonded using 0.125 thick (max) ACF to the back side of glass subassembly 862. FPC 826 can also be bonded using ACF to the rows that can be formed on the bottom of PET subassembly 868. Substantially transparent PSA 814 of 0.125 thickness can be used to bond PET film subassembly 868 to LCD module 810, which can include a 0.2 polarizer layer 815 and liquid crystals 817. The complete assembly can then be mounted into window 816 in housing 818. Note that when the complete assembly is mounted in housing 818, glass subassembly 862 can be either even with or slightly recessed (0.3 Z step) from the top of the window. FIG. 8 also shows additional detail in the thumbnails (at the bottom left of FIG. 8) on how the FPCs 860 can be connected to the sensor panel.



FIG. 9 illustrates an exemplary touch screen sensor panel stackup with columns and rows that can be formed on opposite sides of a single substrate according to one embodiment of this invention.



FIG. 9 shows window 916 that can be formed in 0.9 PC housing 918. Within window 916 can be a stack-up in which the column traces and row traces can be formed on opposite sides of a single substrate. Substantially transparent glass subassembly 972 can have a stackup of layers that can include, in order from top to bottom, substantially transparent AG coating, substantially transparent 0.5 borosilicate or aluminum silicate glass, and black mask (in limited areas). Substantially transparent glass subassembly 976 can have a stackup of layers that can include, in order from top to bottom, substantially transparent conductive material such as patterned ITO (15 ohm max, with 0.3 lines and 0.030 spaces) formed as columns, substantially transparent 0.5 borosilicate or aluminum silicate glass, and substantially transparent conductive material such as patterned ITO (75 ohm max, with 0.5 lines and 0.050 spaces) formed as rows. The two layers of patterned substantially transparent conductive material can be of the same or different composition. PSA 908 can be used to bond glass subassemblies 972 and 976 together. Note that the patterned ITO layers are symbolically illustrated in FIG. 9 as dashed lines representing patterning 978 and 980.


FPC can be bonded using 0.125 thick (max) ACF to the columns and rows on either side of glass subassembly 976. Substantially transparent PSA 914 of 0.125 thickness can be used to bond glass subassembly 976 to LCD module 910, which can include polarizer layer 915 and liquid crystals 917.



FIG. 10 illustrates an exemplary touch screen sensor panel stackup with columns that can be formed on the back side of a cover glass and rows that can be formed on the top side of a separate glass substrate according to one embodiment of this invention.



FIG. 10 shows window 1016 that can be formed in 0.9 PC housing 1018. Within window 1016 can be a stack-up in which the column traces can be formed on the back side of a cover glass and row traces can be formed on the top side of a separate PET film. Substantially transparent glass subassembly 1082 can have a stackup of layers that can include, in order from top to bottom, substantially transparent AG coating 1013 (shown as a dashed line at the top of the subassembly), substantially transparent 0.5 borosilicate or aluminum silicate glass, black mask (in limited areas), and substantially transparent conductive material such as patterned ITO (15 ohm max, with 0.3 lines and 0.030 spaces) that can be formed as columns. Substantially transparent glass subassembly 1084 can have a stackup of layers that can include, in order from top to bottom, substantially transparent conductive material such as patterned ITO (15 ohm max, with 0.3 lines and 0.030 spaces) formed as columns, substantially transparent 0.5 borosilicate or aluminum silicate glass, and a continuous sheet of substantially transparent ITO (500 ohm max). The two layers of patterned substantially transparent conductive material can be of the same or different composition. Glass subassemblies 1082 and 1084 can be bonded together with substantially transparent PSA 1008. Note that the patterned ITO layers are symbolically illustrated in FIG. 10 as dashed lines representing patterning 1064 and 1086. Together, glass subassembly 1082 through glass subassembly 1084, and any intervening layers, can form the touchscreen.


FPCs can be bonded using 0.125 thick (max) ACF to the back side of glass subassembly 1082 and the top side of glass subassembly 1084. Substantially transparent PSA 1014 of 0.125 thickness can be used to bond glass subassembly 1084 to LCD module 1010, which can include a 0.2 polarizer layer 1015 and liquid crystals 1017. The complete assembly can then be mounted into window 1016 in housing 1018. Note that when the complete assembly is mounted in housing 1018, glass subassembly 1082 can be either even with or slightly recessed (0.3 Z step) from the top of the window.



FIGS. 11a-11c illustrate various exemplary touch screen sensor panel stackups with columns and rows that can be formed on opposite sides of a single substrate according to one embodiment of this invention.



FIG. 11a shows an approximately 0.9 substantially transparent PC housing 1118. Substantially transparent hard film or glass 1188 and blackmask 1190 (in limited areas) can be inserted into the mold when the housing 1118 is being injection-molded to provide a hard surface and hiding properties (where the blackmask is placed). Bonded to housing 1118 using 0.100 substantially transparent PSA 1108 can be a stack-up in which the column traces and row traces can be formed on opposite sides of a single substrate. Substantially transparent glass subassembly 1176 can have a stackup of layers that can include, in order from top to bottom, substantially transparent conductive material such as patterned ITO (15 ohm max, with 0.3 lines and 0.030 spaces) formed as columns, substantially transparent 0.5 borosilicate or aluminum silicate glass, and substantially transparent conductive material such as patterned ITO (75 ohm max, with 5.0 lines and 0.050 spaces) formed as rows. The two layers of patterned substantially transparent conductive material can be of the same or different composition. Note that the patterned ITO layers are symbolically illustrated in FIG. 11a as dashed lines representing patterning 1178 and 1180.


FPCs can be bonded using 0.125 thick (max) ACF to the columns and rows on either side of glass subassembly 1176. Substantially transparent PSA 1114 of 0.100 thickness can be used to bond glass subassembly 1176 to LCD module 1110, which can include polarizer layer 1115 and liquid crystals 1117.



FIG. 11b is similar to FIG. 11a, except that hard film or glass and blackmask are not formed in the housing 1118.



FIG. 11c is similar to FIG. 11b, except that glass subassembly 1176 is not fully laminated to LCD module 1110. Instead, air gap 1120 can be formed between them, and a ring of Poron 1122 can be formed around the perimeter of glass subassembly 1176.



FIG. 12 illustrates a side view of an exemplary FPC stackup according to one embodiment of this invention. FIG. 12 shows an FPC stackup for the thin wings or strips on the FPCs that can include release liner 1210, 0.025 ACF and PSA 1208, 0.012 via plating 1206, 0.018 copper 1204, 0.012 adhesive for the copper 1202, 0.025 polyamide substrate 1212, 0.012 adhesive for the copper 1202, 0.018 copper 1204, 0.012 via plating 1206, 0.025 ACF and PSA 1208, and release liner 1210.



FIGS. 13a and 13b illustrate top views of an exemplary FPC design according to one embodiment of this invention. FIG. 13a shows an ACF-side view of the FPC that connects to the drive rows, including ACF pads 1306 at which the FPC can be bonded to the glass substrate using ACF 1302 that can be 0.5 wide and 0.025 thick. However, traces 1304 having 0.100 widths and 0.100 spacing can be bonded to the glass substrate using insulating PSA 1308 that can be 1.3 wide and 0.025 thick. FIG. 13b shows the non-ACF-side top view of the FPC traces that can connect to the drive rows, including traces 1304 that can be covered by insulating PSA 1308, 0.018 thick.



FIG. 14 illustrates top views of exemplary FPC designs for connecting to the rows and columns of the sensor panel according to one embodiment of this invention. FIG. 14 shows detail of drive FPC 1402 and sense FPC 1400, including drive flex tail 1404 and zero insertion force (ZIF) connector 1406.



FIG. 15 illustrates a side view of an exemplary FPC stackup according to one embodiment of this invention. FIG. 15 shows FPC drive layer stackup 1500 for the thin wings or strips on the FPCs that can include 0.012 coverlay 1514, 0.012 adhesive 1502, 0.025 ACP 1508, 0.012 via plating 1506, 0.018 copper 1504, 0.012 adhesive for the copper 1502, 0.025 polyamide substrate 1512, 0.012 adhesive for the copper 1502, 0.018 copper 1504, 0.012 via plating 1506, 0.012 adhesive 1502, and 0.012 coverlay 1514.



FIGS. 16a-16c illustrate top views of an exemplary FPC design according to one embodiment of this invention. FIG. 16a shows a non-ACF-side view 1600 of the FPC that can connect to the drive rows, including ACF pads 1606 having ACP of 0.025 thickness at which the FPC can be bonded to the glass substrate. However, traces 1610 having 0.075 widths and 0.075 spacing can be bonded to the glass substrate using insulating PSA 1612 that can be 0.025 thick. FIG. 16b shows the ACF-side top view 1618 of the FPC traces that can connect to the drive rows, including traces 1604 that can have 0.075 widths and 0.075 spacing, covered by insulating PSA 1608, 0.025 thick. FIG. 16c shows ITO pattern registration 1620 with visual alignment mark 1614 separating ITO row patterns 1616.



FIG. 17a illustrates an exemplary partially fabricated cover for a touch screen sensor panel according to one embodiment of this invention. FIG. 17a shows plastic top housing 1700 (e.g., injection molded polycarbonate or acrylic of 0.80 thickness) for an individual part with a corner, with hard coat/anti-glare coating 1704 that can be formed on top and black mask 1706 that can be selectively applied to the inside of housing 1702.



FIG. 17b illustrates an exemplary top PET film according to one embodiment of this invention. First, ITO 1712 (e.g., having a resistivity of 40 to 500 ohms per square) can be sputtered onto PET film 1710 (e.g. PET or polymer having a dielectric constant of 3 to 4 and a thickness of about 25 to 75 microns) and patterned (e.g. into 100 micron lines and spaces) using standard photolithography and etching techniques, or laser oblation. Next, a layer of metal (silkscreened silver ink) 1714 (e.g., silver ink having a resistivity of 1 ohm per square max) can be applied over the ITO and patterned (e.g. into 200 micron lines and spaces). A protective sheet of black carbon 1716 (e.g. having 0.25 lines and spaces) can then be printed over the silver ink traces to serve as a protective coating for connector contacts. A tail coverlay 1718 (e.g., PET having a thickness of 25 to 75 microns) can then be formed over the silver ink traces for protection. A sheet of PSA 1720 (e.g., having a thickness of 25 microns) and a sacrificial liner can then be formed over the PET film and ITO. A bottom PET film can be formed using the same process.



FIG. 17c illustrates an exemplary touch screen sensor panel stackup with columns and rows that can be formed on two separate top and bottom PET films 1708 and 1724 according to one embodiment of this invention. Optically clear adhesive 1726 can be used to bond the top and bottom PET films between a cover 1700 and an LCD module that can include LCD polarizer 1728, LCD top glass 1730, and LCD bottom glass 1732.



FIG. 18 illustrates exemplary computing system 1800 operable with the touchscreen stackups described above according to embodiments of this invention. Touchscreen 1842, which can include sensor panel 1824 and display device 1840, can be connected to other components in computing system 1800 through connectors integrally formed on the sensor panel, or using flex circuits. Computing system 1800 can include one or more panel processors 1802 and peripherals 1804, and panel subsystem 1806. The one or more processors 1802 can include, for example, ARM968 processors or other processors with similar functionality and capabilities. However, in other embodiments, the panel processor functionality can be implemented instead by dedicated logic such as a state machine. Peripherals 1804 can include, but are not limited to, random access memory (RAM) or other types of memory or storage, watchdog timers and the like.


Panel subsystem 1806 can include, but is not limited to, one or more analog channels 1808, channel scan logic 1810 and driver logic 1814. Channel scan logic 1810 can access RAM 1812, autonomously read data from the analog channels and provide control for the analog channels. This control can include multiplexing columns of multi-touch panel 1824 to analog channels 1808. In addition, channel scan logic 1810 can control the driver logic and stimulation signals being selectively applied to rows of multi-touch panel 1824. In some embodiments, panel subsystem 1806, panel processor 1802 and peripherals 1804 can be integrated into a single application specific integrated circuit (ASIC).


Driver logic 1814 can provide multiple panel subsystem outputs 1816 and can present a proprietary interface that drives high voltage driver 1818. High voltage driver 1818 can provide level shifting from a low voltage level (e.g. complementary metal oxide semiconductor (CMOS) levels) to a higher voltage level, providing a better signal-to-noise (S/N) ratio for noise reduction purposes. Panel subsystem outputs 1816 can be sent to decoder 1820 and level shifter/driver 1838, which can selectively connect one or more high voltage driver outputs to one or more panel row inputs 1822 through a proprietary interface and enable the use of fewer high voltage driver circuits in the high voltage driver 1818. Each panel row input 1822 can drive one or more rows in a multi-touch panel 1824. In some embodiments, high voltage driver 1818 and decoder 1820 can be integrated into a single ASIC. However, in other embodiments high voltage driver 1818 and decoder 1820 can be integrated into driver logic 1814, and in still other embodiments high voltage driver 1818 and decoder 1820 can be eliminated entirely.


Computing system 1800 can also include host processor 1828 for receiving outputs from panel processor 1802 and performing actions based on the outputs that can include, but are not limited to, moving an object such as a cursor or pointer, scrolling or panning, adjusting control settings, opening a file or document, viewing a menu, making a selection, executing instructions, operating a peripheral device connected to the host device, answering a telephone call, placing a telephone call, terminating a telephone call, changing the volume or audio settings, storing information related to telephone communications such as addresses, frequently dialed numbers, received calls, missed calls, logging onto a computer or a computer network, permitting authorized individuals access to restricted areas of the computer or computer network, loading a user profile associated with a user's preferred arrangement of the computer desktop, permitting access to web content, launching a particular program, encrypting or decoding a message, and/or the like. Host processor 1828 can also perform additional functions that may not be related to panel processing, and can be coupled to program storage 1832 and display device 1840 such as an LCD for providing a user interface (UI) to a user of the device.


As mentioned above, multi-touch panel 1824 can in some embodiments include a capacitive sensing medium that can have a plurality of row traces or driving lines and a plurality of column traces or sensing lines separated by a dielectric. In some embodiments, the dielectric material can be transparent, such as PET or glass. The row and column traces can be formed from a transparent conductive medium such as ITO or antimony tin oxide (ATO), although other non-transparent materials such as copper can also be used. In some embodiments, the row and column traces can be perpendicular to each other, although in other embodiments other non-orthogonal orientations are possible. For example, in a polar coordinate system, the sensing lines can be concentric circles and the driving lines can be radially extending lines (or vice versa). It should be understood, therefore, that the terms “row” and “column,” “first dimension” and “second dimension,” or “first axis” and “second axis” as may be used herein are intended to encompass not only orthogonal grids, but the intersecting traces of other geometric configurations having first and second dimensions (e.g. the concentric and radial lines of a polar-coordinate arrangement).


At the “intersections” of the traces, where the traces can pass above and below each other (but do not make direct electrical contact with each other), the traces can essentially form two electrodes. Each intersection of row and column traces can represent a capacitive sensing node and can be viewed as picture element (pixel) 1826, which can be particularly useful when multi-touch panel 1824 is viewed as capturing an “image” of touch. (In other words, after panel subsystem 1806 has determined whether a touch event has been detected at each touch sensor in multi-touch panel 1824, the pattern of touch sensors in the multi-touch panel at which a touch event occurred can be viewed as an “image” of touch (e.g. a pattern of fingers touching the panel).) When the two electrodes are at different potentials, each pixel can have an inherent self or mutual capacitance formed between the row and column electrodes of the pixel. If an AC signal is applied to one of the electrodes, such as by exciting the row electrode with an AC voltage at a particular frequency, an electric field and an AC or signal capacitance can be formed between the electrodes, referred to as Csig. The presence of a finger or other object near or on multi-touch panel 1824 can be detected by measuring changes to Csig. The columns of multi-touch panel 1824 can drive one or more analog channels 1808 in panel subsystem 1806. In some embodiments, each column can be coupled to one dedicated analog channel 1808. However, in other embodiments, the columns can be couplable via an analog switch to a fewer number of analog channels 1808.


The touchscreen stackups described above can be advantageously used in the system of FIG. 18 to provide a space-efficient touch sensor panel and UI.



FIG. 19a illustrates exemplary mobile telephone 1936 that can include the touchscreen stackups and computing system described above according to embodiments of the invention. PSA 1934 can be used to bond sensor panel 1924 to display device (e.g. LCD module) 1930. FIG. 19b illustrates exemplary digital audio/video player 1940 that can include the touchscreen stackups and computing system described above according to embodiments of the invention. The mobile telephone and digital audio/video player of FIGS. 19a and 19b can advantageously benefit from the touchscreen stackups described above because the touchscreen stackups can allow these devices to be smaller and less expensive, which are important consumer factors that can have a significant effect on consumer desirability and commercial success.


Although the present invention has been fully described in connection with embodiments thereof with reference to the accompanying drawings, it is to be noted that various changes and modifications will become apparent to those skilled in the art. Such changes and modifications are to be understood as being included within the scope of the present invention as defined by the appended claims.

Claims
  • 1. A multi-touch sensor panel, comprising: a first subassembly having a front side capable of being touched, and a back side opposite the front side;a plurality of first traces of a first substantially transparent conductive material formed on the back side of the first subassembly;a plurality of second traces of a second substantially transparent conductive material;a second subassembly different from the first subassembly, the second subassembly having a front side bonded to the first subassembly and disposed between the first traces and the second traces such that the plurality of second traces are formed on a back side of the second subassembly; andan adhesive provided to bond the first subassembly to the second subassembly; andwherein the plurality of second and the plurality of first traces are oriented to cross over each other at crossover locations separated by the dielectric material, the crossover locations forming mutual capacitance sensors for detecting one or more touches on the front side of the first subassembly.
  • 2. The multi-touch sensor panel of claim 1, wherein the first and second substantially transparent conductive materials are the same.
  • 3. The multi-touch sensor panel of claim 1, wherein the second subassembly comprises a polyethylene terephthalate (PET) material.
  • 4. The multi-touch sensor panel of claim 1, further comprising a passivation layer disposed over the plurality of first traces, wherein the adhesive comprises a pressure sensitive adhesive and the passivation layer prevents acid in the pressure sensitive adhesive from damaging the plurality of first traces.
  • 5. The multi-touch sensor panel of claim 1, further comprising: a second passivation layer disposed over at least a portion of the plurality of second traces;a second adhesive disposed over the second passivation layer; anda display device coupled to the second subassembly with the second adhesive.
  • 6. The multi-touch sensor panel of claim 1, the multi-touch sensor panel incorporated into a computing system.
  • 7. The multi-touch sensor panel of claim 6, the computing system incorporated into a mobile telephone.
  • 8. The multi-touch sensor panel of claim 6, the computing system incorporated into a digital audio player.
  • 9. The multi-touch sensor panel of claim 1, further comprising a liquid crystal display coupled to the second subassembly.
  • 10. The multi-touch sensor panel of claim 9, wherein an air gap is disposed between at least a portion of the second subassembly and the LCD display.
  • 11. A space-efficient touch sensor panel, comprising: a cover having a front side capable of being touched, and a back side with a plurality of first traces of a first substantially transparent conductive material formed thereon; anda polyethylene terephthalate (PET) substrate having a top side bonded to the back side of the cover and a bottom side with a plurality of second traces of a second substantially transparent conductive material formed thereon;wherein the plurality of first traces and the plurality of second traces are oriented to cross over each other at crossover locations separated by the PET substrate, the crossover locations forming mutual capacitance sensors for detecting one or more touches on the front side of the first subassembly.
  • 12. The sensor panel of claim 11, further comprising a passivation layer disposed at least over the plurality of first traces on the back side of the cover.
  • 13. The sensor panel of claim 11, further comprising a passivation layer disposed at least over the plurality of second traces on the bottom side of the PET substrate.
  • 14. A method of forming a space-efficient touch sensor panel, comprising: forming a plurality of first traces of a first substantially transparent conductive material on a back side of a first subassembly having a front side capable of being touched;forming a plurality of second traces of a second substantially transpatent conductive material on a back side of a second subassembly;bonding a front side of the second subassembly to the first subassembly such that the second subassembly is disposed between the plurality of first traces and the plurality of second traces; andorienting the plurality of first traces and the plurality of second traces to cross over each other at crossover locations separated by the second subassembly, the crossover locations forming mutual capacitance sensors for detecting one or more touches on the front side of the first subassembly.
  • 15. The method of claim 14, further comprising using a polyethylene terephthalate (PET) material for the second subassembly.
  • 16. The method of claim 14, further comprising forming a passivation layer at least over the plurality of first traces on the back side of the first subassembly.
  • 17. The method of claim 14, further comprising forming a passivation layer at least over the plurality of second traces on the back side of the second assembly.
  • 18. The method of claim 14, further comprising bonding the front side of the second subassembly to the first subassembly using a pressure sensitive adhesive.
CROSS REFERENCES TO RELATED APPLICATIONS

This application is a divisional of U.S. patent application Ser. No. 11/818,395, filed Jun. 13, 2007, published on Jul. 10, 2008 as U.S. Patent Publication No. 2008-0165158; which claims priority to U.S. Patent Provisional Application No. 60/878,783, filed Jan. 5, 2007, now expired; the disclosures of which are herein incorporated by reference in their entirety for all intended purposes.

US Referenced Citations (717)
Number Name Date Kind
2751555 Kirkpatrick Jun 1956 A
3333160 Gorski Jul 1967 A
3541541 Englebart Nov 1970 A
3644835 Thompson Feb 1972 A
3662105 Hurst et al. May 1972 A
3798370 Hurst Mar 1974 A
3875472 Schermerhorn Apr 1975 A
3974332 Abe et al. Aug 1976 A
4194083 Abe et al. Mar 1980 A
4233522 Grummer et al. Nov 1980 A
4246452 Chandler Jan 1981 A
4250495 Beckerman et al. Feb 1981 A
4266144 Bristol May 1981 A
4268815 Eventoff et al. May 1981 A
4277517 Smith, Jr. Jul 1981 A
4290052 Eichelberger et al. Sep 1981 A
4307383 Brienza Dec 1981 A
4313108 Yoshida Jan 1982 A
4342460 Eng Aug 1982 A
4345000 Kawazoe et al. Aug 1982 A
4363027 Brienza Dec 1982 A
4370697 Haberl et al. Jan 1983 A
4394643 Williams Jul 1983 A
4516112 Chen May 1985 A
4526043 Boie Jul 1985 A
4550221 Mabusth Oct 1985 A
4587378 Moore May 1986 A
4618989 Tsukune et al. Oct 1986 A
4623757 Marino Nov 1986 A
4639720 Rympalski et al. Jan 1987 A
4672364 Lucas Jun 1987 A
4672558 Beckes et al. Jun 1987 A
4675569 Bowman et al. Jun 1987 A
4686332 Greanias et al. Aug 1987 A
4692809 Beining et al. Sep 1987 A
4695827 Beining et al. Sep 1987 A
4707845 Krein et al. Nov 1987 A
4723056 Tamaru et al. Feb 1988 A
4733222 Evans Mar 1988 A
4734685 Watanabe Mar 1988 A
4740781 Brown Apr 1988 A
4746770 McAvinney May 1988 A
4771276 Parks Sep 1988 A
4772885 Uehara et al. Sep 1988 A
4788384 Bruere-Dawson et al. Nov 1988 A
4806709 Evans Feb 1989 A
4806846 Kerber Feb 1989 A
4839634 More et al. Jun 1989 A
4853493 Schlosser et al. Aug 1989 A
4898555 Sampson Feb 1990 A
4908710 Wakai et al. Mar 1990 A
4910504 Eriksson Mar 1990 A
4914624 Dunthorn et al. Apr 1990 A
4916308 Meadows Apr 1990 A
4954823 Binstead Sep 1990 A
4964302 Grahn et al. Oct 1990 A
4968877 McAvinney et al. Nov 1990 A
5003519 Noirjean Mar 1991 A
5010772 Bourland et al. Apr 1991 A
5017030 Crews May 1991 A
5062198 Sun Nov 1991 A
5073950 Colbert et al. Dec 1991 A
5105186 May Apr 1992 A
5105288 Senda et al. Apr 1992 A
5113041 Blonder et al. May 1992 A
5117071 Greanias et al. May 1992 A
5142912 Frische Sep 1992 A
5159323 Akira et al. Oct 1992 A
5178477 Gambaro Jan 1993 A
5189403 Franz et al. Feb 1993 A
5194862 Edwards Mar 1993 A
5209126 Grahn May 1993 A
5224861 Glass et al. Jul 1993 A
5239152 Caldwell et al. Aug 1993 A
5241308 Young Aug 1993 A
5252951 Tannenbaum et al. Oct 1993 A
5281966 Walsh Jan 1994 A
5293430 Shiau et al. Mar 1994 A
5305017 Gerpheide Apr 1994 A
5343064 Spangler et al. Aug 1994 A
5345543 Capps et al. Sep 1994 A
5345807 Butts et al. Sep 1994 A
5353135 Edwards Oct 1994 A
5374787 Miller Dec 1994 A
5376948 Roberts Dec 1994 A
5381160 Landmeier Jan 1995 A
5386219 Greanias et al. Jan 1995 A
5392058 Tagawa Feb 1995 A
5398310 Tchao et al. Mar 1995 A
5432671 Allavena Jul 1995 A
5442742 Greyson et al. Aug 1995 A
5447074 Polaert et al. Sep 1995 A
5457289 Huang et al. Oct 1995 A
5459463 Gruaz et al. Oct 1995 A
5463388 Boie et al. Oct 1995 A
5463696 Beernink et al. Oct 1995 A
5483261 Yasutake Jan 1996 A
5488204 Mead et al. Jan 1996 A
5495077 Miller et al. Feb 1996 A
5499026 Liao et al. Mar 1996 A
5510813 Makinwa et al. Apr 1996 A
5513309 Meier et al. Apr 1996 A
5523775 Capps Jun 1996 A
5530455 Gillick et al. Jun 1996 A
5534892 Tagawa Jul 1996 A
5543588 Bisset et al. Aug 1996 A
5543589 Buchana et al. Aug 1996 A
5543590 Gillespie et al. Aug 1996 A
5543591 Gillespie et al. Aug 1996 A
5550659 Fujieda et al. Aug 1996 A
5552787 Schuler et al. Sep 1996 A
5553500 Grahn et al. Sep 1996 A
5563632 Roberts Oct 1996 A
5563727 Larson et al. Oct 1996 A
5563996 Tchao Oct 1996 A
5565658 Gerpheide et al. Oct 1996 A
5572205 Caldwell et al. Nov 1996 A
5574262 Petty Nov 1996 A
5576070 Yaniv Nov 1996 A
5579036 Yates, IV Nov 1996 A
5581681 Tchao et al. Dec 1996 A
5583946 Gourdol Dec 1996 A
5589856 Stein et al. Dec 1996 A
5590219 Gourdol Dec 1996 A
5592566 Pagallo et al. Jan 1997 A
5594806 Colbert Jan 1997 A
5594810 Gourdol Jan 1997 A
5596694 Capps Jan 1997 A
5612719 Beernink et al. Mar 1997 A
5623280 Akins et al. Apr 1997 A
5631805 Bonsall May 1997 A
5633955 Bozinovic et al. May 1997 A
5634102 Capps May 1997 A
5636101 Bonsall et al. Jun 1997 A
5638093 Takahashi et al. Jun 1997 A
5642108 Gopher et al. Jun 1997 A
5644657 Capps et al. Jul 1997 A
5648642 Miller et al. Jul 1997 A
5650597 Redmayne Jul 1997 A
5666113 Logan Sep 1997 A
5666502 Capps Sep 1997 A
5666552 Greyson et al. Sep 1997 A
5673041 Chatigny et al. Sep 1997 A
5675361 Santilli Oct 1997 A
5677710 Thompson-Rohrlich Oct 1997 A
5677744 Yoneda et al. Oct 1997 A
5680160 LaPointe Oct 1997 A
5686973 Lee Nov 1997 A
5689253 Hargreaves et al. Nov 1997 A
5710844 Capps et al. Jan 1998 A
5729250 Bishop et al. Mar 1998 A
5730165 Philipp Mar 1998 A
5734742 Asaeda et al. Mar 1998 A
5734751 Saito Mar 1998 A
5736976 Cheung Apr 1998 A
5741990 Davies Apr 1998 A
5745116 Pisutha-Arnond Apr 1998 A
5745716 Tchao et al. Apr 1998 A
5748269 Harris et al. May 1998 A
5760857 Yanagawa et al. Jun 1998 A
5764218 Bona et al. Jun 1998 A
5764818 Capps et al. Jun 1998 A
5767457 Gerpheide et al. Jun 1998 A
5767842 Korth Jun 1998 A
5777596 Herbert Jul 1998 A
5790104 Shieh Aug 1998 A
5790106 Hirano et al. Aug 1998 A
5790107 Kasser et al. Aug 1998 A
5801340 Peter Sep 1998 A
5802516 Shwarts et al. Sep 1998 A
5805144 Scholder et al. Sep 1998 A
5808567 McCloud Sep 1998 A
5809166 Huang et al. Sep 1998 A
5809267 Moran et al. Sep 1998 A
5815141 Phares Sep 1998 A
5821690 Martens et al. Oct 1998 A
5821930 Hansen Oct 1998 A
5823782 Marcus et al. Oct 1998 A
5825351 Tam Oct 1998 A
5825352 Bisset et al. Oct 1998 A
5831170 Sokn Nov 1998 A
5835079 Shieh Nov 1998 A
5838308 Knapp et al. Nov 1998 A
5841078 Miller et al. Nov 1998 A
5841415 Kwon et al. Nov 1998 A
5844506 Binstead Dec 1998 A
5847690 Boie et al. Dec 1998 A
5852487 Fujimori et al. Dec 1998 A
5854450 Kent Dec 1998 A
5854625 Frisch et al. Dec 1998 A
5856822 Du et al. Jan 1999 A
5861583 Schediwy et al. Jan 1999 A
5861875 Gerpheide Jan 1999 A
5867151 Nakai Feb 1999 A
5869790 Shigetaka et al. Feb 1999 A
5869791 Young Feb 1999 A
5880411 Gillespie et al. Mar 1999 A
5889236 Gillespie et al. Mar 1999 A
5898434 Small et al. Apr 1999 A
5914465 Allen et al. Jun 1999 A
5915285 Sommer Jun 1999 A
5917165 Platt et al. Jun 1999 A
5920298 McKnight Jul 1999 A
5920309 Bisset et al. Jul 1999 A
5923319 Bishop et al. Jul 1999 A
5926161 Furuhashi et al. Jul 1999 A
5929834 Inoue et al. Jul 1999 A
5933134 Shieh Aug 1999 A
5940055 Lee Aug 1999 A
5940064 Kai et al. Aug 1999 A
5942733 Allen et al. Aug 1999 A
5943043 Furuhata et al. Aug 1999 A
5943044 Martinelli et al. Aug 1999 A
5945980 Moissev et al. Aug 1999 A
5952998 Clancy et al. Sep 1999 A
5955198 Hashimoto et al. Sep 1999 A
5977562 Hirakata et al. Nov 1999 A
5977957 Miller et al. Nov 1999 A
5982352 Pryor Nov 1999 A
5986723 Nakamura et al. Nov 1999 A
6002389 Kasser Dec 1999 A
6002808 Freeman Dec 1999 A
6008800 Pryor Dec 1999 A
6020881 Naughton et al. Feb 2000 A
6020945 Sawai et al. Feb 2000 A
6023265 Lee Feb 2000 A
6028581 Umeya Feb 2000 A
6029214 Dorfman et al. Feb 2000 A
6031524 Kunert Feb 2000 A
6037882 Levy Mar 2000 A
6050825 Nichol et al. Apr 2000 A
6052339 Frenkel et al. Apr 2000 A
6057903 Colgan May 2000 A
6061177 Fujimoto May 2000 A
6072494 Nguyen Jun 2000 A
6079282 Lanter Jun 2000 A
6081259 Teterwak Jun 2000 A
6084576 Leu et al. Jul 2000 A
6107654 Yamazaki Aug 2000 A
6107997 Ure Aug 2000 A
6124848 Ballare et al. Sep 2000 A
6128003 Smith et al. Oct 2000 A
6131299 Raab et al. Oct 2000 A
6133906 Geaghan Oct 2000 A
6135958 Mikula-Curtis et al. Oct 2000 A
6137427 Binstead Oct 2000 A
6144380 Shwarts et al. Nov 2000 A
6163313 Aroyan et al. Dec 2000 A
6172667 Sayag Jan 2001 B1
6177918 Colgan et al. Jan 2001 B1
6188391 Seely et al. Feb 2001 B1
6191828 Kim et al. Feb 2001 B1
6198515 Cole Mar 2001 B1
6204897 Colgan et al. Mar 2001 B1
6208329 Ballare Mar 2001 B1
6211585 Sato et al. Apr 2001 B1
6222465 Kumar et al. Apr 2001 B1
6222528 Gerpheide et al. Apr 2001 B1
6239389 Allen et al. May 2001 B1
6239788 Nohno et al. May 2001 B1
6239790 Martinelli et al. May 2001 B1
6243071 Shwarts et al. Jun 2001 B1
6246862 Grivas et al. Jun 2001 B1
6249606 Kiraly et al. Jun 2001 B1
6250863 Kamentser et al. Jun 2001 B1
6259490 Colgan et al. Jul 2001 B1
6271835 Hoeksma Aug 2001 B1
6285428 Kim et al. Sep 2001 B1
6288707 Philipp Sep 2001 B1
6289326 LaFleur Sep 2001 B1
6292178 Bernstein et al. Sep 2001 B1
6297811 Kent Oct 2001 B1
6310610 Beaton et al. Oct 2001 B1
6317248 Agrawal et al. Nov 2001 B1
6323846 Westerman et al. Nov 2001 B1
6323849 He et al. Nov 2001 B1
6333768 Kawashima et al. Dec 2001 B1
6337678 Fish Jan 2002 B1
6342938 Song et al. Jan 2002 B1
6347290 Bartlett Feb 2002 B1
6377009 Philipp Apr 2002 B1
6380931 Gillespie et al. Apr 2002 B1
6395863 Geaghan May 2002 B2
6411287 Scharff et al. Jun 2002 B1
6414671 Gillespie et al. Jul 2002 B1
6417846 Lee Jul 2002 B1
6421039 Moon et al. Jul 2002 B1
6421234 Ricks et al. Jul 2002 B1
6425289 Igel et al. Jul 2002 B1
6452514 Philipp Sep 2002 B1
6456350 Ashizawa et al. Sep 2002 B1
6457355 Philipp Oct 2002 B1
6459424 Resman Oct 2002 B1
6466036 Philipp Oct 2002 B1
6483498 Colgan et al. Nov 2002 B1
6489952 Tanaka et al. Dec 2002 B1
6492599 Sugihara Dec 2002 B1
6501528 Hamada Dec 2002 B1
6501529 Kurihara et al. Dec 2002 B1
6504530 Wilson et al. Jan 2003 B1
6504713 Pandolfi et al. Jan 2003 B1
6515669 Mohri Feb 2003 B1
6522772 Morrison et al. Feb 2003 B1
6525547 Hayes Feb 2003 B2
6525749 Moran et al. Feb 2003 B1
6535200 Philipp Mar 2003 B2
6543684 White et al. Apr 2003 B1
6543947 Lee Apr 2003 B2
6545495 Warmack et al. Apr 2003 B2
6549193 Huang et al. Apr 2003 B1
6568275 Scholz et al. May 2003 B2
6570557 Westerman et al. May 2003 B1
6593916 Aroyan Jul 2003 B1
6602790 Kian et al. Aug 2003 B2
6610936 Gillespie et al. Aug 2003 B2
6624833 Kumar et al. Sep 2003 B1
6624835 Willig Sep 2003 B2
6627918 Getz et al. Sep 2003 B2
6628268 Harada et al. Sep 2003 B1
6639577 Eberhard Oct 2003 B2
D482368 DenToonder et al. Nov 2003 S
6650319 Hurst et al. Nov 2003 B1
6658994 McMillan Dec 2003 B1
6670894 Mehring Dec 2003 B2
6670951 Clough et al. Dec 2003 B2
6677932 Westerman Jan 2004 B1
6677934 Blanchard Jan 2004 B1
6680448 Kawashima et al. Jan 2004 B2
6690032 Umetsu Feb 2004 B1
6690387 Zimmerman et al. Feb 2004 B2
6721375 Hammel Apr 2004 B1
6723929 Kent Apr 2004 B2
6724366 Crawford Apr 2004 B2
6757002 Oross et al. Jun 2004 B1
6762752 Perski et al. Jul 2004 B2
6774971 Shirato et al. Aug 2004 B2
6784948 Kawashima et al. Aug 2004 B2
6785578 Johnson et al. Aug 2004 B2
6803906 Morrison et al. Oct 2004 B1
6825833 Mulligan et al. Nov 2004 B2
6842672 Straub et al. Jan 2005 B1
6846579 Anderson et al. Jan 2005 B2
6856259 Sharp Feb 2005 B1
6876355 Ahn et al. Apr 2005 B1
6888536 Westerman et al. May 2005 B2
6900795 Knight, III et al. May 2005 B1
6906692 Ishiyama Jun 2005 B2
6909532 Chung et al. Jun 2005 B2
6924789 Bick Aug 2005 B2
6927761 Badaye et al. Aug 2005 B2
6927763 LaMonica Aug 2005 B2
6942571 McAllister et al. Sep 2005 B1
6943779 Satoh Sep 2005 B2
6947102 den Boer et al. Sep 2005 B2
6961049 Mulligan et al. Nov 2005 B2
6963335 Tanaka et al. Nov 2005 B2
6965375 Gettemy et al. Nov 2005 B1
6970160 Mulligan et al. Nov 2005 B2
6972401 Akitt et al. Dec 2005 B2
6977666 Hedrick Dec 2005 B1
6982432 Umemoto et al. Jan 2006 B2
6985801 Straub et al. Jan 2006 B1
6992659 Gettemy Jan 2006 B2
6995752 Lu Feb 2006 B2
7006064 Enomoto et al. Feb 2006 B2
7009663 Abileah et al. Mar 2006 B2
7015894 Morohoshi Mar 2006 B2
7023427 Kraus et al. Apr 2006 B2
7030860 Hsu et al. Apr 2006 B1
7031228 Born et al. Apr 2006 B2
7038659 Rajkowski May 2006 B2
7042444 Cok May 2006 B2
7046235 Katoh May 2006 B2
7068330 Song et al. Jun 2006 B2
7088342 Rekimoto Aug 2006 B2
7088343 Smith Aug 2006 B2
7098127 Ito Aug 2006 B2
7098897 Vakil et al. Aug 2006 B2
7109978 Gillespie et al. Sep 2006 B2
7129935 Mackey Oct 2006 B2
7133032 Cok Nov 2006 B2
7138984 Miles Nov 2006 B1
7151528 Taylor et al. Dec 2006 B2
7154481 Cross et al. Dec 2006 B2
7177001 Lee Feb 2007 B2
7184064 Zimmerman et al. Feb 2007 B2
7190416 Paukshto et al. Mar 2007 B2
7202856 Cok Apr 2007 B2
7205969 Song Apr 2007 B2
7230608 Cok Jun 2007 B2
7254775 Geaghan et al. Aug 2007 B2
7268770 Takahata et al. Sep 2007 B1
7274353 Chiu et al. Sep 2007 B2
7280167 Choi et al. Oct 2007 B2
7292229 Morag et al. Nov 2007 B2
7307231 Matsumoto et al. Dec 2007 B2
7319448 Kim et al. Jan 2008 B2
RE40153 Westerman et al. Mar 2008 E
7339579 Richter et al. Mar 2008 B2
7355592 Jong et al. Apr 2008 B2
7362313 Geaghan et al. Apr 2008 B2
7372455 Perski et al. May 2008 B2
7379054 Lee May 2008 B2
7453444 Geaghan Nov 2008 B2
7463246 Mackey Dec 2008 B2
7483016 Gettemy et al. Jan 2009 B1
7511702 Hotelling Mar 2009 B2
7538760 Hotelling et al. May 2009 B2
7554624 Kusuda et al. Jun 2009 B2
7633484 Ito Dec 2009 B2
7663583 Lee et al. Feb 2010 B2
7663607 Hotelling et al. Feb 2010 B2
7683888 Kennedy Mar 2010 B1
7688315 Gettemy et al. Mar 2010 B1
7692729 Pak et al. Apr 2010 B2
7705813 Hong Apr 2010 B2
7705834 Swedin Apr 2010 B2
7730401 Gillespie et al. Jun 2010 B2
7737957 Lee et al. Jun 2010 B2
7742041 Lee et al. Jun 2010 B2
7746326 Sato Jun 2010 B2
7755683 Sergio et al. Jul 2010 B2
7800589 Hurst et al. Sep 2010 B2
7812828 Westerman et al. Oct 2010 B2
7843439 Perski et al. Nov 2010 B2
7868875 Park et al. Jan 2011 B2
7920129 Hotelling et al. Apr 2011 B2
7924253 Huang et al. Apr 2011 B2
8031180 Miyamoto et al. Oct 2011 B2
8040326 Hotelling et al. Oct 2011 B2
8125463 Hotelling et al. Feb 2012 B2
8130209 Chang Mar 2012 B2
8228274 Chung et al. Jul 2012 B2
8243027 Hotelling et al. Aug 2012 B2
8253692 Lai Aug 2012 B2
8259078 Hotelling et al. Sep 2012 B2
8274492 Hotelling et al. Sep 2012 B2
8310427 Sheu Nov 2012 B2
8368630 Lee et al. Feb 2013 B2
8400406 Kurtz et al. Mar 2013 B1
8416209 Hotelling et al. Apr 2013 B2
8421760 Liu et al. Apr 2013 B2
8432371 Hotelling et al. Apr 2013 B2
8451244 Hotelling et al. May 2013 B2
8479122 Hotelling et al. Jul 2013 B2
8487890 Juan et al. Jul 2013 B2
8493330 Krah Jul 2013 B2
8502799 Hotelling et al. Aug 2013 B2
8508244 Seguine Aug 2013 B2
8552989 Hotelling et al. Oct 2013 B2
8553013 Kim Oct 2013 B2
8605051 Hotelling et al. Dec 2013 B2
8654083 Hotelling et al. Feb 2014 B2
8698777 Endo et al. Apr 2014 B2
8743300 Chang et al. Jun 2014 B2
8804056 Chang et al. Aug 2014 B2
8866787 Chang et al. Oct 2014 B2
8872785 Hotelling et al. Oct 2014 B2
8922520 Chen Dec 2014 B2
8928618 Hotelling et al. Jan 2015 B2
8933351 Noguchi et al. Jan 2015 B2
8982087 Hotelling et al. Mar 2015 B2
9025090 Chang et al. May 2015 B2
9030452 Jang et al. May 2015 B2
9035202 Mizuhashi et al. May 2015 B2
9035907 Hotelling et al. May 2015 B2
9146414 Chang et al. Sep 2015 B2
9244561 Hotelling et al. Jan 2016 B2
9268429 Hotelling et al. Feb 2016 B2
9454277 Hotelling et al. Sep 2016 B2
9575610 Hotelling et al. Feb 2017 B2
9710095 Hotelling Jul 2017 B2
9971459 Youngs May 2018 B2
10191576 Hotelling et al. Jan 2019 B2
20010000961 Hikida et al. May 2001 A1
20010020578 Baier Sep 2001 A1
20010020986 Ikeda et al. Sep 2001 A1
20010020987 Ahn et al. Sep 2001 A1
20010023204 Komata Sep 2001 A1
20020015024 Westerman et al. Feb 2002 A1
20020018035 Song et al. Feb 2002 A1
20020021398 Matsumoto Feb 2002 A1
20020033919 Sanelle et al. Mar 2002 A1
20020041356 Tanada et al. Apr 2002 A1
20020049070 Bick Apr 2002 A1
20020063674 Chiang May 2002 A1
20020084922 Yagi Jul 2002 A1
20020089496 Numao Jul 2002 A1
20020101410 Sakata et al. Aug 2002 A1
20020118848 Karpenstein Aug 2002 A1
20020121146 Manaresi et al. Sep 2002 A1
20020140649 Aoyama et al. Oct 2002 A1
20020149571 Roberts Oct 2002 A1
20020150336 Davis et al. Oct 2002 A1
20020158637 Warmack et al. Oct 2002 A1
20020159015 Seo et al. Oct 2002 A1
20020167489 Davis Nov 2002 A1
20020185981 Dietz et al. Dec 2002 A1
20020185999 Tajima et al. Dec 2002 A1
20020186210 Itoh Dec 2002 A1
20020190964 Van Berkel Dec 2002 A1
20020191029 Gillespie et al. Dec 2002 A1
20020192445 Ezzell et al. Dec 2002 A1
20020196237 Fernando et al. Dec 2002 A1
20030006974 Clough et al. Jan 2003 A1
20030026513 Deliwala Feb 2003 A1
20030035479 Kan et al. Feb 2003 A1
20030052867 Shigetaka et al. Mar 2003 A1
20030067451 Tagg et al. Apr 2003 A1
20030069653 Johnson et al. Apr 2003 A1
20030076301 Tsuk et al. Apr 2003 A1
20030076303 Huppi Apr 2003 A1
20030076306 Zadesky et al. Apr 2003 A1
20030085882 Lu May 2003 A1
20030095091 Enomoto et al. May 2003 A1
20030095095 Pihlaja May 2003 A1
20030095096 Robbin et al. May 2003 A1
20030098858 Perski et al. May 2003 A1
20030132950 Surucu et al. Jul 2003 A1
20030151600 Takeuchi et al. Aug 2003 A1
20030174128 Matsufusa Sep 2003 A1
20030174272 Shirato et al. Sep 2003 A1
20030179323 Abileah et al. Sep 2003 A1
20030201984 Falvo Oct 2003 A1
20030206162 Roberts Nov 2003 A1
20030206202 Moriya Nov 2003 A1
20030214485 Roberts Nov 2003 A1
20030214486 Roberts Nov 2003 A1
20030222857 Abileah Dec 2003 A1
20030234768 Rekimoto et al. Dec 2003 A1
20030234769 Cross et al. Dec 2003 A1
20030234770 MacKey Dec 2003 A1
20040021663 Suzuki et al. Feb 2004 A1
20040022010 Shigetaka Feb 2004 A1
20040056839 Yoshihara Mar 2004 A1
20040080501 Koyama Apr 2004 A1
20040090429 Geaghan et al. May 2004 A1
20040095335 Oh et al. May 2004 A1
20040109097 Mai Jun 2004 A1
20040119701 Mulligan et al. Jun 2004 A1
20040141096 Mai Jul 2004 A1
20040150629 Lee Aug 2004 A1
20040155871 Perski et al. Aug 2004 A1
20040155991 Lowles et al. Aug 2004 A1
20040165005 Yoshikawa et al. Aug 2004 A1
20040169625 Park Sep 2004 A1
20040183076 Yamazaki et al. Sep 2004 A1
20040183484 Ide et al. Sep 2004 A1
20040188150 Richard et al. Sep 2004 A1
20040189587 Jung et al. Sep 2004 A1
20040189612 Bottari et al. Sep 2004 A1
20040196266 Matsuura Oct 2004 A1
20040206190 Kawahata Oct 2004 A1
20040217945 Miyamoto et al. Nov 2004 A1
20040227736 Kamrath et al. Nov 2004 A1
20040239650 Mackey Dec 2004 A1
20040243747 Rekimoto Dec 2004 A1
20040263484 Mantysalo et al. Dec 2004 A1
20040263743 Kim et al. Dec 2004 A1
20050005703 Saito et al. Jan 2005 A1
20050007349 Vakil et al. Jan 2005 A1
20050012723 Pallakoff Jan 2005 A1
20050017737 Yakabe et al. Jan 2005 A1
20050046621 Kakikuranta Mar 2005 A1
20050052425 Zadesky et al. Mar 2005 A1
20050052427 Wu et al. Mar 2005 A1
20050052582 Mai Mar 2005 A1
20050062620 Schaefer Mar 2005 A1
20050073507 Richter et al. Apr 2005 A1
20050083307 Aufderheide Apr 2005 A1
20050094038 Choi et al. May 2005 A1
20050099402 Nakanishi et al. May 2005 A1
20050104867 Westerman et al. May 2005 A1
20050110768 Marriott et al. May 2005 A1
20050139837 Lee et al. Jun 2005 A1
20050140620 Aoyama et al. Jun 2005 A1
20050140634 Takatori Jun 2005 A1
20050146511 Hill et al. Jul 2005 A1
20050162402 Watanachote Jul 2005 A1
20050170668 Park et al. Aug 2005 A1
20050231487 Ming Oct 2005 A1
20050237439 Mai Oct 2005 A1
20050243023 Reddy et al. Nov 2005 A1
20060007087 Choi et al. Jan 2006 A1
20060007165 Yang et al. Jan 2006 A1
20060012575 Knapp et al. Jan 2006 A1
20060017710 Lee et al. Jan 2006 A1
20060022955 Kennedy Feb 2006 A1
20060022956 Lengeling et al. Feb 2006 A1
20060026521 Hotelling et al. Feb 2006 A1
20060026535 Hotelling et al. Feb 2006 A1
20060026536 Hotelling et al. Feb 2006 A1
20060032680 Elias et al. Feb 2006 A1
20060033724 Chaudhri et al. Feb 2006 A1
20060044259 Hotelling et al. Mar 2006 A1
20060053387 Ording Mar 2006 A1
20060066582 Lyon et al. Mar 2006 A1
20060085757 Andre et al. Apr 2006 A1
20060087482 Utsumi et al. Apr 2006 A1
20060097991 Hotelling May 2006 A1
20060109222 Lee et al. May 2006 A1
20060114247 Brown Jun 2006 A1
20060132462 Geaghan Jun 2006 A1
20060145365 Halls et al. Jul 2006 A1
20060145983 Lee et al. Jul 2006 A1
20060145987 Hong Jul 2006 A1
20060146033 Chen et al. Jul 2006 A1
20060146034 Chen et al. Jul 2006 A1
20060146038 Parkg et al. Jul 2006 A1
20060192745 Yamazaki Aug 2006 A1
20060197753 Hotelling Sep 2006 A1
20060208985 Hwang et al. Sep 2006 A1
20060227114 Geaghan et al. Oct 2006 A1
20060232564 Nishimura et al. Oct 2006 A1
20060232567 Westerman et al. Oct 2006 A1
20060238517 King et al. Oct 2006 A1
20060238518 Westerman et al. Oct 2006 A1
20060238519 Westerman et al. Oct 2006 A1
20060238520 Westerman et al. Oct 2006 A1
20060238521 Westerman et al. Oct 2006 A1
20060238522 Westerman et al. Oct 2006 A1
20060244736 Tseng Nov 2006 A1
20060262100 Van Berkel Nov 2006 A1
20060278444 Binstead Dec 2006 A1
20060279679 Fujisawa et al. Dec 2006 A1
20060284857 Oh Dec 2006 A1
20060290863 HoeSup Dec 2006 A1
20070013678 Nakajima et al. Jan 2007 A1
20070018969 Chen et al. Jan 2007 A1
20070027932 Thibeault Feb 2007 A1
20070062739 Philipp et al. Mar 2007 A1
20070075977 Chen et al. Apr 2007 A1
20070085838 Ricks et al. Apr 2007 A1
20070109274 Reynolds May 2007 A1
20070132739 Felder Jun 2007 A1
20070152976 Townsend et al. Jul 2007 A1
20070159561 Chien Jul 2007 A1
20070176905 Shih et al. Aug 2007 A1
20070182706 Cassidy et al. Aug 2007 A1
20070216657 Konieck Sep 2007 A1
20070229464 Hotelling et al. Oct 2007 A1
20070229479 Choo Oct 2007 A1
20070236466 Hotelling Oct 2007 A1
20070242055 Lai Oct 2007 A1
20070247429 Westerman Oct 2007 A1
20070257890 Hotelling et al. Nov 2007 A1
20070262967 Rho Nov 2007 A1
20080007538 Kotera Jan 2008 A1
20080048994 Lee et al. Feb 2008 A1
20080055221 Yabuta et al. Mar 2008 A1
20080055268 Yoo et al. Mar 2008 A1
20080055270 Cho et al. Mar 2008 A1
20080062140 Hotelling et al. Mar 2008 A1
20080062148 Hotelling et al. Mar 2008 A1
20080067528 Choi et al. Mar 2008 A1
20080074401 Chung et al. Mar 2008 A1
20080079697 Lee et al. Apr 2008 A1
20080129317 Oba Jun 2008 A1
20080129898 Moon Jun 2008 A1
20080131624 Egami et al. Jun 2008 A1
20080136980 Rho et al. Jun 2008 A1
20080150901 Lowles et al. Jun 2008 A1
20080157867 Krah Jul 2008 A1
20080158167 Hotelling et al. Jul 2008 A1
20080158181 Hamblin et al. Jul 2008 A1
20080165158 Hotelling Jul 2008 A1
20080165299 Huang et al. Jul 2008 A1
20080186288 Chang Aug 2008 A1
20080273014 Lowles et al. Nov 2008 A1
20080284927 Sakamoto et al. Nov 2008 A1
20080284928 Sakamoto et al. Nov 2008 A1
20080297476 Hotelling et al. Dec 2008 A1
20080309627 Hotelling et al. Dec 2008 A1
20090058785 Kim et al. Mar 2009 A1
20090066670 Hotelling et al. Mar 2009 A1
20090090694 Hotelling et al. Apr 2009 A1
20090096757 Hotelling et al. Apr 2009 A1
20090096759 Nishiwaki Apr 2009 A1
20090102991 Chen et al. Apr 2009 A1
20090115743 Oowaki May 2009 A1
20090160816 Westerman et al. Jun 2009 A1
20090179875 Li et al. Jul 2009 A1
20090262061 Chung et al. Oct 2009 A1
20090273581 Kim et al. Nov 2009 A1
20090279006 Chien et al. Nov 2009 A1
20090303193 Lim et al. Dec 2009 A1
20090322660 Chung et al. Dec 2009 A1
20100033448 Takeo et al. Feb 2010 A1
20100045632 Yilmaz Feb 2010 A1
20100066650 Lee et al. Mar 2010 A1
20100103121 Kim et al. Apr 2010 A1
20100110057 Lee et al. May 2010 A1
20100182273 Noguchi et al. Jul 2010 A1
20100188347 Mizuhashi et al. Jul 2010 A1
20100194698 Hotelling et al. Aug 2010 A1
20100194699 Chang Aug 2010 A1
20100238134 Day et al. Sep 2010 A1
20100289770 Lee et al. Nov 2010 A1
20110032241 Jeong et al. Feb 2011 A1
20110139516 Nirmal Jun 2011 A1
20120026132 Hotelling et al. Feb 2012 A1
20120038585 Kim Feb 2012 A1
20120133858 Shin et al. May 2012 A1
20130082964 Agari et al. Apr 2013 A1
20130176276 Shepelev Jul 2013 A1
20130293484 Singh et al. Nov 2013 A1
20140078108 Hotelling Mar 2014 A1
20140240286 Chang et al. Aug 2014 A1
20150192815 Chang et al. Jul 2015 A1
20150199053 Hotelling et al. Jul 2015 A1
20150309627 Xu et al. Oct 2015 A1
20150370378 Chang et al. Dec 2015 A1
20160117023 Hotelling et al. Apr 2016 A1
20170010746 Hotelling et al. Jan 2017 A1
20170010750 Hotelling Jan 2017 A1
20170147119 Hotelling et al. May 2017 A1
20170269738 Chang et al. Sep 2017 A1
Foreign Referenced Citations (187)
Number Date Country
2005246219 Dec 2005 AU
1243096 Oct 1988 CA
2 318 815 Jul 1999 CA
2494353 Feb 2004 CA
1453623 Nov 2003 CN
101241277 Aug 2008 CN
197 06 168 Aug 1998 DE
102 51 296 May 2004 DE
0 156 593 Oct 1985 EP
0 156 593 Oct 1985 EP
0 178 590 Apr 1986 EP
0 250 931 Jan 1988 EP
0 250 931 Jan 1988 EP
0 250 931 Jan 1988 EP
0 332 365 Sep 1989 EP
0 464 908 Jan 1992 EP
0 464 908 Jan 1992 EP
0 464 908 Jan 1992 EP
0 467 562 Jan 1992 EP
0 483 519 May 1992 EP
0 288 692 Jul 1993 EP
0 288 692 Jul 1993 EP
0 288 692 Jul 1993 EP
0 664 504 Jul 1995 EP
0 770 971 May 1997 EP
0 786 745 Jul 1997 EP
0 786 745 Jul 1997 EP
0 786 745 Jul 1997 EP
0 932 117 Jul 1999 EP
0 932 117 Jul 1999 EP
0 932 117 Jul 1999 EP
0 973 123 Jan 2000 EP
1 014 295 Jan 2002 EP
1 014 295 Jan 2002 EP
1 211 633 Jun 2002 EP
1 211 633 Jun 2002 EP
1 322 104 Jun 2003 EP
1 391 807 Feb 2004 EP
1 396 812 Mar 2004 EP
1 396 812 Mar 2004 EP
1 418 491 May 2004 EP
1 418 491 May 2004 EP
1 422 601 May 2004 EP
1 455 264 Sep 2004 EP
1 455 264 Sep 2004 EP
1 469 415 Oct 2004 EP
2 267 584 Dec 2010 EP
1 486 988 Sep 1977 GB
2 168 816 Jun 1986 GB
2 313 195 Nov 1997 GB
2 330 670 Apr 1999 GB
2 345 140 Jun 2000 GB
2 368 483 Jul 2004 GB
53-147626 Nov 1978 JP
58-166430 Oct 1983 JP
59-214941 Dec 1984 JP
60-123927 Jul 1985 JP
60-211529 Oct 1985 JP
61-131314 Jun 1986 JP
63-279316 Nov 1988 JP
02-030024 Jan 1990 JP
03-180922 Aug 1991 JP
03-289715 Dec 1991 JP
03-294918 Dec 1991 JP
04-127314 Apr 1992 JP
05-053726 Mar 1993 JP
05-063914 Mar 1993 JP
05-080923 Apr 1993 JP
05-224818 Sep 1993 JP
06-161661 Jun 1994 JP
07-036017 Feb 1995 JP
07-044305 Feb 1995 JP
07-110741 Apr 1995 JP
07-141086 Jun 1995 JP
H07-261932 Oct 1995 JP
08-016307 Jan 1996 JP
08-147092 Jun 1996 JP
08-242458 Sep 1996 JP
H-08-249406 Sep 1996 JP
08-297267 Nov 1996 JP
09-054650 Feb 1997 JP
09-091079 Apr 1997 JP
09-096792 Apr 1997 JP
09-212302 Aug 1997 JP
09-292950 Nov 1997 JP
09-325852 Dec 1997 JP
10-003349 Jan 1998 JP
H10269020 Oct 1998 JP
11-145141 May 1999 JP
11-505641 May 1999 JP
11-249813 Sep 1999 JP
2000-105670 Apr 2000 JP
2000-112642 Apr 2000 JP
2000-163031 Jun 2000 JP
2000-172437 Jun 2000 JP
2000-172447 Jun 2000 JP
2000-221932 Aug 2000 JP
2001-075079 Mar 2001 JP
2001-283228 Oct 2001 JP
2002-501271 Jan 2002 JP
2002-116017 Apr 2002 JP
2002-259052 Sep 2002 JP
2002-287660 Oct 2002 JP
2002-342014 Nov 2002 JP
2002-366304 Dec 2002 JP
2003-029899 Jan 2003 JP
2003-066417 Mar 2003 JP
2003-099192 Apr 2003 JP
2003-516015 May 2003 JP
2003-173237 Jun 2003 JP
2003-185688 Jul 2003 JP
2003-196023 Jul 2003 JP
2003-249738 Sep 2003 JP
2003-255855 Sep 2003 JP
2004-038919 Feb 2004 JP
2004-102985 Apr 2004 JP
2004-186333 Jul 2004 JP
2004-526990 Sep 2004 JP
2005-346047 Dec 2005 JP
2006-134915 May 2006 JP
2007-533044 Nov 2007 JP
2008-032756 Feb 2008 JP
2009-244958 Oct 2009 JP
2010-231773 Oct 2010 JP
10-0226812 Jul 1999 KR
10-2001-0061430 Oct 2001 KR
10-2002-0006982 Feb 2002 KR
10-2004-0002310 Jan 2004 KR
10-2004-0013029 Feb 2004 KR
10-2004-0022243 Mar 2004 KR
10-2005-0019799 Mar 2005 KR
10-0493921 Jun 2005 KR
10-2006-0089645 Aug 2006 KR
10-2010-0127164 Dec 2010 KR
200302778 Aug 2003 TW
2004-21156 Oct 2004 TW
2005-29441 Sep 2005 TW
201009662 Mar 2010 TW
201030588 Aug 2010 TW
201042315 Dec 2010 TW
WO-8704553 Jul 1987 WO
WO-9213328 Aug 1992 WO
WO-9615464 May 1996 WO
WO-9618179 Jun 1996 WO
WO-1996038833 Dec 1996 WO
WO-97018547 May 1997 WO
WO-1997018528 May 1997 WO
WO-97023738 Jul 1997 WO
WO-1997023738 Jul 1997 WO
WO-9814863 Apr 1998 WO
WO-1998014863 Apr 1998 WO
WO-99038149 Jul 1999 WO
WO-0044018 Jul 2000 WO
WO-0127868 Apr 2001 WO
WO-0139371 May 2001 WO
WO-2002035461 May 2002 WO
WO-02061721 Aug 2002 WO
WO-02103621 Dec 2002 WO
WO-03079176 Sep 2003 WO
WO-2003088176 Oct 2003 WO
WO-2004013833 Feb 2004 WO
WO-2004013833 Feb 2004 WO
WO-2004023376 Mar 2004 WO
WO-2004023376 Mar 2004 WO
WO-2004053576 Jun 2004 WO
WO-2004061808 Jul 2004 WO
WO-2004061808 Jul 2004 WO
WO-2004114265 Dec 2004 WO
WO-2005064451 Jul 2005 WO
WO-2005114369 Dec 2005 WO
WO-2005114369 Dec 2005 WO
WO-2006023569 Mar 2006 WO
WO-2006054585 May 2006 WO
WO-2007115032 Oct 2007 WO
WO-2007115032 Oct 2007 WO
WO-2007146779 Dec 2007 WO
WO-2007146779 Dec 2007 WO
WO-2007146780 Dec 2007 WO
WO-2007146780 Dec 2007 WO
WO-2007146783 Dec 2007 WO
WO-2007146783 Dec 2007 WO
WO-2007146785 Dec 2007 WO
WO-2007146785 Dec 2007 WO
WO-2008085457 Jul 2008 WO
WO-2008085457 Jul 2008 WO
WO-2009035471 Mar 2009 WO
WO-2012087639 Jun 2012 WO
Non-Patent Literature Citations (273)
Entry
Notice of Allowance dated Nov. 17, 2016, for U.S. Appl. No. 15/273,487, filed Sep. 22, 2016, eight pages.
“Gesture Recognition,” (2006). Located at <http://www.fingerworks.com/gesture_recognition.html>, last visited Jul. 25, 2006, two pages.
3M (2002). MicroTouch Capacitive Touch Screens Datasheets, 3M Innovation, six pages.
Agrawal, R. et al. (Jul. 1986). “An Overview of Tactile Sensing,” Center for Research on Integrated Manufacturing: Robot Systems Division, The University of Michigan, 47 pages.
Anonymous. (May 8, 1992). “The Sensor Frame Graphic Manipulator,” NASA Phase II Final Report, 28 pages.
Anonymous. (Oct. 30, 2001). “Radiotelephone with Rotating Symbol Keypad and Multi-Directional Symbol Input,” located at www.vitgn.com/mobile_terminal.com, 12 pages.
Anonymous. “4-Wire Resistive Touchscreens” obtained from http://www.touchscreens.com/intro-touchtypes-4resistive.html generated Aug. 5, 2005.
Anonymous. “5-Wire Resistive Touchscreens” obtained from http://www.touchscreens.com/intro-touchtypes-resistive.html generated Aug. 5, 2005.
Anonymous. “A Brief Overview of Gesture Recognition” obtained from http://www. Dai. Ed. Ac.uk/Cvonline/LOCA_COPIES/COHEN/gesture_overview.Html, generated Apr. 20, 2004.
Anonymous. “Capacitive Position Sensing” obtained from http://www.synaptics.com/technology/cps.cfin generated Aug. 5, 2005.
Anonymous. “Capacitive Touchscreens” obtained from http://www.touchscreens.com/intro- touchtypes-capacitive.html generated Aug. 5, 2005.
Anonymous. “Comparing Touch Technologies” obtained from http://www.touchscreens.com/intro-touchtypes.html generated Oct. 10, 2004.
Anonymous. “FingerWorks—Gesture Guide—Application Switching,” obtained from http://www.fingerworks.com/gesture_guide_apps.html, generated on Aug. 27, 2004, 1-pg.
Anonymous. “FingerWorks—Gesture Guide—Editing,” obtained from http://www.fingerworks.com/gesure_guide_editing.html, generated on Aug. 27, 2004, 1-pg.
Anonymous. “FingerWorks—Gesture Guide—File Operations,” obtained from http://www.fingerworks.com/gesture_guide_files.html, generated on Aug. 27, 2004, 1-pg.
Anonymous. “FingerWorks—Gesture Guide—Text Manipulation,” obtained from http://www.fingerworks.com/gesture_guide_text_manip.html, generated on Aug. 27, 2004, 2-pg.
Anonymous. “FingerWorks—Gesture Guide—Tips and Tricks,” obtained from http://www.fingerworks.com/gesture_guide_tips.html, generated Aug. 27, 2004, 2-pgs.
Anonymous. “FingerWorks—Gesture Guide—Web,” obtained from http://www.fingerworks.com/gesture_guide_web.html, generated on Aug. 27, 2004, 1-pg.
Anonymous. “FingerWorks—Guide to Hand Gestures for USB Touchpads,” obtained from http://www.fingerworks.com/igesture_userguide.html, generated Aug. 27, 2004, 1-pg.
Anonymous. “FingerWorks—iGesture—Technical Details,” obtained from http://www.fingerworks.com/igesture_tech.html, generated Aug. 27, 2004, 1-pg.
Anonymous. “FingerWorks—The Only Touchpads with Ergonomic Full-Hand Resting and Relaxation!” obtained from http://www.fingerworks.com/resting.html, Copyright 2001, 1-pg.
Anonymous. “FingerWorks—Tips for Typing on the Mini,” obtained from http://www.fingerworks.com/mini_typing.html, generated on Aug. 27, 2004, 2-pgs.
Anonymous. “GlidePoint8” obtained from http://www.cirque.com/technology/technology_gp.html generated Aug. 5, 2005.
Anonymous. “How do touchscreen monitors know where you're touching?” obtained from http://www.electronics.howstuffworks.com/question716.html generated Aug. 5, 2005.
Anonymous. “How does a touchscreen work?” obtained from http://www.touchscreens.com/intro-anatomy.html generated Aug. 5, 2005.
Anonymous. “iGesture Pad—the MultiFinger USB TouchPad with Whole-Hand Gestures,” obtained from http://www.fingerworks.com/igesture.html, generated Aug. 27, 2004, 2-pgs.
Anonymous. “iGesture Products for Everyone (learn in minutes) Product Overview” FingerWorks.com downloaded Aug. 30, 2005.
Anonymous. “Infrared Touchscreens” obtained from http://www.touchscreens.com/intro-touchtypes-infrared.html generated Aug. 5, 2005.
Anonymous. “Mouse Emulation” FingerWorks obtained from http://www.fingerworks.com/gesture_guide_mouse.html generated Aug. 30, 2005.
Anonymous. “Mouse Gestures in Opera” obtained from http://www.opera.com/products/desktop/mouse/index.dml generated Aug. 30, 2005.
Anonymous. “Mouse Gestures,” Optim oz, May 21, 2004.
Anonymous. “MultiTouch Overview” FingerWorks obtained from http://www.fingerworks.com/multoverview.html generated Aug. 30, 2005.
Anonymous. “Near Field Imaging Touchscreens” obtained from http://www.touchscreens.com/intro-touchtypes-nfi.html generated Aug. 5, 2005.
Anonymous. “PenTouch Capacitive Touchscreens” obtained from http://www.touchscreens.com/intro-touchtypes-pentouch.html generated Aug. 5, 2005.
Anonymous. “Surface Acoustic Wave Touchscreens” obtained from http://www.touchscreens.com/intro-touchtypes-saw.html generated Aug. 5, 2005.
Anonymous. “Symbol Commander” obtained from http://www.sensiva.com/symbolcommander/, generated Aug. 30, 2005.
Anonymous. “Tips for Typing” FingerWorks http://www.fingerworks.com/mini_typing.html generated Aug. 30, 2005.
Anonymous. “Touch Technologies Overview” 2001, 3M Touch Systems, Massachusetts.
Anonymous. “Touchscreen Technology Choices,” <http://www.elotouch.com/products/detech2.asp>, downloaded Aug. 5, 2005.
Anonymous. “Wacom Components—Technology” obtained from http://www.wacom-components.com/english/tech.asp generated on Oct. 10, 2004.
Anonymous. “Watershed Algorithm” http://rsb.info.nih.gov/ij/plugins/watershed.html generated Aug. 5, 2005.
Anonymous. “Op-amp Integrator Amplifier,” Electronics tutorial, retrieved from http://diodetech.blogspot.n1/2013/07/op-amp-integrator.html, on Feb. 10, 2016, eight pages.
Bantz, et al. (Feb. 1979). “Keyboard Device for Upper and Lower Case Keying Without Shifting,” IBM Technical Disclosure Bulletin, vol. 21, No. 9, two pages.
Baxter, L.K. (1996). Capacitive Sensors: Design and Applications, vol. 1 of IEEE Press Series on Electronics Technology, John Wiley & Sons: New York, NY, (Table of Contents Only) three pages.
Bennion, S.I. et al. (Dec. 1981). “Touch Sensitive Graphics Terminal Applied to Process Control,” Computer Graphics 15(4):342-350.
Bier et al., “Toolglass and Magic Lenses: The see-through interface” In James Kijiya, editor, Computer Graphics (SIGGRAPH '93 Proceedings), vol. 27, pp. 73-80, Aug. 1993.
Boie, R.A. (Mar. 1984). “Capacitive Impedance Readout Tactile Image Sensor,” Proceedings of 1984 IEEE International Conference on Robotics and Automation, pp. 370-378.
Buxton, W.A.S. (Mar./Apr. 1994). “Combined Keyboard/Touch Tablet Input Device,” XEROX Disclosure Journal 19 (2):109-111.
Chinese Search Report dated Feb. 2, 2015, for CN Application No. 201210568727.0, filed Jun. 8, 2007, two pages. (25098.53).
Chun, K. et al. (Jul. 1985). “A High-Performance Silicon Tactile Imager Based on a Capacitive Cell,” IEEE Transactions on Electron Devices 32(7):1196-1201.
Cliff (Jul. 24, 2002). “Building a Pressure-Sensitive, Multi-Point TouchScreen?” Posted from the D-I-Y-Baby Department, one page.
Collberg, C. et al. (2002). “TetraTetris: A Study of Multi-User Touch-Based Interaction Using DiamondTouch,” located at cs.arizona.edu, eight pages.
Dannenberg, R.B. et al. (1989). “A Gesture Based User Interface Prototyping System,” ACM, pp. 127-132.
Davies, E.R. (Aug. 1987). “Lateral Histograms for Efficient Object Location: Speed versus Ambiguity,” Pattern Recognition Letters 6(3):189-198.
Davies, E.R. (1990). Machine Vision: Theory, Algorithms, Practicalities, Academic Press, Inc..: San Diego, CA, pp. xi-xxi (Table of Contents Only.).
Davies, E.R. (1997). “Boundary Pattern Analysis,” Chapter 7 in Machine Vision: Theory, Algorithms, Practicalities, 2nd Edition, Academic Press, Inc.: San Diego, CA, pp. 171-191.
Davies, E.R. (1997). “Ellipse Detection,” Chapter 11 in Machine Vision: Theory, Algorithms, Practicalities, 2nd Edition, Academic Press, Inc.: San Diego, CA, pp. 271-290.
Davies, E.R. (1997). “Image Acquisition,” Chapter 23 in Machine Vision: Theory, Algorithms, Practicalities, 2nd Edition, Academic Press, Inc.: San Diego, CA, pp. 583-601.
Diaz-Marino, R.A. et al. (2003). “Programming for Multiple Touches and Multiple Users: A Toolkit for the DiamondTouch Hardware,” Proceedings of ACM UIST'03 User Interface Software and Technology, two pages.
Dietz, P. et al. (2001). “DiamondTouch: A Multi-User Touch Technology,” Proceedings of the 14th Annual ACM Symposium on User Interface Software and Technology, Nov. 11-14, 2001, Orlando, FL, pp. 219-226.
Douglas et al., The Ergonomics of Computer Pointing Devices (1997).
Esenther, A. et al. (Nov. 2002). “DiamondTouch SDK: Support for Multi-User, Multi-Touch Applications,” Mitsubishi Electric Research Laboratories, Inc., five pages.
European Search Report dated Jul. 28, 2011, for EP Application No. 11159164.0, filed Jun. 8, 2007, eight pages.
European Search Report dated Oct. 21, 2011, for EP Application No. 11159166.5, filed Jun. 8, 2007, seven pages.
European Search Report dated Feb. 16, 2012, for EP Application No. 11183531.0, 11 pages.
European Search Report dated Mar. 27, 2012, for EP Application No. 10178558.2, nine pages.
European Search Report received in EP 1 621 989 (@ Beyer Weaver & Thomas, LLP) dated Mar. 27, 2006.
EVB Elektronik “TSOP6238 IR Receiver Modules for Infrared Remote Control Systems” dated Jan. 2004 1-pg.
Ex Parte Quayle Action dated Apr. 20, 2016, for U.S. Appl. No. 11/818,395, filed Jun. 13, 2007, four pages.
Fearing, R.S. (Jun. 1990). “Tactile Sensing Mechanisms,” The International Journal of Robotics Research 9(3):3-23.
Final Office Action dated Jul. 6, 2010, for U.S. Appl. No. 11/760,036, filed Jun. 8, 2007, 51 pages.
Final Office Action dated Jul. 6, 2010, for U.S. Appl. No. 11/760,080, filed Jun. 8, 2007, 66 pages.
Final Office Action dated Jul. 22, 2010, for U.S. Appl. No. 11/760,049, filed Jun. 8, 2007, 52 pages.
Final Office Action dated Aug. 2, 2010, for U.S. Appl. No. 11/760,060, filed Jun. 8, 2007, 78 pages.
Final Office Action dated Sep. 1, 2011, for U.S. Appl. No. 11/650,203, filed Jan. 3, 2007, nine pages.
Final Office Action dated Oct. 17, 2011, for U.S. Appl. No. 11/818,395, filed Jun. 13, 2007, 16 pages.
Final Office Action dated Dec. 16, 2011, for U.S. Appl. No. 11/760,036, filed Jun. 8, 2007, 53 pages.
Final Office Action dated Jan. 30, 2012, for U.S. Appl. No. 11/760,049, filed Jun. 8, 2007, 64 pages.
Final Office Action dated Feb. 27, 2012, for U.S. Appl. No. 11/760,080, filed Jun. 8, 2007, 62 pages.
Final Office Action dated May 9, 2013, for U.S. Appl. No. 12/976,997 filed Dec. 22, 2010, 7 pages.
Final Office Action dated Oct. 27, 2014, for U.S. Appl. No. 11/818,395, filed Jun. 13, 2007, 17 pages.
Final Office Action dated Feb. 8, 2016, for U.S. Appl. No. 14/670,306, filed Mar. 26, 2015, five pages.
Fisher et al., “Repetitive Motion Disorders: The Design of Optimal Rate-Rest Profiles,” Human Factors, 35(2):283-304 (Jun. 1993).
Fukumoto and Yoshinobu Tonomura, “Body Coupled Fingering: Wireless Wearable Keyboard,” CHI97, pp. 147-154 (Mar. 1997).
Fukumoto et al., “ActiveClick: Tactile Feedback for Touch Panels,” In CHI 2001 Summary, pp. 121-122, 2001.
Hardy, “Fingerworks” Mar. 7, 2002; BBC World On Line.
Hector, J. et al. (May 2002). “Low Power Driving Options for an AMLCD Mobile Display Chipset,” Chapter 16.3 in SID 02 Digest (2002 SID International Symposium, Digest of Technical Papers), XXXIII(II):694-697.
Hillier and Gerald J. Lieberman, Introduction to Operations Research (1986).
Hinckley, K. et al. (1998). “Interaction and Modeling Techniques for Desktop Two-Handed Input,” Proceedings of ACM USIT'98 Symposium on User Interface Software and Technology, pp. 49-58.
Hinckley, K. et al. (May 1999). “Touch-Sensing Input Devices,” CHI 99 pp. 223-230.
Hinckley, K. et al. (2000). “Sensing Techniques for Mobile Interaction,” CHI Letters 2(2):91-100.
Hlady, A.M. (1969). “A Touch Sensitive X-Y Position Encoder for Computer Input,” Fall Joint Computer Conference, pp. 545-551.
International Search Report dated Mar. 3, 2006 (PCT/US 05/03325; 119-0052W0).
International search report for International Application No. PCT/US2005/014364 dated Jan. 12, 2005.
International Search Report dated Mar. 6, 2008, for PCT Application No. PCT/2007/70733, filed Jun. 8, 2007, five pages.
International Search Report dated Mar. 7, 2008, for PCT Application No. PCT/2007/70722, filed Jun. 8, 2007, three pages.
International Search Report dated Jun. 24, 2008, for PCT Application No. PCT/US2007/026298, filed Dec. 21, 2007, two pages.
International Search Report dated Jul. 18, 2008, for PCT Application No. PCT/2007/70725, filed Jun. 8, 2007, six pages.
International Search Report dated Jul. 18, 2008, for PCT Application No. PCT/2007/70729, filed Jun. 8, 2007, five pages.
International Search Report dated Oct. 16, 2008, for PCT Application No. PCT/US2007/088749, filed Dec. 21, 2007, four pages.
International Search Report dated Jun. 15, 2012, for PCT/US2011/064455, filed Dec. 12, 2011, four pages.
International Search Report received in corresponding PCT application No. PCT/US2006/008349 dated Oct. 6, 2006.
Jacob et al., “Integrality and Separability of Input Devices,” ACM Transactions on Computer-Human Interaction, 1:3-26 (Mar. 1994).
Kanda, E. et al. (2008). “55.2: Integrated Active Matrix Capacitive Sensors for Touch Panel LTPS-TFT LCDs,” SID 08 Digest, pp. 834-837.
Kinkley et al., “Touch-Sensing Input Devices,” in CHI '99 Proceedings, pp. 223-230, 1999.
Kionx “KXP84 Series Summary Data Sheet” copyright 2005,dated Oct. 21, 2005, 4-pgs.
Kirk, D.E. (1970). “Numerical Determination of Optimal Trajectories,” Chapter 6 in Optimal Control Theory: An Introduction, Prentice Hall, Inc.: Englewood Cliffs, NY. pp. 329-413, with Table of Contents, pp. vii-ix. (90 pages total).
Kling, M. et al. (Sep. 2003). “Interface Design: LCD Touch Interface for ETRAX 100LX,” Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science, UMEA University, Umea, Sweden, 79 pages.
Ko, H. (Jul. 2000). “Open Systems Advanced Workstation Transition Report,” Technical Report 1822, U.S. Navy, SSC San Diego, CA, 82 pages.
Krein, P. et al. (May/Jun. 1990). “The Electroquasistatics of the Capacitive Touch Panel,” IEEE Transactions on Industry Applications 26(3):529-534.
Krueger, M. et al. (Jun. 10, 1988). “Videoplace, Responsive Environment, 1972-1990,” located at http://www.youtube.com/watch?v=dmmxVA5xhuo, last visited Aug. 5, 2011, two pages.
Lee, “A Fast Multiple-Touch-Sensitive Input Device,” Master's Thesis, University of Toronto (1984).
Lee, S.K. et al. (Apr. 1985). “A Multi-Touch Three Dimensional Touch-Sensitive Tablet,” Proceedings of CHI: ACM Conference on Human Factors in Computing Systems, pp. 21-25.
Leeper A.K. (May 21, 2002). “Integration of a clear capacitive touch screen with a 1/8-VGA FSTN-LCD to form and LCD based touchpad,” Synaptics Inc., society for information display, 3 pages.
Leigh, J. et al. (2002). “Amplified Collaboration Environments,” VizGrid Symposium, Nov. 2002, Tokyo, Japan, nine pages.
Ljungstrand, P. et al. eds. (2002). UBICOMP2002, Adjunct Proceedings, 4th International Conference on Ubiquitous Computing, Sep. 29-Oct. 1, 2002, Goteborg, Sweden, 90 pages.
Magerkurth, C. et al. (2004). “Towards the Next Generation of Tabletop Gaming Experiences,” Graphics Interface 2004 (GI'04), May 17-19, 2004, Ontario, Canada, pp. 1-8.
Malik, S. et al. (2004). “Visual Touchpad: A Two-Handed Gestural Input Device,” ICMI'04 Proceedings of the 6th International Conference on Multimodal Intercases, ACM, 8 pages.
Matsushita et al., “HoloWall: Designing a Finger, Hand, Body and Object Sensitive Wall,” In Proceedings of UIST '97, Oct. 1997.
Matsushita, N. et al. (2000). “Dual Touch: A Two-Handed Interface for Pen-Based PDAs,” CHI Letters 2(2):211-212.
McMillan, G.R. (Oct. 1998). “The Technology and Applications of Gesture-Based Control,” presented at the RTO Lecture Series on Alternative Control Technologies: Human Factor Issues, Oct. 14-15, 1998, Ohio, USA, pp. 4-1-4-11.
Mehta, N. et al. (May 1982). “Feature Extraction as a Tool for Computer Input,” Proceedings of ICASSP '82, May 3-5, 1982, Paris, France, pp. 818-820.
Mitchell, G. D. (Oct. 2003). “Orientation on Tabletop Displays,” Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science, Simon Fraser University, 119 pages.
Noda, K. et al. (2001). “Production of Transparent Conductive Films with Inserted SiO2 Anchor Layer, and Application to a Resistive Touch Panel,” Electronics and Communications in Japan Part 2 84(7):39-45.
Non-Final Office Action dated May 14, 2008, for U.S. Appl. No. 10/840,862, filed May 6, 2004, six pages.
Non-Final Office Action dated Dec. 24, 2008, for U.S. Appl. No. 10/840,862, filed May 6, 2004, nine pages.
Non-Final Office Action dated Jun. 2, 2009, for U.S. Appl. No. 10/840,862, filed May 6, 2004, seven pages.
Non-Final Office Action dated Nov. 12, 2009, for U.S. Appl. No. 10/840,862, filed May 6, 2004, eight pages.
Non-Final Office Action dated Mar. 12, 2010, for U.S. Appl. No. 11/760,080, filed Jun. 8, 2007, 31 pages.
Non-Final Office Action dated Apr. 22, 2010, for U.S. Appl. No. 11/760,036, filed Jun. 8, 2007, 37 pages.
Non-Final Office Action dated Apr. 23, 2010, for U.S. Appl. No. 11/760,060, filed Jun. 8, 2007, 66 pages.
Non-Final Office Action dated May 5, 2010, for U.S. Appl. No. 11/760,049, filed Jun. 8, 2007, 65 pages.
Non-Final Office Action dated Jun. 21, 2010, for U.S. Appl. No. 11/650,203, filed Jan. 3, 2007, eight pages.
Non-Final Office Action dated Jan. 25, 2011, for U.S. Appl. No. 11/818,395, filed Jun. 13, 2007, 31 pages.
Non-Final Office Action dated Mar. 14, 2011, for U.S. Appl. No. 11/650,203, filed Jan. 3, 2007, nine pages.
Non-Final Office Action dated May 13, 2011, for U.S. Appl. No. 12/267,540, filed Nov. 7, 2008, seven pages.
Non-Final Office Action dated Jul. 8, 2011, for U.S. Appl. No. 12/267,532, filed Nov. 7, 2008, five pages.
Non-Final Office Action dated Jul. 14, 2011, for U.S. Appl. No. 12/267,522, filed Nov. 7, 2008, six pages.
Non-Final Office Action dated Aug. 4, 2011, for U.S. Appl. No. 11/760,036, filed Jun. 8, 2007, 45 pages.
Non-Final Office Action dated Aug. 11, 2011, for U.S. Appl. No. 11/760,049, filed Jun. 8, 2007, 60 pages.
Non-Final Office Action dated Sep. 1, 2011, for U.S. Appl. No. 11/760,060, filed Jun. 8, 2007, 76 pages.
Non-Final Office Action dated Nov. 14, 2011, for U.S. Appl. No. 11/760,080, filed Jun. 8, 2007, 60 pages.
Non-Final Office Action dated Feb. 17, 2012, for U.S. Appl. No. 13/251,099, filed Sep. 30, 2011, seven pages.
Non-Final Office Action dated Jun. 20, 2012, for U.S. Appl. No. 13/345,347, filed Jan. 6, 2012, five pages.
Non-Final Office Action dated Sep. 12, 2012, for U.S. Appl. No. 11/650,203, filed Jan. 3, 2007, nine pages.
Non-Final Office Action dated Oct. 5, 2012, for U.S. Appl. No. 12/976,997, filed Dec. 22, 2010, 6 pages.
Non-Final Office Action dated Mar. 29, 2013, for U.S. Appl. No. 13/717,573, filed Dec. 17, 2012, five pages.
Non-Final Office Action dated May 30, 2013, for U.S. Appl. No. 13/251,099, filed Sep. 30, 2011, seven pages.
Non-Final Office Action dated Jun. 27, 2013, for U.S. Appl. No. 11/760,080, filed Jun. 8, 2007, 48 pages.
Non-Final Office Action dated Dec. 24, 2013, for Ex Parte Reexamination of U.S. Pat. No. 7,663,607, 52 pages.
Non-Final Office Action dated Dec. 30, 2013, for U.S. Appl. No. 12/976,997, filed Dec. 22, 2010, six pages.
Non-Final Office Action dated May 16, 2014, for Ex Parte Reexamination of U.S. Pat. No. 7,663,607, 34 pages.
Non-Final Office Action dated Jul. 14, 2014, for U.S. Appl. No. 14/308,595, filed Jun. 18, 2014, five pages.
Non-Final Office Action dated Mar. 25, 2014, for U.S. Appl. No. 14/073,818, filed Nov. 6, 2013, six pages.
Non-Final Office Action dated Apr. 18, 2014, for U.S. Appl. No. 11/818,395, filed Jun. 13, 2007, 17 pages.
Non-Final Office Action dated Aug. 4, 2014, for U.S. Appl. No. 14/086,877 filed Nov. 21, 2013, 8 pages.
Non-Final Office Action dated Sep. 26, 2014, for U.S. Appl. No. 14/308,646, filed Jun. 18, 2013, five pages.
Non-Final Office Action dated Jan. 30, 2015, for U.S. Appl. No. 14/047,960, filed Oct. 7, 2013, 18 pages.
Non-Final Office Action dated May 7, 2015, for U.S. Appl. No. 14/174,760, filed Feb. 6, 2014, 27 pages.
Non-Final Office Action dated May 12, 2015, for U.S. Appl. No. 14/670,306, filed Mar. 26, 2015, five pages.
Non-Final Office Action dated Sep. 10, 2015, for U.S. Appl. No. 11/818,395, filed Jun. 13, 2007, 17 pages.
Non-Final Office Action dated Oct. 8, 2015, for U.S. Appl. No. 14/670,306, filed Mar. 26, 2015, four pages.
Notice of Allowability (Corrected) dated Jun. 27, 2014, for U.S. Appl. No. 12/976,997, filed Dec. 22, 2010, five pages.
Notice of Allowability (Corrected) dated Jan. 21, 2015, for U.S. Appl. No. 14/308,646, filed Jun. 18, 2014, five pages.
Notice of Allowance dated Apr. 27, 2012, for U.S. Appl. No. 11/760,036, filed Jun. 8, 2007, eight pages.
Notice of Allowance dated Oct. 25, 2011, for U.S. Appl. No. 12/267,540, filed Nov. 7, 2008, seven pages.
Notice of Allowance dated Mar. 27, 2012, for U.S. Appl. No. 11/760,060, filed Jun. 8, 2007, 17 pages.
Notice of Allowance dated Jul. 12, 2012, for U.S. Appl. No. 13/251,099, filed Sep. 30, 2011, seven pages.
Notice of Allowance dated Sep. 19, 2012, for U.S. Appl. No. 13/345,347, filed Jan. 6, 2012, seven pages.
Notice of Allowance dated Oct. 29, 2012, for U.S. Appl. No. 13/345,347, filed Jan. 6, 2012, eight pages.
Notice of Allowance dated Feb. 6, 2013, for U.S. Appl. No. 13/084,402, filed Apr. 11, 2011, 12 pages.
Notice of Allowance dated Feb. 19, 2013, for U.S. Appl. No. 13/538,498, filed Jun. 29, 2012, 16 pages.
Notice of Allowance dated Apr. 26, 2013, for U.S. Appl. No. 11/650,203, filed Jan. 3, 2007, 8 pages.
Notice of Allowance dated May 28, 2013, for U.S. Appl. No. 11/760,049, filed Jun. 8, 2007, 10 pages.
Notice of Allowance dated Jul. 19, 2013, for U.S. Appl. No. 13/717,573, filed Dec. 17, 2012, 9 pages.
Notice of Allowance dated Oct. 10, 2013, for U.S. Appl. No. 11/760,080, filed Jun. 8, 2007, 10 pages.
Notice of Allowance dated Mar. 3, 2014, for U.S. Appl. No. 13/251,099, filed Sep. 30, 2011, eight pages.
Notice of Allowance dated Apr. 14, 2014, for U.S. Appl. No. 12/976,997, filed Dec. 22, 2010, 8 pages.
Notice of Allowance dated Jul. 14, 2014, for U.S. Appl. No. 14/073,818, filed Nov. 6, 2013, seven pages.
Notice of Allowance dated Oct. 31, 2014, for U.S. Appl. No. 14/308,595, filed Jun. 18, 2014, eight pages.
Notice of Allowance dated Nov. 6, 2014, for U.S. Appl. No. 14/308,646, filed Jun. 18, 2014, eight pages.
Notice of Allowance dated Dec. 23, 2014, for U.S. Appl. No. 14/456,831, filed Aug. 11, 2014, eight pages.
Notice of Allowance dated Jan. 14, 2015, for U.S. Appl. No. 14/086,877, filed Nov. 21, 2013, eight pages.
Notice of Allowance dated May 28, 2015, for U.S. Appl. No. 14/666,174, filed Mar. 23, 2015, eight pages.
Notice of Allowance dated Jun. 29, 2015, for U.S. Appl. No. 14/047,960, filed Oct. 7, 2013, 11 pages. (98.11).
Notice of Allowance (corrected) dated Jul. 2, 2015, for U.S. Appl. No. 14/666,174, filed Mar. 23, 2015,five pages.
Notice of Allowance dated Sep. 14, 2015, for U.S. Appl. No. 14/174,760, filed Feb. 6, 2014, 12 pages.
Notice of Allowance dated Oct. 19, 2015, for U.S. Appl. No. 14/047,960, filed Oct. 7, 2013, eight pages.
Notice of Allowance dated May 25, 2016, for U.S. Appl. No. 14/670,306, filed Mar. 26, 2015, eight pages.
Notice of Prior and Concurrent Proceedings under 37 C.F.R. § 1.565(a) for U.S. Ex Parte Reexamination Control No. 90/012,935, filed Jul. 30, 2013 (Reexamination of U.S. Pat. No. 7,663,607), 279 pages. (submitted in four parts).
Ogawa, H. et al. (1979). “Preprocessing for Chinese Character Recognition and Global Classification of Handwritten Chinese Characters,” Pattern Recognition 11:1-7.
Partial European Search Report dated Mar. 15, 2011, for EP Application No. 10178661.4, filed Jun. 8, 2007, six pages.
Partial European Search Report dated Oct. 21, 2011, for EP Application No. 11159165.7 filed Jun. 8, 2007, seven pages.
Partial European Search Report dated Oct. 24, 2011, for EP Application No. 11159167.3 filed Jun. 8, 2007, eight pages.
Phipps, C.A. (Spring 2003). “A Metric to Measure Whole Keyboard Index of Difficulty Based on Fitts' Law,” A Dissertation Submitted in Partial Fulfillment of the Requirements for the Degree of Ph.D., 103 pages.
Quantum Research Group “QT510 / Qwhe1IM Touch Slider IC” copyright 2004-2005, 14-pgs.
Quantum Research Group Ltd.(1997). QT9701B2 Datasheet, 30 pages.
Quantum Research Group Ltd. (1999). QProx™ QT60320 32-Key Qmatrix™ Charge-Transfer IC Datasheet, pp. 1-14.
Quantum Research Group Ltd. (2001). QT60325, QT60485, QT60645 32, 48, 64 Key QMatrix™ Keypanel Sensor Ics Datasheet, 42 pages.
Quantum Research Group Ltd. (2002). QMatrix™ QT60040 4-Key Charge-Transfer IC Datasheet, pp. 1-9.
Quantum Research Group Ltd. (Oct. 10, 2002). Quantum Research Application Note An-KD01: Qmatrix™ Panel Design Guidelines, four pages.
Quek, “Unencumbered Gestural Interaction,” IEEE Multimedia, 3:36-47 (Winter 1996).
Rabuffetti, M. (2002). “Touch-screen System for Assessing Visuo-motor Exploratory Skills in Neuropsychological Disorders of Spatial Cognition,” Medical & Biological Engineering & Computing 40:675-686.
Radwin, “Activation Force and Travel Effects on Overexertion in Repetitive Key Tapping,” Human Factors, 39(1):130-140 (Mar. 1997).
Raisamo, R. (Dec. 7, 1999). “Multimodal Human-Computer Interaction: A Constructive and Empirical Study,” Dissertation, University of Tampere, Finland, 86 pages.
Rekimoto et al., “ToolStone: Effective Use of the Physical Manipulation Vocabularies of Input Devices,” In Proc. Of UIST 2000, 2000.
Rekimoto, J. (2002). “SmartSkin: An Infrastructure for Freehand Manipulation on Interactive Surfaces,” CHI 2002, Apr. 20-25, 2002. [(Apr. 25, 2002). 4(1):113-120.].
Rekimoto, J. et al. (2003). “Pre-Sense: Interaction Techniques for Finger Sensing Input Devices,” CHI Letters 5(2):203-212.
Request for Ex Parte Reexamination of U.S. Pat. No. 7,663,607, 106 pages.
Response to Non-Final Office Action in Ex Parte Reexamination dated Mar. 24, 2014, of U.S. Pat. No. 7,663,607, 392 pages. (28042.00) (Submitted in two parts).
Rong, J. et al. (2002). “AIAA 2002-4553: Hierarchical Agent Based System for General Aviation CD&R Under Free Flight,” AIAA Guidance, Navigation, and Control Conference and Exhibit, Aug. 5-8, 2002, Monterey, CA, pp. 1-11.
Rubine et al., “Programmable Finger-Tracking Instrument Controllers,” Computer Music Journal, vol. 14, No. 1 (Spring 1990).
Rubine, D. (Jul. 1991). “Specifying Gestures by Example,” Computer Graphics 25(4):329-337.
Rubine, D. et al. (1988). “The VideoHarp,” Proceedings of the 14th International Computer Music Conference, Cologne, W. Germany, Sep. 20-25, 1988, pp. 49-55.
Rubine, D. et al. (1991). “The Videoharp: An Optical Scanning MIDI Controller,” Contemporary Music Review 6(1):31-46.
Rubine, D.H. (Dec. 1991). “The Automatic Recognition of Gestures,” CMU-CS-91-202, Submitted in Partial Fulfillment of the Requirements of the Degree of Doctor of Philosophy in Computer Science at Carnegie Mellon University, 285 pages.
Rubine, D.H. (May 1992). “Combining Gestures and Direct Manipulation,” CHI '92, pp. 659-660.
Russell, D.M. et al. (2004). “The Use Patterns of Large, Interactive Display Surfaces: Case Studies of Media Design and use for BlueBoard and MERBoard,” Proceedings of the 37th Hawaii International Conference on System Sciences 2004, IEEE, pp. 1-10.
Rutledge et al., “Force-To-Motion Functions for Pointing,” Human-Computer Interaction—Interact (1990).
Sears, A. (Mar. 11, 1991). “Improving Touchscreen Keyboards: Design Issues and a Comparison with Other Devices,” Human-Computer Interaction Laboratory, pp. 1-19.
Sears, A. et al. (Jun. 1990). “A New Era for High-Precision Touchscreens,” Advances in Human-Computer Interaction, vol. 3, Tech Report HCIL-90-01, one page only.
Segen, J. et al. (1998). “Human-Computer Interaction Using Gesture Recognition and 3D Hand Tracking,” IEEE, pp. 188-192.
Shen, C. et al. (Jan. 2004). “DiamondSpin: An Extensible Toolkit for Around-the-Table Interaction,” CHI 2004, Apr. 24-29, 2004, Vienna, Austria, 10 pgs.
Siegel, D.M. et al. (1987). “Performance Analysis of a Tactile Sensor,” IEEE, pp. 1493-1499.
Singapore Examination Report dated Jan. 11, 2010, for SG Patent Application No. 0607116-1, five pages.
Son, J.S. et al. (1996). “Comparison of Contact Sensor Localization Abilities During Manipulation,” Robotics and Autonomous System 17 pp. 217-233.
Stansfield, S.A. (Mar. 1990). “Haptic Perception With an Articulated, Sensate Robot Hand,” SANDIA Report: SAND90-0085-UC-406, 37 pages.
Stauffer, R.N. ed. (Jun. 1983). “Progress in Tactile Sensor Development,” Robotics Today pp. 43-49.
Stumpe, B. (Mar. 16, 1977). “A New Principle for an X-Y Touch Screen,” CERN, 19 pages.
Stumpe, B. (Feb. 6, 1978). “Experiments to Find a Manufacturing Process for an X-Y Touch Screen: Report on a Visit to Polymer-Physik GmbH,” CERN, five pages.
Subatai Ahmad, “A Usable Real-Time 3D Hand Tracker,” Proceedings of the 28th Asilomar Conference on Signals, Systems and Computers—Part 2 (of2), vol. 2 (Oct. 1994).
Sugiyama, S. et al. (Mar. 1990). “Tactile Image Detection Using a 1k-element Silicon Pressure Sensor Array,” Sensors and Actuators A21-A23(1-3):397-400.
Suzuki, K. et al. (Aug. 1990). “A 1024-Element High-Performance Silicon Tactile Imager,” IEEE Transactions on Electron Devices 37(8):1852-1860.
Texas Instruments “TSC2003 / I2C Touch Screen Controller” Data Sheet SBAS 162, dated Oct. 2001, 20-pgs.
TW Search Report dated Jun. 27, 2011, for TW Patent Application No. 097100481, one page.
TW Search Report dated Feb. 21, 2014, for TW Patent Application No. 100145112, with English translation, two pages.
TW Search Report dated Dec. 17, 2015, for TW Patent Application No. 103130159, one page.
U.S. Appl. No. 60/072,509, filed Jan. 26, 1998, by Westerman et al. (copy not attached).
U.S. Appl. No. 60/333,770, filed Nov. 29, 2001, by Perski et al. (copy not attached).
U.S. Appl. No. 60/406,662, filed Aug. 29, 2002, filed by Morag et al. (copy not attached.).
U.S. Appl. No. 60/501,484, filed Sep. 5, 2003, by Perski et al. (copy not attached).
Van Kleek, M. (Feb. 2003). “Intelligent Environments for Informal Public Spaces: The Ki/o Kiosk Platform,” Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Engineering, MIT, 108 pages.
Van Oversteegen, B.G.F.A.W. (Apr. 10, 1998). “Touch Screen Based Measuring Equipment: Design and Implementation,” Master's Thesis, Submitted to Technische Universiteit, Eindhoven, The Nederlands, 103 pages.
Vazquez, A.A. (Sep. 1990). “Touch Screen Use on Flight Simulator Instructor/Operator Stations,” Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science in Information Systems, 78 pages.
Vernier, F. et al. (2002). “Multi-User, Multi-Finger Drag & Drop of Multiple Documents,” located at http://www.edgelab.ca/CSCW/Workshop2002/fred_vernier, three pages.
Wacom Company Limited. (Nov. 12, 2003). Wacom intuos® 2 User's Manual for Windows®, English V4.1, 165 pages.
Wallergard, M. (2003). “Designing Virtual Environments for Brain Injury Rehabilitation,” Thesis, Lund University, Sweden, 98 pages.
Wellner, “The Digital Desk Calculators: Tangible Manipulation on a Desk Top Display” In ACM UIST '91 Proceedings, pp. 27-34, Nov. 1991.
Westerman, W. (Spring 1999). “Hand Tracking, Finger Identification, and Chordic Manipulation on a Multi-Touch Surface,” A Dissertation Submitted to the Faculty of the University of Delaware in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in Electrical Engineering, 364 pages.
Westerman, W. et al. (2001). “Multi-Touch: A New Tactile 2-D Gesture Interface for Human-Computer Interaction,” Proceedings of the Human Factors and Ergonomics Societ 45th Annual Meeting, pp. 632-636.
Williams, “Applications for a Switched-Capacitor Instrumentation Building Block” Linear Technology Application Note 3, Jul. 1985, pp. 1-16.
Wu, M. et al. (2003). “Multi-Finger and Whole Hand Gestural Interaction Techniques for Multi-User Tabletop Displays,” ACM pp. 193-202.
Yamada et al., “A Switched-Capacitor Interface for Capacitive Pressure Sensors” IEEE Transactions on Instrumentation and Measurement, vol. 41, No. 1, Feb. 1992, pp. 81-86.
Yee, K-P. (2004). “Two-Handed Interaction on a Tablet Display,” CHI'04, pp. 1493-1496.
Yeh et al., “Switched Capacitor Interface Circuit for Capacitive Transducers” 1985 IEEE.
Zhai et al., “Dual Stream Input for Pointing and Scrolling,” Proceedings of CHI '97 Extended Abstracts (1997).
Zimmerman et al., “Applying Electric Field Sensing to Human-Computer Interfaces,” In CHI '85 Proceedings, pp. 280-287, 1995.
European Search Report dated Nov. 7, 2017, for EP Application No. 17182184.6, eight pages.
Non-Final Office Action dated Nov. 7, 2017, for U.S. Appl. No. 15/593,182, filed May 11, 2017, 15 pages.
European Partial Search Report dated Mar. 13, 2017, for EP Application No. 11194616.6, filed Dec. 20, 2011, 6 pges.
Notice of Allowance dated Mar. 13, 2017, for U.S. Appl. No. 11/818,395, filed Jun. 13, 2007, 13 pages.
Notice of Allowance dated May 3, 2017, for U.S. Appl. No. 14/838,234, filed Aug. 27, 2015, ten pages.
Non-Final Office Action dated Jul. 26, 2018, for U.S. Appl. No. 15/273,487, filed Sep. 22, 2016, 23 pages.
Non-Final Office Action dated Mar. 31, 2017, for U.S. Appl. No. 15/273,487, filed Sep. 22, 2016, 24 pages.
Non-Final Office Action dated Feb. 23, 2018, for U.S. Appl. No. 15/424,712, filed Feb. 3, 2017, 25 pages.
Notice of Allowance dated Mar. 21, 2018, for U.S. Appl. No. 15/273,487, filed Sep. 22, 2016, eight pages.
Notice of Allowance dated Sep. 28, 2016, for U.S. Appl. No. 14/985,283, filed Dec. 30, 2015, ten pages.
Final Office Action dated Aug. 8, 2018, for U.S. Appl. No. 15/593,182, filed May 11, 2017, 17 pages.
Notice of Allowance dated Sep. 14, 2018, for U.S. Appl. No. 15/424,712, filed Feb. 3, 2017, ten pages.
Final Office Action dated Aug. 23, 2017, for U.S. Appl. No. 15/273,487, filed Sep. 22, 2016, 36 pages.
Chinese Search Report dated Oct. 10, 2018, for CN Application No. 201610615835.7, filed Dec. 21, 2007, two pages.
Notice of Allowance (corrected) dated Sep. 27, 2018, for U.S. Appl. No. 15/424,712, filed Feb. 3, 2017, seven pages.
Notice of Allowance dated Feb. 20, 2019, for U.S. Appl. No. 15/273,487, filed Sep. 22, 2016, nine pages.
Related Publications (1)
Number Date Country
20170010750 A1 Jan 2017 US
Provisional Applications (1)
Number Date Country
60878783 Jan 2007 US
Divisions (1)
Number Date Country
Parent 11818395 Jun 2007 US
Child 15275254 US