Touch-sensing OLED display with tilted emitters

Information

  • Patent Grant
  • 10318074
  • Patent Number
    10,318,074
  • Date Filed
    Wednesday, January 27, 2016
    9 years ago
  • Date Issued
    Tuesday, June 11, 2019
    5 years ago
Abstract
A touch-sensitive display, comprising a transmissive panel defining the touch surface, a first set of OLED emitters forming display pixels, a second set of OLED emitters configured to emit light via an adjacent cell into the transmissive panel for propagation therein via total internal reflection, and a set of detectors configured to receive light from the second set of OLED emitters after the light has propagated inside the transmissive panel via total internal reflection. The first set and the second set of OLED emitters are arranged on the same substrate.
Description
RELATED APPLICATION DATA

This application claims the benefit of priority of Swedish Patent Application No. 1550096-0 filed on Jan. 30, 2015, and titled “Touch-Sensing OLED Display With Tilted Emitters”, which is incorporated by reference herein in its entirety.


FIELD OF THE INVENTION

The present invention relates to touch sensing systems and especially to OLED display devices that offer touch sensitivity.


BACKGROUND

Display devices with touch sensitivity are used today in a wide variety of applications such as touch pads in laptop computers, all-in-one computers, mobile phones and other hand-held devices, etc. There is often a desire to provide these electronic devices with a relatively large touch sensitive display and still let the devices be small and thin. However, various solutions provided in the art to date often have one or more drawbacks, such as undesired thickness and complexity, or for light-based devices, limitations on the amount of light available from emitters for touch detection.


SUMMARY OF THE DISCLOSURE

In one aspect, embodiments of the invention are touch-sensitive displays which comprise a transmissive panel defining the touch surface, a first set of OLED emitters forming display pixels, a second set of OLED emitters configured to emit light via an adjacent cell into the transmissive panel for propagation therein via total internal reflection, and a set of detectors configured to receive light from the second set of OLED emitters after the light has propagated inside the transmissive panel via total internal reflection; wherein the first set and the second set of OLED emitters are arranged on the same substrate.


In various alternative embodiments, other aspects include an adjacent cell as an OLED emitter of the first set, an adjacent cell as a light transmissive aperture cell, or a light transmissive aperture cell comprising plastic material, transparent OLED carrier or OLED compound.


In one embodiment, each OLED emitter of the second set is configured with an at least partially reflective layer between the transmissive panel and an active material of the OLED emitter of the second set. The reflective layer is preferably at least 70% reflective. The reflective layer is preferably less than 50% transmissive.


In other embodiments, the reflective layer comprises silver, or an anode or cathode of the OLED emitter. The reflective layer also may be in a plane that is at an angle of 0-45 degrees to a plane of the touch surface.


In further embodiments, the OLED emitter may be configured with an anode and a cathode layer arranged perpendicular to the plane of the panel. The touch-sensing display panel may be provided with a reflective material between a back substrate and the aperture cell. Alternatively, the touch-sensitive display may comprise organic photo detectors.


Another aspect of the invention is a method of producing a touch sensitive display panel, comprising the steps of: providing a transparent substrate; providing a matrix of image pixels and emitter pixels at a surface of the substrate; providing at least one of the emitter pixels with an adjacent cell, configured to allow light to be emitted from the emitter pixel to the transparent substrate via the adjacent cell; providing a cover sheet over the pixel matrix; and sealing the cover sheet to the substrate.


A further aspect of the invention is a method of producing a touch sensitive display panel, comprising the steps of: providing a carrier sheet; providing a matrix of image pixels and emitter pixels on the carrier sheet; providing at least one of the emitter pixels with an adjacent cell; providing a transparent substrate over the image pixels and the emitter pixels; sealing the transparent substrate to the carrier sheet; wherein the adjacent cell is configured to allow light to be emitted from the emitter pixel to the transparent substrate via the adjacent cell.


Still other objectives, features, aspects and advantages of the present invention will appear from the following detailed description, from the attached claims as well as from the drawings.





BRIEF DESCRIPTION OF THE DRAWINGS

Embodiments of the invention will now be described in more detail with reference to the accompanying schematic drawings.



FIG. 1 is section view of a touch-sensing FTIR system.



FIGS. 2A and 2B are top plan and partial section views of one embodiment of the invention. FIG. 2C illustrates an alternative embodiment to the embodiment of FIGS. 2A and 2B.



FIG. 3 is a partial section view of an alternative embodiment of the invention, wherein the touch-sensing FTIR system comprises a transparent aperture cell.



FIG. 4 is a partial top plan view of an alternative embodiment of the invention, wherein emitters are larger than pixel elements.



FIG. 5 is a partial section view of an alternative embodiment of the invention, wherein the emitter is configured with transparent and vertical anode and cathode.



FIG. 6 is a partial section view of an alternative embodiment of the invention wherein the pixel elements are overlaid with an optical layer of lower reflective index.



FIG. 7 is a partial section view of an alternative embodiment of the invention, illustrating emitters stacked with pixel elements.



FIG. 8 is a flow chart of a method for producing a touch-sensing FTIR system according to the invention.



FIG. 9 is a flow chart of an alternative method for producing a touch-sensing FTIR system according to the invention.



FIG. 10 is a schematic view of a touch-sensing FTIR system according to the invention.



FIG. 11 is a flow chart of a method of connecting a display to a processor in a touch-sensing FTIR system of the invention.



FIG. 12 is a side view of a touch-sensing FTIR system, comprised of a combined display and touch-sensing panel, formed by attaching a light guide to a display.





DETAILED DESCRIPTION

The present invention relates to OLED displays and the use of techniques for effectively emitting light into a panel for providing touch sensitivity to a display apparatus. The invention provides an energy efficient and integrated touch-sensing display panel 1, operating by means of FTIR. Throughout the description the same reference numerals are used to identify corresponding elements.



FIG. 1 illustrates the operating principle of a touch-sensing FTIR system. In the side view of FIG. 1 a beam of light is propagated by total internal reflection (TIR) inside a planar (two-dimensional) light guide 2. The light guide 2 comprises opposing surfaces 3, 4 which define a front (or top) boundary surface 3 and a rear (or bottom) boundary surface 4 of the light guide 2. Each boundary surface 3, 4 reflects light that impinges on the boundary surface from within the light guide 2 at an angle that exceeds the so-called critical angle, as is well-known to the skilled person. When an object 5 is brought sufficiently close to one of the boundary surfaces (here, the top surface 3), part of the beam may be scattered by the object 5, part of the beam may be absorbed by the object 5, and part of the beam may continue to propagate in the light guide by TIR. Thus, when the object 5 touches the top surface 3, which forms a “touch surface”, the total internal reflection is frustrated and the energy of the transmitted light is decreased, as indicated by the thinned lines to the right of the object 5. This phenomenon is known as FTIR (Frustrated Total Internal Reflection) and a corresponding touch-sensing device may be referred to as an “FTIR system”.


Although not shown in FIG. 1, the FTIR system typically includes an arrangement of emitters and detectors, which are distributed along the peripheral region of the touch surface 3. Light from an emitter is introduced into the light guide 2 and propagates by TIR to one or more detectors. Each pair of an emitter and a detector defines a “detection line”, which corresponds to the propagation path from the emitter to the detector. Any object that touches the touch surface along the extent of the detection line will thus decrease or attenuate the amount of light received by the detector. The emitters and detectors are typically arranged to define a grid of intersecting detection lines on the touch surface, whereby each touching object is likely to cause an attenuation of several non-parallel detection lines.


The arrangement of detectors is electrically connected to a signal processor, which acquires and processes an output signal from the arrangement. The output signal is indicative of the power of transmitted light at each detector. The signal processor may be configured to process the output signal for extraction of touch data, such as a position (e.g. x, y coordinates), a shape or an area of each touching object.


While FIG. 1 illustrates the working principle of FTIR touch as such, the invention relates to a touch-sensing display panel in which an FTIR touch-sensing mechanism is integrated with a display, and with increased efficiency in coupling light into the light guide so that it may propagate therein with total internal reflection, as will be shown with reference to the subsequent drawings.



FIG. 2A is a top plan view and FIG. 2B is a partial side view of a touch-sensing display panel 1 according to an embodiment of the invention. The touch-sensing display panel 1 is implemented as a combination of a light transmissive light guide 2 that defines a front touch surface 3, and a dual-function display pixel matrix 6 which is configured to both display images through the front surface 3 and provide touch sensitivity to the front surface 3 via FTIR.


As seen in the plan view of FIG. 2A, a plurality of emitters 7 and detectors 8 (collectively referred to as “touch-sensor elements”) are arranged in interleaved fashion underneath a peripheral region of the light guide 2. It should be noted, though, that this interleaved arrangement is merely one example of positioning the emitters 7 and detectors 8. Another example may be to arrange emitters along two sides, and detectors along the other two sides, of the panel 1. A further example is to arrange the emitters and detectors so that they are alternated two emitters and two detectors. Other arrangement of emitters and detectors are disclosed in WO2013/176615, WO2013/176614, WO2013/176613, which are all incorporated herein by reference. In the drawings, for illustrative purposes only, emitters 7 and detectors 8 are represented by circles and rectangles, respectively. Furthermore, a center region of the light guide 2 is aligned with a matrix of image-forming elements or picture elements (“pixels” or “pixel elements”) 10 that define a display area for displaying visual images in monochrome or color. The pixels 10, which are indicated as a matrix of square elements in FIG. 2A, may be formed by any available integrated display technology based on semiconductor technology, including but not limited to OLED (Organic Light-Emitting Diode), PLED (Polymer Light-Emitting Diode), LED (Light Emitting Diode), etc.


In the following, it is assumed that the display pixel matrix 6 in FIGS. 2A-2B is based on OLEDs. The display pixel matrix 6 comprises a rear electrode (e.g. an anode) 15, and a front electrode (e.g. a cathode) 16, and an intermediate organic structure 17, which may be formed by one or more organic layers, as is known in the art. The front electrode layer 16 is transparent and may e.g. be made of indium tin oxide (ITO). The pixels 10 of the display area may be defined by patterning of the electrode layers 15, 16, and optionally by patterning of the organic structure 17. Each pixel 10 may include one or more sub-pixels, which may be formed by selective doping to generate different light emissive properties of the different sub-pixels, e.g. such that the sub-pixels emit red, green and blue light, respectively. Different designs of a combined thin film transistor (TFT) structure and OLED pixels are shown in U.S. 20080150848, which is incorporated herein by reference.


The emitters 7 and detectors 8 in the peripheral region 11 may also be defined by patterning of the electrode layers 15, 16 and/or by patterning of the organic structure 17. It is well-known that junction diodes, such as LEDs and OLEDs, are operable as both emitters and detectors by application of proper control voltages to the junction diodes. Thus, the emitters 7 and the detectors 8 may be implemented by the same or similar elements, whereby the emitters 7, the detectors 8 and the pixels 10 are formed as portions in the organic structure 17 that are selectively and individually addressable via the electrode layers 15, 16. In this embodiment, the combination of electrode layers 15, 16 and organic structure thus forms a composite substrate in which emitters 7, detectors 8 and pixels 10 are integrated.


Preferably, the light guide 2 is included as a transparent substrate during manufacture of the display pixel matrix 6, e.g. as a backing for supporting the front electrode 16. Alternatively, the OLEDs may be built up from the side of the lower electrode layer 15, and in that case the light guide 2 is a cover sheet that is nevertheless required for an OLED display, due to its sensitivity to moisture. Generally, the light guide 2 may be made of any material that transmits a sufficient amount of radiation in the relevant wavelength range to permit a measurement of transmitted energy, so that touch determination can be performed. Such material includes glass, poly(methyl methacrylate) (PMMA), polycarbonates (PC), PET (poly(ethylene terephthalate)) and TAC (Triallyl cyanurate). The light guide 2 may be flat or curved and may be of any shape, such as circular, elliptical or polygonal. It is possible that the light guide 2 is comprised of a plurality of material layers, e.g. for the purpose of scratch-resistance, anti-fingerprint functionality, anti-reflection or other functional purpose.


The use of OLED technology makes it possible to design the display unit 6 as a thin and flexible unit, if desired. It is also possible to design the emitters 7 and the pixels 10 with different emissive properties, if desired. For example, the wavelength(s) at which the organic structure 17 emits light may be readily tuned with appropriate dopants during manufacture. Furthermore, the display unit 6 does not need to have a backlight. Still further, the size and shape of the image-forming pixels 10, emitters 7 and detectors 8 are readily set in manufacture. It may e.g. be advantageous to make the emitters 7 and/or the detectors 8 larger than the pixels 10. The amount of light emitted by an OLED element increases with its surface area, and it may thus be desirable to make the emitters 7 larger than the pixels 10 to increase the amount of emitted light from each emitter 7. OLEDs are known to have relatively small heat losses, which enables the use of large emitters 7 without a need for additional cooling measures. The detectors 8 may also be made larger than the pixels 10 in order to improve the light gathering ability of the detectors 8 and decrease noise. In alternative embodiments, a number of detector elements 8 are used as one detector, and therefore coupled to output a common measurement signal. Another advantage of OLED technology is that OLEDs typically have a large index of refraction, typically in the range of 1.7-2 or even higher. This allows light to be emitted from the OLED in a large solid angle, which may serve to favorably increase the divergence angle of the respective fan beam inside the light guide 2. This is useful in systems where the light from an emitter 7 should be received by a plurality of detectors 8, i.e. to generate multiple detection lines from the emitter 7.


As noted above, it is conceivable that the light guide 2 is a transparent substrate or backing for the front electrode layer 16. The process for manufacturing the display unit 6 may be adapted to add a layer of lower index of refraction between the electrode layer 16 and the transparent backing, i.e. the light guide 2, if needed to sustain light propagation by TIR therein. As is well known in the art, each pixel 10 may be configured to emit light in one color only, or may comprise several sub pixels configured to emit light in different colors, such as RGB (red, green, blue). Such sub pixels may be formed by stacking OLEDs, i.e. forming them on top of each other, or by placing them next to each other within the area of the pixel element 10. So, each pixel 10 may include one or several OLEDs. Emitters 7 and detectors 8 are arranged at the peripheral region. However, only an emitter is shown in the drawing. Preferably, as already described, the emitter 7 and detector 8 are OLEDs, formed integrally with the image-forming pixels 10. However, the use of the emitter 7 and detector 8 on the one hand, and the image-forming pixel elements 10 on the other hand, are quite different.


In OLED displays, the pixel elements are adapted to emit light through the panel in a direction along the normal of the touch surface. The emitter 7, however, will only be useful if its light is captured within the light guide 2 to propagate via TIR towards the detector 8. In the prior art of touch-sensing displays with integrated OLED displays, the emitter is driven to emit light in a wide cone into the light guide, whereby only some of the light has an angle such that it can propagate inside the light guide with total internal reflection. The angle required for the light to propagate with total internal reflection must be larger than the critical angle. The critical angle may be calculated from Snell's law, which is well known to the person skilled in the art. In the touch sensitive OLED displays of the prior art, a large part of the emitted light is emitted at angles smaller that the critical angle. This part of the light will therefore pass out through the front surface of the light guide and will not propagate inside the light guide with TIR. Therefore, this portion of the light cannot be used for touch detection. The present invention allows the part of the emitted light that can be propagated inside the light guide to be increased.



FIG. 2B is a partial section view of the touch-sensing display panel in FIG. 2A. Illustrated are a light transmissive light guide 2, an emitter 7 and image forming pixel elements 10, which may be comprised of red, green and blue emitting sub-pixels. The emitter emits light for propagation inside the light guide. The light may be of any wavelength, e.g. infrared light, visible light or UV light. In preferred embodiments, IR light is used, preferably in the range of 800-940 nm, e.g. 850 nm. In the embodiment illustrated in FIG. 2B the emitter anode 15 and the emitter cathode 16 are made of materials that are reflective in the emitter wavelength. The reflective material stops the emitted light from being emitted up through the light guide and the front surface. Therefore the light can only be emitted via a side edge of the emitter, via an adjacent pixel element, into the light guide. Consequently, more light will enter the light guide at an angle that allows propagation by TIR inside the light guide. To stop light from being emitted towards the edges of the light guide, a reflective side layer 31 may be added to the emitter at the side facing away from the center of the display.


The reflective anode 15 and/or cathode 16 may be made fully or partially of a reflective material or a combination of reflective materials, e.g. silver, copper or nano materials such as copper with nano silver. In FIG. 2C, an alternative embodiment is illustrated. In this embodiment the cathode 16 and anode 15 of the emitter 7 are transparent and coated with a layer 30 that is reflective to light of the emitter wavelength. The anode 15 and cathode 16 of the emitter OLED may be made from the same material and in the same process as the anode 15 and cathode 16 of the image forming elements 10. This may make manufacturing easier and cheaper. The optional reflective layer 31 is also shown in FIG. 2C.



FIG. 3 illustrates an embodiment of the invention in which the touch sensing display panel 1 also comprises aperture cells 50. FIG. 3 is a partial section view of a touch-sensing display panel, similar to the partial section view of the touch-sensing display panel in FIG. 2B. As in FIG. 2B, there are illustrated a light transmissive light guide 2, an emitter 7 and an image forming pixel element 10. The function and details are the same as in the previous embodiments with the difference that there is an aperture cell 50, or a gap, between the emitter 7 and the pixel elements 10. As in the previous embodiments, light emitted by the emitter is stopped from entering the light guide 2 via the top of the emitter and is instead emitted through the side of the emitter. Instead of propagating via an adjacent display element 10, the light propagates from the emitter 7 via an aperture cell 50 into the light guide 2. The aperture cell 50 may be made of a plastic material such as PET (Polyethylene terephthalate) or PEN (Polyethylene naphthalate) or from transparent OLED carrier or compound. The aperture cell 50 is preferably added in the same process with the pixel elements 10, the emitters 7 and the detectors 8. Some of the light may be propagating via the aperture cell 50 towards the back of the display. To stop this light from leaving the display and instead allow this light to be re-directed into the light guide 2, the aperture cell 50 may comprise a reflective layer 32 at the bottom, i.e. at the side facing the back of the display (as shown). This reflective layer 32 may be made of the same material as the previously discussed reflective side layers 31 or as the reflective anode or cathode layers. An advantage of aperture cells 50 is that it is then possible to choose a material of the aperture cell 50 that has a refractive index better suited for emitting light into the panel at a desired angle. A further advantage is that all pixel elements can be covered with an optical layer to sustain TIR, if such a layer is needed. The optical layer will be described in more detail with reference to FIG. 7. For similar reasons it may be advantageous to have aperture cells between pixel elements 10 and detectors 8, such that light propagating inside the light guide 2 via TIR passes an aperture cell 50 before being detected by a detector 8.


As previously discussed, it may be advantageous for the emitters 7 to be larger than the pixel elements 10. FIG. 4 is a partial top plan view of such an alternative embodiment. As in the embodiment of FIG. 3 there is a light transmissive light guide 2 (not shown), an emitter 7 and image forming pixel elements 10. The function and details are the same as discussed with reference to the previous embodiments with the difference that the emitter 7 and the aperture cell 50 between the emitter 7 and the pixel elements 10 are larger than the individual pixel elements. As in the previous embodiments light emitted by the emitter is stopped from entering the light guide 2 via the top of the emitter and is instead emitted through the side of the emitter. The light may propagate from the emitter 7 into the light guide 2 via an adjacent pixel element 10 or, as shown, the light may propagate from the emitter 7 via an aperture cell 50 into the light guide 2. In FIG. 4 the aperture cell 50 is illustrated as being the same size as the large emitter 7, i.e. larger than the pixel elements. This allows light from the large emitter to propagate via a large aperture cell 50. In an alternative embodiment it is instead conceivable to let the light from each emitter propagate through a plurality of smaller aperture cells 50 into the light guide 2.


An advantage of a larger emitter 7 is that more light may be emitted by the emitter, as the amount of light that can be emitted by a semiconductor emitter is proportional to the area of the emitter surface. Another advantage is that emitters may be shaped wide along the peripheral part of the panel and therefore narrow in the direction orthogonal of the peripheral part, and still have a large enough surface area to emit the amount of light required for touch detection. The peripheral parts of the display, not comprised of image forming elements, may thereby be made narrow and still allow for stronger emitting emitters. In one embodiment the emitter 7 is larger than the pixel elements 10, but the aperture cell is omitted. Light emitted from an emitter 7 will thus pass through a plurality of pixel elements 10 towards the light guide 2. It is also conceivable to let the detectors 8 be larger than the pixel elements 10, with or without aperture cells 50. As already mentioned larger detectors can receive more light with decreased noise.


In a further embodiment of the invention the cathode and anode of the emitter 7 are in a plane of a normal to the touch surface, the cathode and anode are thus vertical as shown in FIG. 5. In this embodiment the emitter 7 is driven to emit light sideways via one or more adjacent aperture cells 50 (not shown) or pixel element 10. The cathode is transparent to the light emitted by the emitter 7. The top, and optionally also the bottom, of the emitter is covered with a reflective layer 30. The anode of the emitter may also be made of transparent material and coated with a reflective layer or, as shown, be made of a reflective material such as those discussed in relation to previous embodiments. An advantage of vertical cathode and anode for the emitters 7 is that the same material may be used as for cathode and anode of the pixel elements 10. In one embodiment the cathode 16 may be configured to act as an aperture cell 50. In this embodiment the transparent anode is made thick so that the light can propagate from the emitter via the anode into the light guide. Alternatively, if the anode is not sufficiently thick to allow all light to propagate directly to the light guide, the anode may act as a partial aperture cell. Some of the light will then propagate from the emitter via the anode into the light guide, and some of the light will propagate via the anode and an adjacent pixel element into the light guide.



FIG. 6 shows an alternative embodiment, which may be combined with any of the other embodiments of the invention. In this embodiment the pixel elements 10 are covered with an optical layer 21. As described in U.S. 2013/0127790, which is incorporated herein by reference, the TIR in the light guide 2 may be disturbed by the image forming pixel elements 10 as the refractive index of the image forming pixels 10 normally is higher than the refractive index of the light guide 2. The light may escape the light guide 2 via the rear surface 4 through the pixels 10 after reflection in the front surface 3. For this purpose, an optical layer 21 may be disposed between the rear surface 4 of the light guide 2 and the top electrode 16 (e.g. cathode) of the image-forming pixels 10. In one embodiment this optical layer 21 is made from a material which has a refractive index which is lower than the refractive index of the light guide 2. That way, there will be TIR in the light guide 2 at both the front surface 3 and the rear surface 4, provided that the angle of incidence is wide enough. As an example, the optical layer 21 may be provided by means of a resin used as a cladding material for optical fibers. Such a resin layer may be provided on the light guide 2 before deposition of the electrode and organic layers. Alternatively, if the OLED structure is built from a bottom sheet or plate, the optical layer 21 may be provided on the lower face 4 of the light guide 2 before attachment over the OLEDs, or over the OLEDs before attachment of the light guide 2. Another example of an optical layer 21 with a lower refractive index is an air gap.


In an alternative embodiment an extension portion 21a of the optical layer 21 is provided over the emitters 7 and detectors 8 and preferably over the aperture cells 50 or display elements 10 adjacent to the emitters 7 and detectors 8. The extension portion 21a preferably has the same thickness as the optical layer 21, which will make it easier to produce the OLEDs in the peripheral region 11 and in the central region 12 in the same process, since they will be provided at the same level. This extension portion 21a has a refractive index which is higher than the refractive index of the optical layer 21. This way, light may be injected into the light guide 2 through the extension portion 21a and then be internally reflected at the rear surface 4 where it faces the optical layer 21, provided that the angle of incidence is large enough. The refractive index of the extension portion 21a may e.g. be the same as the refractive index for the light guide 2. Alternatively, a material for the extension portion 21a may be chosen such that its refractive index lies between the refractive index for the light guide 2 and the refractive index for the emitter 7 and/or the detector 8.



FIG. 7 shows an embodiment where the emitter 7 is stacked with an image forming pixel element 10. As shown, the emitter is stacked underneath the pixel element. Light from the pixel element 10 will be emitted via the light guide 2. The emitter has a reflective layer at the interphase to the pixel element, so that light from the emitter is forced to be emitted via an adjacent pixel element towards the light guide 2. As in the other embodiments, the light from the emitter may be emitted via an aperture cell 50 instead of a pixel element. Detectors 8 may also be stacked under pixel elements 10. An advantage of the stacked embodiment is that the emitters and the detectors do not take the place of image forming elements 10 on the display unit 6. In alternative embodiments only emitters 7 or only detectors 8 are stacked underneath the image forming pixel elements 10. This embodiment can be combined with larger emitters 7 and with larger detectors 8. An emitter 7 or a detector 8 is then stacked with several pixel elements 10.



FIGS. 8-9 outline some steps included in embodiments of a method of producing a touch-sensing display panel 1 in accordance with the invention. FIG. 8 relates to a method of producing a pixel matrix that starts from an anode side, and FIG. 9 relates to a method of producing a pixel matrix starting at a cathode side, according to known alternative principles within the industry. In a preferred embodiment, those pixels are OLEDs.


Following the embodiment of FIG. 8, step 111 involves providing a transparent substrate 2 having a refractive index. This transparent substrate 2 will serve as the FTIR light guide in the final product, with a front surface 3 providing the touch-sensitive region, potentially with additional functional layers on it. The substrate 2 may e.g. be made of a suitable glass material, of PMMA, PC, or other transparent material.


In a subsequent step 112, which may be omitted, an optical layer 21 is provided on a rear surface 4 of the substrate at a central region 12. The optical layer has a refractive index that is lower than the refractive index of the transparent substrate 2. The optical layer 21 may e.g. be a resin or an adhesive attached to the rear surface 4. Alternatively, the optical layer 21 may be formed in e.g. a vapor deposition process. The difference in refractive index need not be large. As a mere example, the refractive index of the substrate 2 may be between 1.5 and 1.6, and the refractive index of the optical layer 21 may be between 1.4 and 1.5. With reference to the preceding disclosure, the optical layer 21 may be added with an extension portion 21a at a peripheral region 11 around the central region 12. In such an embodiment, the refractive index of the extension portion 21a shall be higher than the refractive index of the optical layer 21.


In a subsequent step 113 a matrix of pixel elements is provided at the rear surface 4 over the central region 12 and over a peripheral region 11. According to processes well known in the art of OLED technology, such a process may include a TFT layer and possibly a TFT passivation layer thereon, before applying an anode layer. The anode of the emitters 7 and/or the detectors 8 may be made from a reflective material. Alternatively, if the anode of the emitters/detectors is made of the same transparent material as the anode of the pixel elements 10, a reflective layer 30 is applied to the anode layer of the emitters/detectors. One or more organic layers are then built up, typically including an emissive layer but selectively also transport layers and blocking layers.


In step 114, which may be overlapping with step 113, emitter pixels 7 are provided with an adjacent cell. In embodiments where transparent aperture cells 50 are used adjacent to emitters 7 to allow light from the emitters 7 to propagate into the transparent substrate 2, these transparent aperture cells 50 are provided in this step. The aperture cells 50 may be provided by building organic material using the same process as when building the one or more organic layers. A cathode layer is then provided to create the polarity of the OLED cell.


In step 115 a cover sheet is provided over the pixel matrix. This may be realized by means of an assembly of a rigid or flexible solid sheet, by coating the pixel matrix with a curable liquid, or in a vapor deposition process.


In step 116, the cover sheet is sealed to the substrate 2, so as to obtain a hermetic encapsulation. This sealing is made using a peripheral seal, while still providing means for a galvanic connection to the pixel matrix, e.g. by means of a flex film connection. It should be noted that the steps of providing the cover sheet and sealing it may at least to some extent be performed concurrently with each other.


The embodiment of FIG. 9 begins at the other end, with the step 121 of providing a carrier sheet. This carrier sheet will form the backside of the touch-sensing display panel 1, and while it therefore does not need to be transparent, it may still be made of glass, a plastic material, a metal such as aluminum, etc.


Step 122 includes providing a matrix of pixels on the carrier sheet. This will be a process which has a reversed order in comparison with the process of FIG. 8, beginning with the cathode layer. Otherwise it may include the same type of electrode layers and organic layers, as is known in the art. Organic layers are built up on the cathode layer. An anode layer is provided onto the organic layers. The anode layer over emitters 7 and optionally over detectors 8 may be a reflective anode layer. Alternatively, a reflective layer may be added onto the anode layer of the emitters 7.


In step 123, adjacent cells, e.g. transparent aperture cells 50, are provided, in a manner similar to step 113 in FIG. 8.


In step 124, a transparent substrate 2 having a refractive index over the pixels is then provided, which may have an intermediate optical layer 21 at a central region 12 of the substrate within a peripheral region 11. The optical layer 21 has a refractive index which is lower than the refractive index of the substrate 2. As outlined above, the optical layer 21 may be applied to the backside 4 of the substrate 2 and then attached over the pixels. Alternatively, the optical layer 21 may first be coated onto the pixel matrix, after which the substrate 2 is attached. Also, as noted with reference to FIG. 8, an extension portion 21a may be provided over the peripheral region 11, adjacent to the optical layer 21.


In step 125, the transparent substrate is sealed to the carrier sheet. As in the embodiment of FIG. 8, this will include a peripheral seal and the provision of a connector to the electrode layers for driving of the pixel matrix. Again, the steps of providing the substrate 2 and sealing it may at least to some extent be performed concurrently with each other.


The process step of FIGS. 8 and 9, respectively, deal with the provision of the layered structure according to the invention. In order to become a final working product, the layered structure must also be connected and driven so as to enable the use of the panel 1 both for image reproduction and touch-sensing.



FIG. 10 is a section view of a touch-sensing display apparatus 40, which comprises the display panel 1, including the light transmissive light guide 2 and a pixel matrix 6, and a signal processor 41, which are arranged in an enclosure 42 such that the light guide 2 forms a transparent front cover of the display apparatus 40. The signal processor 41 is a processing element (or means) which is connected to the display panel 1 so as to transmit control signals to the pixels, the emitters and the detectors, as well as to acquire output signals from the detectors. The signal processor 41 is also operable to generate and output touch data calculated based on the output signals. It is to be understood that the signal processor 41 may alternatively be implemented as a dedicated controller for the pixels and a dedicated controller for the emitters and the detectors.


It is to be understood that the display apparatus/display unity may form part of any form of electronic device, including but not limited to a laptop computer, an all-in-one computer, a handheld computer, a mobile terminal, a gaming console, a television set, etc. Such an electronic device typically includes a processor or similar controller that may be connected to control the display panel 1 to display information content within at least part of the touch surface 3 and to provide touch sensitivity within the touch surface 3. The controller may be implemented to control the display panel 1 via the signal processor 41, or it may implement part or all of the functionality of the signal processor 41.



FIG. 11 shows a number of steps, which need not be provided in the given order, that may be included in any one of the embodiments of FIGS. 8 and 9, so as to create a functional connection of the display panel 1 to a signal processor 41.


In step 141 a plurality of pixels 10 are connected to a control circuit 41 configured to drive them as image-forming pixel elements. As noted before, these image-forming elements are preferably all disposed under the optical layer 21, and may to some extent also be provided in the peripheral region 11. Collectively, the image-forming elements 10 form the display part of the panel 1.


In step 142 at least one pixel 7 in the peripheral region 11 is connected to a control circuit 41 configured to drive the pixel 7 to emit light into the transparent substrate 2 for propagation by TIR therein. Preferably, a number of emitters 7 are connected this way, provided in the peripheral region along at least two sides of the panel 1.


In step 143 at least one detector 8 in the peripheral region 11 is connected to a control circuit 41 configured to drive that detector 8 to detect light from the transparent substrate 2, emanating from the emitter 7. Correspondingly, a number of detectors 8 are preferably connected this way, provided in the peripheral region along at least two sides of the panel 1. Together with the emitters 7, they will form the touch-sensing detection grid of the touch surface 3.


Reference will now be made to the embodiment of FIG. 12, illustrating a side view of an FTIR system of a combined display and touch-sensing panel 1, formed by attaching a light guide 2 to a display 6. The light guide 2 may be bonded to the display unit 6 by means of an adhesive, such as an optical adhesive. In one embodiment, the light guide 2 is laminated onto the display unit 6. The adhesive used for bonding or laminating the light guide 2 to the display unit 6 may have the function of the optical layer 21, which optical layer has been discussed previously in this application. To enable the light from the emitters 7 to be coupled into and out of the light guide 2 at the peripheral region 11, while enabling the light to propagate by TIR across the light guide above the center region 12, different adhesives may be used in the peripheral region 11 and the center region 12. Specifically, the adhesive 21 in the center region 12 may be selected to have an index of refraction that is lower than the index of refraction of the light guide 2, while the adhesive 21a in the peripheral region 11 may be selected to have an index of refraction that is higher or substantially equal to the index of refraction of the light guide 2. The adhesive 21a may have the function of the extension layer 21a, previously discussed.


In a variant, the light guide 2 is attached by an adhesive 21a to the display unit 6 at the peripheral region 11 only and arranged with an air gap 21 to the center region 12 of the display unit 6. It is currently believed that an air gap of at least about 2-3 μm is sufficient to enable propagation by TIR in the light guide 2. This variant may facilitate removal and replacement of the light guide 2 in the course of service and maintenance.


While the invention has been described in connection with what is presently considered to be the most practical and preferred embodiments, it is to be understood that the invention is not to be limited to the disclosed embodiments, but on the contrary, is intended to cover various modifications and equivalent arrangements included within the spirit and the scope of the appended claims.


For example, the touch-sensing display panel may be provided with a reflective material between back substrate and the aperture cells in the periphery 11. This may be applied as a coating of reflective material. The reflective material may also extend into the main part 12 of the display, and thereby be provided between the back substrate and the pixel elements 10. The reflective material will reflect emitted light that is emitted in other directions than towards the light guide 2, and may thereby increase the amount of light that can be used for touch detection.


The combined touch-sensing display panel FTIR system may also include structures configured to re-direct the light emitted by the emitters 7, e.g. to reshape the emitted cone of light so as to increase the amount of light coupled into the light guide 2 in a desired fashion. For example, the emitted light may be redirected so as to form the fan beam in the plane of the light guide 2, as shown in FIG. 3, and/or the emitted light may be redirected to increase the amount of light that is trapped by TIR in the light guide 2. These light-directing structures may be included in the portion of the surface 4 that faces the peripheral region 11 of the display unit 6. Alternatively, the light-directing structures may be applied as a film layer onto the peripheral parts of the light guide 2. Similar light-directing structures may be included between the light guide 2 and the detectors 8, so as to redirect outcoupled light onto the detectors 8. Generally, the light-directing structures may be said to define the field of view of the emitter/detector 7, 8 inside the light guide 2. The light-directing structures may be in the form of micro-structured elements, such as but not limited to, reflectors, prisms, gratings or holographic structures. The micro-structured elements may be etched, printed, hot embossed, injection molded, pressure molded or otherwise provided between the emitters/detectors 7, 8 and the light guide 2.


With reference to the figures, the emitter 7 has been shown and described as having the reflective material, i.e. the reflective anode/cathode or a reflective layer, in a plane parallel to the touch surface. It is to be noted that the wanted result will be achieved at least partly when the reflective material is in a plane that is inclined with relation to the plane of the touch surface with between 0 and 45 degrees. In some embodiments this may be advantageous as the inclination may be chosen so that the light is emitted into the light guide at a preferred angle.


Although it may be preferable that the emitter(s) 7 and the detector(s) 8 are implemented by the same technology as used for generating images in the display area, e.g. to have similar functional structure as the pixels 10, it is also possible that the emitter(s) 7 or the detector(s) 8, are implemented by a different technology when integrated into the display unit 6.


As noted above, it may be desirable that the surface area of the emitters and detectors is larger than the surface area of the pixels. It is to be understood that the emitters may be larger than the detectors, and vice versa, and also that the emitters and detectors may have any shape, including circular, elliptical, and polygonal.


Although the example embodiments of the invention shows emitters 7 near the peripheral parts of the display it should be noted that the emitters 7 could be interleaved with the display pixels 10. It is conceivable that the emitters 7 are interleaved with the display pixels 10 near the peripheral parts of the display area. The emitters 7 may alternatively be interleaved with the display pixels 10 in other parts of the display area.

Claims
  • 1. A touch-sensitive display, comprising: a transmissive panel defining the touch surface;a first set of OLED emitters forming display pixels;a second set of OLED emitters configured to emit light via an adjacent cell into the transmissive panel for propagation therein via total internal reflection, each of the second set of OLED emitters comprise a top surface proximate with a bottom surface of the transmissive panel, a bottom surface opposite the top surface, a first side surface proximate to the adjacent cell, and a second side surface opposite the first side surface, wherein the top, the bottom, and the second side surfaces comprise a reflective material, thereby preventing the emitted light from being emitted through the top surface and emitted into the transmissive panel only via the first side surface; anda set of detectors configured to receive light from the second set of OLED emitters after the light has propagated inside the transmissive panel via total internal reflection;wherein the first set and the second set of OLED emitters are arranged on the same substrate.
  • 2. The touch-sensitive display of claim 1, wherein the adjacent cell is an OLED emitter of the first set.
  • 3. The touch-sensitive display of claim 1, wherein the adjacent cell is a light transmissive aperture cell.
  • 4. The touch-sensitive display of claim 3, wherein the light transmissive aperture cell comprises plastic material, transparent OLED carrier or OLED compound.
  • 5. The touch-sensitive display of claim 1, wherein each OLED emitter of the second set is configured with an at least partially reflective layer between the transmissive panel and an active material of the OLED emitter of the second set.
  • 6. The touch-sensitive display of claim 5, wherein the reflective layer is at least 70% reflective.
  • 7. The touch-sensitive display of claim 5, wherein the reflective layer is less than 50% transmissive.
  • 8. The touch-sensitive display of claim 5, wherein the reflective layer comprises silver.
  • 9. The touch-sensitive display of claim 5, wherein the reflective layer comprises an anode or cathode of the OLED emitter.
  • 10. The touch-sensitive display of claim 5, wherein the reflective layer is in a plane that is at an angle of 0-45 degrees to a plane of the touch surface.
  • 11. The touch-sensitive display of claim 1, wherein the OLED emitter is configured with an anode and a cathode layer arranged perpendicular to the plane of the panel.
  • 12. The touch-sensitive display of claim 1, wherein the touch-sensing display panel is provided with a reflective material between a back substrate and the aperture cell.
  • 13. The touch-sensitive display of claim 1, wherein the touch-sensitive display comprises organic photo detectors.
  • 14. A method of producing a touch sensitive display panel, comprising: providing a transparent substrate;providing a matrix of image pixels and emitter pixels at a surface of the substrate;providing at least one of the emitter pixels with an adjacent cell, configured to allow light to be emitted from the emitter pixel to the transparent substrate via the adjacent cell, the at least one of the emitter pixels comprise a top surface proximate with a bottom surface of the transmissive panel, a bottom surface opposite the top surface, a first side surface proximate to the adjacent cell, and a second side surface opposite the first side surface,wherein the top, the bottom, and the second side surfaces comprise a reflective material, thereby preventing the emitted light from being emitted through the top surface and emitted into the transmissive panel only via the first side surface;providing a cover sheet over the pixel matrix; andsealing the cover sheet to the substrate.
  • 15. A method of producing a touch sensitive display panel, comprising: providing a carrier sheet;providing a matrix of image pixels and emitter pixels on the carrier sheet;providing at least one of the emitter pixels with an adjacent cell, the at least one of the emitter pixels comprise a top surface proximate with a bottom surface of the transmissive panel, a bottom surface opposite the top surface, a first side surface proximate to the adjacent cell, and a second side surface opposite the first side surface,wherein the top, the bottom, and the second side surfaces comprise a reflective material, thereby preventing the emitted light from being emitted through the top surface and emitted into the transmissive panel only via the first side surface;providing a transparent substrate over the image pixels and the emitter pixels; andsealing the transparent substrate to the carrier sheet;wherein the adjacent cell is configured to allow light to be emitted from the emitter pixel to the transparent substrate via the adjacent cell.
Priority Claims (1)
Number Date Country Kind
1550096 Jan 2015 SE national
US Referenced Citations (551)
Number Name Date Kind
3440426 Bush Apr 1969 A
3553680 Cooreman Jan 1971 A
3673327 Johnson et al. Jun 1972 A
4129384 Walker et al. Dec 1978 A
4180702 Sick et al. Dec 1979 A
4209255 Heynau et al. Jun 1980 A
4213707 Evans, Jr. Jul 1980 A
4254333 Bergström Mar 1981 A
4254407 Tipon Mar 1981 A
4294543 Apple et al. Oct 1981 A
4346376 Mallos Aug 1982 A
4420261 Barlow et al. Dec 1983 A
4484179 Kasday Nov 1984 A
4507557 Tsikos Mar 1985 A
4521112 Kuwabara et al. Jun 1985 A
4542375 Alles et al. Sep 1985 A
4550250 Mueller et al. Oct 1985 A
4593191 Alles Jun 1986 A
4673918 Adler et al. Jun 1987 A
4688933 Lapeyre Aug 1987 A
4688993 Ferris et al. Aug 1987 A
4692809 Beining et al. Sep 1987 A
4710760 Kasday Dec 1987 A
4736191 Matzke et al. Apr 1988 A
4737626 Hasegawa Apr 1988 A
4746770 McAvinney May 1988 A
4752655 Tajiri et al. Jun 1988 A
4772763 Garwin et al. Sep 1988 A
4782328 Denlinger Nov 1988 A
4812833 Shimauchi Mar 1989 A
4837430 Hasegawa Jun 1989 A
4868912 Doering Sep 1989 A
4891829 Deckman et al. Jan 1990 A
4933544 Tamaru Jun 1990 A
4949079 Loebner Aug 1990 A
4986662 Bures Jan 1991 A
4988983 Wehrer Jan 1991 A
5065185 Powers et al. Nov 1991 A
5073770 Lowbner Dec 1991 A
5105186 May Apr 1992 A
5159322 Loebner Oct 1992 A
5166668 Aoyagi Nov 1992 A
5227622 Suzuki Jul 1993 A
5248856 Mallicoat Sep 1993 A
5254407 Sergerie et al. Oct 1993 A
5345490 Finnigan et al. Sep 1994 A
5383022 Kaser Jan 1995 A
5483261 Yasutake Jan 1996 A
5484966 Segen Jan 1996 A
5499098 Ogawa Mar 1996 A
5502568 Ogawa et al. Mar 1996 A
5525764 Junkins et al. Jun 1996 A
5526422 Keen Jun 1996 A
5570181 Yasuo et al. Oct 1996 A
5572251 Ogawa Nov 1996 A
5577501 Flohr et al. Nov 1996 A
5600105 Fukuzaki et al. Feb 1997 A
5672852 Fukuzaki et al. Sep 1997 A
5679930 Katsurahira Oct 1997 A
5686942 Ball Nov 1997 A
5688933 Evans et al. Nov 1997 A
5729249 Yasutake Mar 1998 A
5736686 Perret, Jr. et al. Apr 1998 A
5740224 Müller et al. Apr 1998 A
5764223 Chang et al. Jun 1998 A
5767517 Hawkins Jun 1998 A
5775792 Wiese Jul 1998 A
5945980 Moissev et al. Aug 1999 A
5945981 Paull et al. Aug 1999 A
5959617 Bird et al. Sep 1999 A
6061177 Fujimoto May 2000 A
6067079 Shieh May 2000 A
6122394 Neukermans et al. Sep 2000 A
6141104 Schulz et al. Oct 2000 A
6172667 Sayag Jan 2001 B1
6227667 Halldorsson et al. May 2001 B1
6229529 Yano et al. May 2001 B1
6333735 Anvekar Dec 2001 B1
6366276 Kunimatsu et al. Apr 2002 B1
6380732 Gilboa Apr 2002 B1
6380740 Laub Apr 2002 B1
6390370 Plesko May 2002 B1
6429857 Masters et al. Aug 2002 B1
6452996 Hsieh Sep 2002 B1
6476797 Kurihara et al. Nov 2002 B1
6492633 Nakazawa et al. Dec 2002 B2
6495832 Kirby Dec 2002 B1
6504143 Koops et al. Jan 2003 B2
6529327 Graindorge Mar 2003 B1
6538644 Muraoka Mar 2003 B1
6587099 Takekawa Jul 2003 B2
6648485 Colgan et al. Nov 2003 B1
6660964 Benderly Dec 2003 B1
6664498 Forsman et al. Dec 2003 B2
6664952 Iwamoto et al. Dec 2003 B2
6690363 Newton Feb 2004 B2
6707027 Liess et al. Mar 2004 B2
6738051 Boyd et al. May 2004 B2
6748098 Rosenfeld Jun 2004 B1
6784948 Kawashima et al. Aug 2004 B2
6799141 Stoustrup et al. Sep 2004 B1
6806871 Yasue Oct 2004 B1
6927384 Reime et al. Aug 2005 B2
6940286 Wang et al. Sep 2005 B2
6965836 Richardson Nov 2005 B2
6972753 Kimura et al. Dec 2005 B1
6985137 Kaikuranta Jan 2006 B2
7042444 Cok May 2006 B2
7084859 Pryor Aug 2006 B1
7133031 Wang et al. Nov 2006 B2
7176904 Satoh Feb 2007 B2
7359041 Xie et al. Apr 2008 B2
7397418 Doerry et al. Jul 2008 B1
7432893 Ma et al. Oct 2008 B2
7435940 Eliasson et al. Oct 2008 B2
7442914 Eliasson et al. Oct 2008 B2
7465914 Eliasson et al. Dec 2008 B2
7613375 Shimizu Nov 2009 B2
7629968 Miller et al. Dec 2009 B2
7646833 He et al. Jan 2010 B1
7653883 Hotelling et al. Jan 2010 B2
7655901 Idzik et al. Feb 2010 B2
7705835 Eikman Apr 2010 B2
7847789 Kolmykov-Zotov et al. Dec 2010 B2
7855716 McCreary et al. Dec 2010 B2
7859519 Tulbert Dec 2010 B2
7924272 Boer et al. Apr 2011 B2
7932899 Newton et al. Apr 2011 B2
7969410 Kakarala Jun 2011 B2
7995039 Eliasson et al. Aug 2011 B2
8013845 Ostergaard et al. Sep 2011 B2
8031186 Ostergaard Oct 2011 B2
8077147 Krah et al. Dec 2011 B2
8093545 Leong et al. Jan 2012 B2
8094136 Eliasson et al. Jan 2012 B2
8094910 Xu Jan 2012 B2
8149211 Hayakawa et al. Apr 2012 B2
8218154 Østergaard et al. Jul 2012 B2
8274495 Lee Sep 2012 B2
8325158 Yatsuda et al. Dec 2012 B2
8339379 Goertz et al. Dec 2012 B2
8350827 Chung et al. Jan 2013 B2
8384010 Hong et al. Feb 2013 B2
8407606 Davidson et al. Mar 2013 B1
8441467 Han May 2013 B2
8445834 Hong et al. May 2013 B2
8466901 Yen et al. Jun 2013 B2
8482547 Cobon et al. Jul 2013 B2
8542217 Wassvik et al. Sep 2013 B2
8567257 Van Steenberge et al. Oct 2013 B2
8581884 Fahraeus et al. Nov 2013 B2
8624858 Fyke et al. Jan 2014 B2
8686974 Christiansson et al. Apr 2014 B2
8692807 Føhraeus et al. Apr 2014 B2
8716614 Wassvik May 2014 B2
8727581 Saccomanno May 2014 B2
8745514 Davidson Jun 2014 B1
8780066 Christiansson et al. Jul 2014 B2
8830181 Clark et al. Sep 2014 B1
8860696 Wassvik et al. Oct 2014 B2
8872098 Bergström et al. Oct 2014 B2
8872801 Bergström et al. Oct 2014 B2
8884900 Wassvik Nov 2014 B2
8890843 Wassvik et al. Nov 2014 B2
8890849 Christiansson et al. Nov 2014 B2
8928590 El Dokor Jan 2015 B1
8963886 Wassvik Feb 2015 B2
8982084 Christiansson et al. Mar 2015 B2
9024916 Christiansson May 2015 B2
9035909 Christiansson May 2015 B2
9063617 Eliasson et al. Jun 2015 B2
9086763 Johansson et al. Jul 2015 B2
9134854 Wassvik et al. Sep 2015 B2
9158401 Christiansson Oct 2015 B2
9158415 Song et al. Oct 2015 B2
9213445 King et al. Dec 2015 B2
9274645 Christiansson et al. Mar 2016 B2
9317168 Christiansson et al. Apr 2016 B2
9323396 Han et al. Apr 2016 B2
9366565 Uvnäs Jun 2016 B2
9377884 Christiansson et al. Jun 2016 B2
9389732 Craven-Bartle Jul 2016 B2
9411444 Christiansson et al. Aug 2016 B2
9411464 Wallander et al. Aug 2016 B2
9430079 Christiansson et al. Aug 2016 B2
9442574 Fähraeus et al. Sep 2016 B2
9547393 Christiansson et al. Jan 2017 B2
9552103 Craven-Bartle et al. Jan 2017 B2
9557846 Baharav et al. Jan 2017 B2
9588619 Christiansson et al. Mar 2017 B2
9594467 Christiansson et al. Mar 2017 B2
9626018 Christiansson et al. Apr 2017 B2
9626040 Wallander et al. Apr 2017 B2
9639210 Wallander et al. May 2017 B2
9678602 Wallander Jun 2017 B2
9684414 Christiansson et al. Jun 2017 B2
9710101 Christiansson et al. Jul 2017 B2
20010002694 Nakazawa et al. Jun 2001 A1
20010005004 Shiratsuki et al. Jun 2001 A1
20010005308 Oishi et al. Jun 2001 A1
20010030642 Sullivan et al. Oct 2001 A1
20020067348 Masters et al. Jun 2002 A1
20020075243 Newton Jun 2002 A1
20020118177 Newton Aug 2002 A1
20020158823 Zavracky et al. Oct 2002 A1
20020158853 Sugawara et al. Oct 2002 A1
20020163505 Takekawa Nov 2002 A1
20030016450 Bluemel et al. Jan 2003 A1
20030034439 Reime et al. Feb 2003 A1
20030034935 Amanai et al. Feb 2003 A1
20030048257 Mattila Mar 2003 A1
20030052257 Sumriddetchkajorn Mar 2003 A1
20030095399 Grenda et al. May 2003 A1
20030107748 Lee Jun 2003 A1
20030137494 Tulbert Jul 2003 A1
20030156100 Gettemy Aug 2003 A1
20030160155 Liess Aug 2003 A1
20030210537 Engelmann Nov 2003 A1
20030214486 Roberts Nov 2003 A1
20040027339 Schulz Feb 2004 A1
20040032401 Nakazawa et al. Feb 2004 A1
20040090432 Takahashi et al. May 2004 A1
20040130338 Wang et al. Jul 2004 A1
20040174541 Freifeld Sep 2004 A1
20040201579 Graham Oct 2004 A1
20040212603 Cok Oct 2004 A1
20040238627 Silverbrook et al. Dec 2004 A1
20040239702 Kang et al. Dec 2004 A1
20040245438 Payne et al. Dec 2004 A1
20040252091 Ma et al. Dec 2004 A1
20040252867 Lan et al. Dec 2004 A1
20050012714 Russo et al. Jan 2005 A1
20050041013 Tanaka Feb 2005 A1
20050057903 Choi Mar 2005 A1
20050073508 Pittel et al. Apr 2005 A1
20050083293 Dixon Apr 2005 A1
20050128190 Ryynanen Jun 2005 A1
20050143923 Keers et al. Jun 2005 A1
20050156914 Lipman et al. Jul 2005 A1
20050162398 Eliasson et al. Jul 2005 A1
20050179977 Chui et al. Aug 2005 A1
20050200613 Kobayashi et al. Sep 2005 A1
20050212774 Ho et al. Sep 2005 A1
20050248540 Newton Nov 2005 A1
20050253834 Sakamaki et al. Nov 2005 A1
20050276053 Nortrup et al. Dec 2005 A1
20060001650 Robbins et al. Jan 2006 A1
20060001653 Smits Jan 2006 A1
20060007185 Kobayashi Jan 2006 A1
20060008164 Wu et al. Jan 2006 A1
20060017706 Cutherell et al. Jan 2006 A1
20060017709 Okano Jan 2006 A1
20060033725 Marggraff et al. Feb 2006 A1
20060038698 Chen Feb 2006 A1
20060061861 Munro et al. Mar 2006 A1
20060114237 Crockett et al. Jun 2006 A1
20060132454 Chen et al. Jun 2006 A1
20060139340 Geaghan Jun 2006 A1
20060158437 Blythe et al. Jul 2006 A1
20060170658 Nakamura et al. Aug 2006 A1
20060202974 Thielman Sep 2006 A1
20060227120 Eikman Oct 2006 A1
20060255248 Eliasson Nov 2006 A1
20060256092 Lee Nov 2006 A1
20060279558 Van Delden et al. Dec 2006 A1
20060281543 Sutton et al. Dec 2006 A1
20060290684 Giraldo et al. Dec 2006 A1
20070014486 Schiwietz et al. Jan 2007 A1
20070024598 Miller et al. Feb 2007 A1
20070034783 Eliasson et al. Feb 2007 A1
20070038691 Candes et al. Feb 2007 A1
20070052684 Gruhlke et al. Mar 2007 A1
20070070056 Sato et al. Mar 2007 A1
20070075648 Blythe et al. Apr 2007 A1
20070120833 Yamaguchi et al. May 2007 A1
20070125937 Eliasson et al. Jun 2007 A1
20070152985 Ostergaard et al. Jul 2007 A1
20070201042 Eliasson et al. Aug 2007 A1
20070296688 Nakamura et al. Dec 2007 A1
20080006766 Oon et al. Jan 2008 A1
20080007540 Ostergaard Jan 2008 A1
20080007541 Eliasson et al. Jan 2008 A1
20080007542 Eliasson et al. Jan 2008 A1
20080011944 Chua et al. Jan 2008 A1
20080029691 Han Feb 2008 A1
20080036743 Westerman et al. Feb 2008 A1
20080062150 Lee Mar 2008 A1
20080068691 Miyatake Mar 2008 A1
20080074401 Chung et al. Mar 2008 A1
20080088603 Eliasson et al. Apr 2008 A1
20080121442 Boer et al. May 2008 A1
20080122792 Izadi et al. May 2008 A1
20080122803 Izadi et al. May 2008 A1
20080130979 Run et al. Jun 2008 A1
20080150846 Chung et al. Jun 2008 A1
20080150848 Chung et al. Jun 2008 A1
20080151126 Yu Jun 2008 A1
20080158176 Land et al. Jul 2008 A1
20080189046 Eliasson et al. Aug 2008 A1
20080192025 Jaeger et al. Aug 2008 A1
20080238433 Joutsenoja et al. Oct 2008 A1
20080246388 Cheon et al. Oct 2008 A1
20080252619 Crockett et al. Oct 2008 A1
20080266266 Kent et al. Oct 2008 A1
20080278460 Arnett et al. Nov 2008 A1
20080284925 Han Nov 2008 A1
20080291668 Aylward et al. Nov 2008 A1
20080297482 Weiss Dec 2008 A1
20090002340 Van Genechten Jan 2009 A1
20090006292 Block Jan 2009 A1
20090040786 Mori Feb 2009 A1
20090066647 Kerr et al. Mar 2009 A1
20090067178 Huang et al. Mar 2009 A1
20090073142 Yamashita et al. Mar 2009 A1
20090077501 Partridge et al. Mar 2009 A1
20090085894 Gandhi et al. Apr 2009 A1
20090091554 Keam Apr 2009 A1
20090115919 Tanaka et al. May 2009 A1
20090122020 Eliasson et al. May 2009 A1
20090128508 Sohn et al. May 2009 A1
20090135162 Van De Wijdeven et al. May 2009 A1
20090143141 Wells et al. Jun 2009 A1
20090153519 Suarez Rovere Jun 2009 A1
20090161026 Wu et al. Jun 2009 A1
20090168459 Holman et al. Jul 2009 A1
20090187842 Collins et al. Jul 2009 A1
20090189857 Benko et al. Jul 2009 A1
20090189874 Chene et al. Jul 2009 A1
20090189878 Goertz et al. Jul 2009 A1
20090209420 Kalgutkar Aug 2009 A1
20090219256 Newton Sep 2009 A1
20090229892 Fisher et al. Sep 2009 A1
20090251439 Westerman et al. Oct 2009 A1
20090256817 Perlin et al. Oct 2009 A1
20090259967 Davidson et al. Oct 2009 A1
20090267919 Chao et al. Oct 2009 A1
20090273794 Østergaard et al. Nov 2009 A1
20090278816 Colson Nov 2009 A1
20090297009 Xu et al. Dec 2009 A1
20100033444 Kobayashi Feb 2010 A1
20100045629 Newton Feb 2010 A1
20100060896 Van De Wijdeven et al. Mar 2010 A1
20100066016 Van De Wijdeven et al. Mar 2010 A1
20100066704 Kasai Mar 2010 A1
20100073318 Hu et al. Mar 2010 A1
20100078545 Leong et al. Apr 2010 A1
20100079407 Suggs et al. Apr 2010 A1
20100079408 Leong et al. Apr 2010 A1
20100097345 Jang et al. Apr 2010 A1
20100097348 Park et al. Apr 2010 A1
20100097353 Newton Apr 2010 A1
20100125438 Audet May 2010 A1
20100127975 Jensen May 2010 A1
20100134435 Kimura et al. Jun 2010 A1
20100142823 Wang et al. Jun 2010 A1
20100187422 Kothari et al. Jul 2010 A1
20100193259 Wassvik Aug 2010 A1
20100229091 Homma et al. Sep 2010 A1
20100238139 Goertz et al. Sep 2010 A1
20100245292 Wu Sep 2010 A1
20100265170 Norieda Oct 2010 A1
20100277436 Feng et al. Nov 2010 A1
20100283785 Satulovsky Nov 2010 A1
20100284596 Miao et al. Nov 2010 A1
20100289754 Sleeman et al. Nov 2010 A1
20100295821 Chang et al. Nov 2010 A1
20100302196 Han et al. Dec 2010 A1
20100302209 Large Dec 2010 A1
20100302210 Han et al. Dec 2010 A1
20100302240 Lettvin Dec 2010 A1
20100315379 Allard et al. Dec 2010 A1
20100321328 Chang et al. Dec 2010 A1
20100322550 Trott Dec 2010 A1
20110043490 Powell et al. Feb 2011 A1
20110049388 Delaney et al. Mar 2011 A1
20110050649 Newton et al. Mar 2011 A1
20110051394 Bailey Mar 2011 A1
20110068256 Hong et al. Mar 2011 A1
20110069039 Lee et al. Mar 2011 A1
20110069807 Dennerlein et al. Mar 2011 A1
20110074725 Westerman et al. Mar 2011 A1
20110074734 Wassvik et al. Mar 2011 A1
20110074735 Wassvik et al. Mar 2011 A1
20110090176 Christiansson et al. Apr 2011 A1
20110102374 Wassvik et al. May 2011 A1
20110115748 Xu May 2011 A1
20110121323 Wu et al. May 2011 A1
20110122075 Seo et al. May 2011 A1
20110122091 King et al. May 2011 A1
20110122094 Tsang et al. May 2011 A1
20110134079 Stark Jun 2011 A1
20110147569 Drumm Jun 2011 A1
20110157095 Drumm Jun 2011 A1
20110157096 Drumm Jun 2011 A1
20110163996 Wassvik et al. Jul 2011 A1
20110163997 Kim Jul 2011 A1
20110163998 Goertz et al. Jul 2011 A1
20110169780 Goertz et al. Jul 2011 A1
20110175852 Goertz et al. Jul 2011 A1
20110205186 Newton et al. Aug 2011 A1
20110216042 Wassvik et al. Sep 2011 A1
20110221705 Yi et al. Sep 2011 A1
20110221997 Kim et al. Sep 2011 A1
20110227036 Vaufrey Sep 2011 A1
20110227874 Fåhraeus et al. Sep 2011 A1
20110234537 Kim et al. Sep 2011 A1
20110254864 Tsuchikawa et al. Oct 2011 A1
20110261020 Song et al. Oct 2011 A1
20110267296 Noguchi et al. Nov 2011 A1
20110291989 Lee Dec 2011 A1
20110298743 Machida et al. Dec 2011 A1
20110309325 Park et al. Dec 2011 A1
20110310045 Toda et al. Dec 2011 A1
20120019448 Pitkanen et al. Jan 2012 A1
20120026408 Lee et al. Feb 2012 A1
20120038593 Rönkä et al. Feb 2012 A1
20120062474 Weishaupt et al. Mar 2012 A1
20120068973 Christiansson et al. Mar 2012 A1
20120086673 Chien et al. Apr 2012 A1
20120089348 Perlin et al. Apr 2012 A1
20120110447 Chen May 2012 A1
20120131490 Lin et al. May 2012 A1
20120141001 Zhang et al. Jun 2012 A1
20120146930 Lee Jun 2012 A1
20120153134 Bergström et al. Jun 2012 A1
20120154338 Bergström et al. Jun 2012 A1
20120162142 Christiansson et al. Jun 2012 A1
20120162144 Fåhraeus et al. Jun 2012 A1
20120169672 Christiansson Jul 2012 A1
20120181419 Momtahan Jul 2012 A1
20120182266 Han Jul 2012 A1
20120188206 Sparf et al. Jul 2012 A1
20120191993 Drader et al. Jul 2012 A1
20120200532 Powell et al. Aug 2012 A1
20120200538 Christiansson et al. Aug 2012 A1
20120212441 Christiansson et al. Aug 2012 A1
20120217882 Wong et al. Aug 2012 A1
20120249478 Chang et al. Oct 2012 A1
20120256882 Christiansson et al. Oct 2012 A1
20120268403 Christiansson Oct 2012 A1
20120268427 Slobodin Oct 2012 A1
20120274559 Mathai et al. Nov 2012 A1
20120305755 Hong et al. Dec 2012 A1
20130021300 Wassvik Jan 2013 A1
20130021302 Drumm Jan 2013 A1
20130027404 Sarnoff Jan 2013 A1
20130044073 Christiansson et al. Feb 2013 A1
20130055080 Komer et al. Feb 2013 A1
20130076697 Goertz et al. Mar 2013 A1
20130082980 Gruhlke et al. Apr 2013 A1
20130107569 Suganuma May 2013 A1
20130113715 Grant et al. May 2013 A1
20130120320 Liu et al. May 2013 A1
20130125016 Pallakoff et al. May 2013 A1
20130127790 Wassvik May 2013 A1
20130135258 King et al. May 2013 A1
20130135259 King et al. May 2013 A1
20130141388 Ludwig et al. Jun 2013 A1
20130154983 Christiansson et al. Jun 2013 A1
20130155027 Holmgren et al. Jun 2013 A1
20130181896 Gruhlke et al. Jul 2013 A1
20130187891 Eriksson et al. Jul 2013 A1
20130201142 Suarez Rovere Aug 2013 A1
20130222346 Chen et al. Aug 2013 A1
20130241887 Sharma Sep 2013 A1
20130249833 Christiansson et al. Sep 2013 A1
20130269867 Trott Oct 2013 A1
20130275082 Follmer et al. Oct 2013 A1
20130285920 Colley Oct 2013 A1
20130285968 Christiansson et al. Oct 2013 A1
20130300716 Craven-Bartle et al. Nov 2013 A1
20130307795 Suarez Rovere Nov 2013 A1
20130342490 Wallander et al. Dec 2013 A1
20140002400 Christiansson et al. Jan 2014 A1
20140028575 Parivar et al. Jan 2014 A1
20140028604 Morinaga et al. Jan 2014 A1
20140028629 Drumm et al. Jan 2014 A1
20140036203 Guillou et al. Feb 2014 A1
20140055421 Christiansson et al. Feb 2014 A1
20140063853 Nichol et al. Mar 2014 A1
20140071653 Thompson et al. Mar 2014 A1
20140085241 Christiansson et al. Mar 2014 A1
20140092052 Grunthaner et al. Apr 2014 A1
20140098032 Ng et al. Apr 2014 A1
20140098058 Baharav et al. Apr 2014 A1
20140109219 Rohrweck et al. Apr 2014 A1
20140125633 Fåhraeus et al. May 2014 A1
20140160762 Dudik et al. Jun 2014 A1
20140192023 Hoffman Jul 2014 A1
20140232669 Ohlsson et al. Aug 2014 A1
20140237401 Krus et al. Aug 2014 A1
20140237408 Ohlsson et al. Aug 2014 A1
20140237422 Ohlsson et al. Aug 2014 A1
20140253831 Craven-Bartle Sep 2014 A1
20140267124 Christiansson et al. Sep 2014 A1
20140292701 Christiansson et al. Oct 2014 A1
20140300572 Ohlsson et al. Oct 2014 A1
20140320460 Johansson et al. Oct 2014 A1
20140347325 Wallander et al. Nov 2014 A1
20140362046 Yoshida Dec 2014 A1
20140368471 Christiansson et al. Dec 2014 A1
20140375607 Christiansson et al. Dec 2014 A1
20150002386 Mankowski et al. Jan 2015 A1
20150015497 Leigh Jan 2015 A1
20150035774 Christiansson et al. Feb 2015 A1
20150035803 Wassvik et al. Feb 2015 A1
20150053850 Uvnäs Feb 2015 A1
20150054759 Christiansson et al. Feb 2015 A1
20150083891 Wallander Mar 2015 A1
20150103013 Huang Apr 2015 A9
20150130769 Björklund May 2015 A1
20150138105 Christiansson et al. May 2015 A1
20150138158 Wallander et al. May 2015 A1
20150138161 Wassvik May 2015 A1
20150205441 Bergström et al. Jul 2015 A1
20150215450 Seo et al. Jul 2015 A1
20150242055 Wallander Aug 2015 A1
20150317036 Johansson et al. Nov 2015 A1
20150324028 Wassvik et al. Nov 2015 A1
20150331544 Bergström et al. Nov 2015 A1
20150331545 Wassvik et al. Nov 2015 A1
20150331546 Craven-Bartle et al. Nov 2015 A1
20150331547 Wassvik et al. Nov 2015 A1
20150332655 Krus et al. Nov 2015 A1
20150346856 Wassvik Dec 2015 A1
20150346911 Christiansson Dec 2015 A1
20150363042 Krus et al. Dec 2015 A1
20160026337 Wassvik et al. Jan 2016 A1
20160034099 Christiansson et al. Feb 2016 A1
20160050746 Wassvik et al. Feb 2016 A1
20160070415 Christiansson et al. Mar 2016 A1
20160070416 Wassvik Mar 2016 A1
20160124546 Chen et al. May 2016 A1
20160124551 Christiansson et al. May 2016 A1
20160154531 Wall Jun 2016 A1
20160202841 Christiansson et al. Jul 2016 A1
20160216844 Bergström Jul 2016 A1
20160224144 Klinghult et al. Aug 2016 A1
20160299593 Christiansson et al. Oct 2016 A1
20160328090 Klinghult Nov 2016 A1
20160328091 Wassvik et al. Nov 2016 A1
20160334942 Wassvik Nov 2016 A1
20160342282 Wassvik Nov 2016 A1
20160357348 Wallander Dec 2016 A1
20170010688 Fahraeus et al. Jan 2017 A1
20170090090 Craven-Bartle et al. Mar 2017 A1
20170102827 Christiansson et al. Apr 2017 A1
20170115235 Ohlsson et al. Apr 2017 A1
20170139541 Christiansson et al. May 2017 A1
20170177163 Wallander et al. Jun 2017 A1
20170185230 Wallander et al. Jun 2017 A1
Foreign Referenced Citations (116)
Number Date Country
201233592 May 2009 CN
101644854 Feb 2010 CN
201437963 Apr 2010 CN
101019071 Jun 2012 CN
101206550 Jun 2012 CN
101075168 Apr 2014 CN
3511330 May 1988 DE
68902419 Mar 1993 DE
69000920 Jun 1993 DE
19809934 Sep 1999 DE
10026201 Dec 2000 DE
102010000473 Aug 2010 DE
0845812 Jun 1998 EP
0600576 Oct 1998 EP
1798630 Jun 2007 EP
0897161 Oct 2007 EP
2088501 Aug 2009 EP
1512989 Sep 2009 EP
2077490 Jan 2010 EP
1126236 Dec 2010 EP
2314203 Apr 2011 EP
2339437 Oct 2011 EP
2442180 Apr 2012 EP
2466429 Jun 2012 EP
2479642 Jul 2012 EP
1457870 Aug 2012 EP
2172828 Oct 1973 FR
2617619 Jan 1990 FR
2614711 Mar 1992 FR
2617620 Sep 1992 FR
2676275 Nov 1992 FR
1380144 Jan 1975 GB
2131544 Mar 1986 GB
2204126 Nov 1988 GB
2000506655 May 2000 JP
2000172438 Jun 2000 JP
2000259334 Sep 2000 JP
2000293311 Oct 2000 JP
2003330603 Nov 2003 JP
2005004278 Jan 2005 JP
2008506173 Feb 2008 JP
2011530124 Dec 2011 JP
100359400 Jul 2001 KR
100940435 Feb 2010 KR
WO 1984003186 Aug 1984 WO
WO 1999046602 Sep 1999 WO
WO 01127867 Apr 2001 WO
WO 0184251 Nov 2001 WO
WO 0235460 May 2002 WO
WO 02077915 Oct 2002 WO
WO 02095668 Nov 2002 WO
WO 03076870 Sep 2003 WO
WO 2004081502 Sep 2004 WO
WO 2004081956 Sep 2004 WO
WO 2005026938 Mar 2005 WO
WO 2005029172 Mar 2005 WO
WO 2005029395 Mar 2005 WO
WO 2005125011 Dec 2005 WO
WO 2006095320 Sep 2006 WO
WO 2006124551 Nov 2006 WO
WO 2007003196 Jan 2007 WO
WO 2007058924 May 2007 WO
WO 2007112742 Oct 2007 WO
WO 2008004103 Jan 2008 WO
WO 2008007276 Jan 2008 WO
WO 2008017077 Feb 2008 WO
WO 2008039006 Apr 2008 WO
WO 2008068607 Jun 2008 WO
WO 2006124551 Jul 2008 WO
WO 2008017077 Feb 2009 WO
WO 2009048365 Apr 2009 WO
WO 2009077962 Jun 2009 WO
WO 2009102681 Aug 2009 WO
WO 2009137355 Nov 2009 WO
WO 2010006882 Jan 2010 WO
WO 2010006883 Jan 2010 WO
WO 2010006884 Jan 2010 WO
WO 2010006885 Jan 2010 WO
WO 2010006886 Jan 2010 WO
WO 2010015408 Feb 2010 WO
WO 2010046539 Apr 2010 WO
WO 2010056177 May 2010 WO
WO 2010064983 Jun 2010 WO
WO 2010081702 Jul 2010 WO
WO 2010112404 Oct 2010 WO
WO 2010123809 Oct 2010 WO
WO 2010134865 Nov 2010 WO
WO 2011028169 Mar 2011 WO
WO 2011028170 Mar 2011 WO
WO 2011049511 Apr 2011 WO
WO 2011049512 Apr 2011 WO
WO 2011049513 Apr 2011 WO
WO 2011057572 May 2011 WO
WO 2011078769 Jun 2011 WO
WO 2011082477 Jul 2011 WO
WO 2011139213 Nov 2011 WO
WO 2012002894 Jan 2012 WO
WO 2012010078 Jan 2012 WO
WO 2012050510 Apr 2012 WO
WO 2012082055 Jun 2012 WO
WO 2012105893 Aug 2012 WO
WO 2012121652 Sep 2012 WO
WO 2012158105 Nov 2012 WO
WO 2012172302 Dec 2012 WO
WO 2012176801 Dec 2012 WO
WO 2013036192 Mar 2013 WO
WO 2013048312 Apr 2013 WO
WO 2013055282 Apr 2013 WO
WO 2013062471 May 2013 WO
WO 2013089622 Jun 2013 WO
WO 2013133756 Sep 2013 WO
WO 2013133757 Sep 2013 WO
2013176613 Nov 2013 WO
2013176614 Nov 2013 WO
2013176615 Nov 2013 WO
WO 2014055809 Apr 2014 WO
Non-Patent Literature Citations (14)
Entry
Ahn, Y., et al., “A slim and wide multi-touch tabletop interface and its applications,” BigComp2014, IEEE, 2014, in 6 pages.
Chou, N., et al., “Generalized pseudo-polar Fourier grids and applications in regfersting optical coherence tomography images,” 43rd Asilomar Conference on Signals, Systems and Computers, Nov. 2009, in 5 pages.
Fihn, M., “Touch Panel—Special Edition,” Veritas et Visus, Nov. 2011, in 1 page.
Fourmont, K., “Non-Equispaced Fast Fourier Transforms with Applications to Tomography,” Journal of Fourier Analysis and Applications, vol. 9, Issue 5, 2003, in 20 pages.
Iizuka, K., “Boundaries, Near-Field Optics, and Near-Field Imaging,” Elements of Photonics, vol. 1: In Free Space and Special Media, Wiley & Sons, 2002, in 57 pages.
Johnson, M., “Enhanced Optical Touch Input Panel”, IBM Technical Discolusre Bulletin, 1985, in 3 pages.
Kak, et al., “Principles of Computerized Tomographic Imaging”, Institute of Electrical Engineers, Inc., 1999, in 333 pages.
The Laser Wall, MIT, 1997, http://web.media.mit.edu/˜joep/SpectrumWeb/captions/Laser.html.
Liu, J., et al. “Multiple touch points identifying method, involves starting touch screen, driving specific emission tube, and computing and transmitting coordinate of touch points to computer system by direct lines through interface of touch screen,” 2007, in 25 pages.
Natterer, F., “The Mathematics of Computerized Tomography”, Society for Industrial and Applied Mathematics, 2001, in 240 pages.
Natterer, F., et al. “Fourier Reconstruction,” Mathematical Methods in Image Reconstruction, Society for Industrial and Applied Mathematics, 2001, in 12 pages.
Paradiso, J.A., “Several Sensor Approaches that Retrofit Large Surfaces for Interactivity,” ACM Ubicomp 2002 Workshop on Collaboration with Interactive Walls and Tables, 2002, in 8 pages.
Tedaldi, M., et al. “Refractive index mapping of layered samples using optical coherence refractometry,” Proceedings of SPIE, vol. 7171, 2009, in 8 pages.
Office Action dated Aug. 13, 2015, in connection with Sweden Application No. 1550096-0, filed Jan. 30, 2015.
Related Publications (1)
Number Date Country
20160224144 A1 Aug 2016 US