1. Field
This invention relates to electrical devices having a touch sensitive screen and, more specifically, to an electronic device having a touch sensitive screen wherein the touch detectors are disposed in a sparse pattern over the screen active area and in a dense pattern over the viewing area of the screen.
2. Description of the Related Art
As is well known in the art, users may interact with software or similar constructs through a display screen, or simply “screen.” That is, the screen is structured to display images of various command and control functions which the user selects with an input device. For larger electronic devices, such as computers, the user typically utilizes a keyboard and/or mouse. For smaller electronic devices, such as, but not limited to, personal digital assistants or cellular telephones, control was originally limited to a keypad, as a mouse or similar device was not included. Similarly, electronic devices used in public areas, such as, but not limited to, automatic teller machines, also used simple keypads and did not include input devices such as a mouse or a full keyboard.
Users, however, desired the simplicity and ease of use associated with mouse or similar input devices. Thus, one improvement over a simple keypad was the use of a touch sensitive screen. One type of touch sensitive screen included sensors in a transparent layer above the screen. This type of device, however, increased the thickness of the screen and reduced the screen's optical performance. “In-glass” touch sensitive screens, however, typically included a plurality of sensors 1 disposed within the screen 2 as shown in
A screen 2, such as, but not limited to, a liquid crystal display (LCD) panel 3, is typically disposed in a frame or housing. The LCD panel utilizes a liquid crystal medium to produce an image formed from a number of small, illuminated points, or pixels, located on a grid. The pixels are spaced as closely together as possible so that the image does not include voids or dark areas. Further, the pixels have an “aspect ratio” that represents the size of the pixel. The screen or LCD panel has an active area that is structured to display images. Disposed about the active area is an inactive area. There are no pixels in the inactive area. Because it is desirable to not have the image abut the frame, a portion of the inactive area is visible to the user. This area is also called the “viewing area.” Beneath the frame is a hidden portion of the inactive area that the user cannot see or touch.
As shown in
There is, therefore, a need for a touch sensitive screen for an electronic device that has a reduced number of sensors in the active area.
There is a further need for a touch sensitive screen for an electronic device that has a sparse pattern of sensors in the active area and a dense pattern of sensors in the viewing area.
These needs, and others, are met by at least one embodiment of the disclosed invention which provides for a touch sensitive screen for an electronic device wherein there is a sparse pattern of sensors disposed within the active area and a dense pattern of sensors disposed within the viewing area. In this configuration, the pixels in the active area may have a larger aspect ratio and provide a more pleasing image while the dense sensors disposed within the viewing area provide more accurate touch sensitivity. Further, the software, or other electronics, used to create the image, may be structured to position menus or other selectable images adjacent to the viewing area. Similarly, certain images, such as icons, can be programmed to be displayed directly under the sensors in the active area. Generally, this configuration provides for the best of both worlds; a bright, clear image with some touch sensitivity in the active area and a sensitive sensor grid in the viewing area where there are no pixels. Further, in use, the user's finger or stylus is disposed generally to the side of the menu as opposed to blocking the menu from view.
Similar numerals refer to similar parts throughout the specification.
As used herein, “touch sensitive” means structured to detect contact or near contact.
As used herein, “coupled” means a link between two or more elements, whether direct or indirect, so long as a link occurs.
As used herein, “directly coupled” means that two elements are directly in contact with each other.
As used herein, an “aspect ratio” it the ratio of a pixel's height divided by the pixel's width.
As shown in
The display assembly 16 includes an input/output assembly 30 and an LCD panel 32. The display assembly input/output assembly 30 is structured to receive a video input from the control assembly 14 and to produce an image on the LCD panel 32. The LCD panel 32 includes a lower substrate 40 and an upper substrate 42 disposed in a close, but spaced, relationship. The LCD panel 32 also includes a liquid crystal layer 44 disposed between the lower and upper substrates 40, 42. Upon application of an electrical charge, the liquid crystal molecules of the liquid crystal layer 44 are structured to align in a generally perpendicular direction with respect to the substrates 40, 42. The lower substrate 40 has a lower, outer surface 46 and an upper, inner surface 48. The upper substrate 42 has a lower, inner surface 50 and an upper, outer surface 52. The lower substrate upper, inner surface 48 has a first electrode 54, also called the pixel electrode, applied thereto. The upper substrate lower, inner surface 50 has a second electrode 56, also called the common electrode, applied thereto.
The first and second electrodes 54, 56 form a grid that defines the aperture size of the pixels. The display assembly input/output assembly 30 selectively controls the location of the charge applied to the first electrode 54 thereby forming images on the LCD panel 32. Typically, the display assembly input/output assembly 30 includes a programmable logic circuit, or integrated circuit, structured to apply a charge to the proper pixels.
The LCD panel 32 only creates an image in the area defined by the overlap of the first and second electrodes 54, 56. The LCD panel 32 has a greater area than the first and second electrodes 54, 56, however. As shown in
The electronic device 10 (
The detectors 74 are disposed in a pattern, preferably in lines wherein multiple lines form a grid. The pattern has at least a first portion 80 and a second portion 82. Detectors 74 in the first portion 80 are disposed over the active area 60. Because the active area 60 also includes the pixels that form the image, the detectors 74 in the first portion 80 are disposed in a sparse pattern so that fewer pixels will have a reduced aspect ratio. Preferably, the spacing of detectors 74 in the first portion 80 is between about 1.0 mm and 10.0 mm between the detectors 74, and more preferably about 3.0 mm between the detectors 74. Conversely, detectors 74 in the second portion 82 are disposed over the viewing area 64. Because the image is not created in the viewing area 64, and therefore there are no pixels to be adversely affected, the detectors 74 in the second portion 82 are disposed in a dense pattern. Preferably, the density of detectors 74 in the second portion 82 is between about 0.5 mm and 6.0 mm between the detectors, and more preferably about 1.0 mm between the detectors.
The control assembly 14 is structured to create the image and define the boundaries of selectable portions of the image on the active area 60 of the LCD panel 32. For example, and as shown in
As shown in
As shown in
As shown in
While specific embodiments of the disclosed and claimed concept have been described in detail, it will be appreciated by those skilled in the art that various modifications and alternatives to those details could be developed in light of the overall teachings of the disclosure. Accordingly, the particular arrangements disclosed are meant to be illustrative only and not limiting as to the scope of the disclosed and claimed concept which is to be given the full breadth of the claims appended and any and all equivalents thereof.
Number | Name | Date | Kind |
---|---|---|---|
4202041 | Kaplow et al. | May 1980 | A |
4731694 | Grabner et al. | Mar 1988 | A |
5412189 | Cragun | May 1995 | A |
6107997 | Ure | Aug 2000 | A |
6198475 | Kunimatsu et al. | Mar 2001 | B1 |
6236386 | Watanabe | May 2001 | B1 |
6411504 | Howell et al. | Jun 2002 | B2 |
6459424 | Resman | Oct 2002 | B1 |
6492978 | Selig et al. | Dec 2002 | B1 |
7199322 | Bourdelais et al. | Apr 2007 | B2 |
7203131 | Watt | Apr 2007 | B2 |
20020156807 | Dieberger | Oct 2002 | A1 |
20030081016 | Rahimzadeh et al. | May 2003 | A1 |
20030235452 | Kraus et al. | Dec 2003 | A1 |
20040056877 | Nakajima | Mar 2004 | A1 |
20040090428 | Crandall, Jr. et al. | May 2004 | A1 |
20050057528 | Kleen | Mar 2005 | A1 |
20050179668 | Edwards | Aug 2005 | A1 |
20070085838 | Ricks et al. | Apr 2007 | A1 |
20070165006 | Sato et al. | Jul 2007 | A1 |
20080273014 | Lowles et al. | Nov 2008 | A1 |
Number | Date | Country |
---|---|---|
1 955 904 | May 2007 | CN |
1717667 | Feb 2006 | EP |
1 988 447 | Nov 2008 | EP |
03025886 | Mar 2003 | WO |
2006065252 | Jun 2006 | WO |
Entry |
---|
European Patent Office, Summons to attend oral proceedings, issued in connection with European Patent Application Serial No. 07251889.7, on Apr. 8, 2010, 9 pages. |
European Patent Office, EP Communication, issued in connection with European Patent Application Serial No. 07 251 889.7, on Feb. 3, 2009, 6 pages. |
European Patent Office, EP Communication, issued in connection with European Patent Application Serial No. 07 251 889.7, on Sep. 27, 2007, 8 pages. |
The State Intellectual Property Office of People's Republic of China, English language translation of the First Office Action in connection with Chinese Patent Application Serial No. 200810210323.8, issued on Jan. 22, 2010, 6 pages. |
State Intellectual Property Office of People'S Republic of China, office action issued in CN application No. 200810210323.8, issued Apr. 20, 2011, 7 pages. |
Canadian Intellectual Property Office, office action issued in CA patent application 2,630,397, dated Oct. 14, 2011, 6 pages. |
Canadian Intellectual Property Office, Office Action issued in connection with Canadian Application No. 2,630,397, dated Dec. 19, 2013, 5 pages. |
State Intellectual Property Office of People'S Republic of China, Third Office Action issued in CN Patent No. 200810210323.8, issued Mar. 7, 2012 6 pages. (English language translation pp. 1-2). |
Canadian Intellectual Property Office, office action issued for CA application No. 2,630,397, dated Jan. 4, 2011, 4 pages. |
Number | Date | Country | |
---|---|---|---|
20080273014 A1 | Nov 2008 | US |