This invention is related to office equipment and the safe control of paper shredders, in particular touch-sensitive paper shredder control systems.
Automated office appliances have proliferated in modern life and workspaces, and one of the most common appliances are paper shredders. Currently, paper shredders have entered into homes, some of them with automatic sensors. The sensors may be configured to detect objects inserted therein and signal the paper shredder to begin to work by grabbing the object and shredding them. Unless the paper shredder is turned off, the shredder may always be in stand-by mode. However, because paper shredders are destructive devices, if human users are not careful when using them, an injury may occur. Many current paper shredders do not have protective devices to prevent objects or body parts from entering into the throat of the shredder—potentially bringing a safety hazard into the office or home.
Among the present day paper shredders, there have been shredders using the technology of contact detection to stop the shredder's blades from injuring a person or pet. Referring to
When the function switch is set at the “off” position, the machine is not working. When the function switch is set at other positions and the wastepaper basket is separated from the machine, the machine is on but not capable of cutting paper. When the basket is detached from the machine body, the spring switch is open to cut power to the motor. The operation of the circuit for the breaking of the spring is as follows: pin 1 of U1 detects the break of the spring, pin 5 of U1 becomes “high”, Q3 and Q2 cutoff and the motor doesn't turn. The power indicator and touch/basket detach indicator are on because these two indicators, R7, R8, D9, and the motor thermal control switch form a current loop.
When the function switch is moved away from “off”, and the wastepaper basket is in position, the machine is ready to work. The sequence of circuit operation is as follows: pin 1 of U1 becomes “low” and Q3 and Q2 become conducting. At the same time, pin 6 of U1 becomes “low”, Q1 is on, and the relay RLY 1 is closed. Now if the function switch is set at “on”, the machine will cut the paper if there is paper in the throat, otherwise the shredder is on standby. Under these circumstances, if hands, metal, or living animals contact the metal part at the feed throat, AC power, circuit elements (R21, R19, R20), and the contact will form a circuit, and turn off the motor because pin 8 of U1 now is “low” and pin 5 and 6 of U1 are “high”. To be more specific, as pin 6 of U1 is “high”, Q1 is off and the motor power is turned off. As pin 5 of U1 is “high” and Q2 and Q3 are cut off, the touch protection indicator is on. After the contact is removed from the feed throat, the shredder returns to normal operation.
The touch protection is achieved through the installment of conductive touch panel at the paper intake. When touching the conductive panel, the conductivity of human body provides a faint signal to the control circuit to activate the touch protection. In this case, two 2.2M ohm resistors largely decrease the current that flows through the human body and thus the circuit may not harm a human. By using this technique, a sensitive voltage detection integrated circuit is needed to monitor the status of the touch panel in real time. Thus the demand for a highly stable and sensitive integrated circuit is apparent. Circuit aging caused by long-term usage will also diminish or even cut the circuit's detection capability. As for the two resistors with high values, they limit the current that may flow through the human body, but they may also lose their capability in a humid environment. Moreover, a human may come in direct contact with AC power, causing electric shock or even endangering life.
The present invention solves the above-mentioned shortcomings by providing a touch-sensitive paper shredder control system making use of bioelectricity. The control process is safe and sensitive. The circuit is stable in performance, and can be applied in a wide degree of situations. To meet the above objectives, the touching device for paper shredders is constructed as below.
The touch-sensitive paper shredder control system may include a function module, power supply module, conductive touch panel, and a shredder mechanical component. The function module may include a touch detection circuit unit, motor reversal detection circuit unit, paper intake detection circuit unit, overload protection circuit unit, control circuit unit, and function switch having on, off, and reverse positions. All units in the function module may be connected directly to the control circuit unit except for the function switch, which, together with the control circuit unit, controls the motor driving circuit unit, and thus the shredder's mechanical components.
The power supply module may include an AC power interface switch, safety switch, fuse, control switch, power supply of control circuit unit, and motor driving circuit unit. The AC power interface switch, safety switch, fuse, and control switch may be connected in series and, through the control of the function switch, connect to the motor driving circuit unit. The control switch is a relay switch. The AC power, which flows through the fuse, is rectified, filtered and regulated to provide DC power to all circuit units.
The conductive touch panel may be connected to the touch detection circuit unit. The touch detection circuit unit consists of a bioelectricity controlled switching circuit and a ground switch circuit. The bioelectricity controlled switching circuit may be a transistor circuit with a first transistor where the touch panel is connected to the base of the first transistor via a first resistor. The base of the first transistor is also connected to ground via a parallel combination of a second resistor and a first capacitor. The emitter of the first transistor is connected to ground via a parallel combination of a third resistor and a second capacitor, and is also connected to the input of the ground switch circuit.
The collector of the first transistor drives in parallel, a power indicator LED and a touch indicator LED and is then connected to the power supply. The ground switching circuit is also a transistorized switching circuit having a second transistor. The base of the second transistor is connected to the output of the bioelectricity controlled switching circuit, the emitter is grounded, and the collector is connected to the input of the control circuit unit via an optical coupler and to the power supply via a fourth resistor.
The paper intake detection circuit unit is connected to the control circuit unit also. The paper intake detection circuit unit comprises a light emitting diode and a photosensitive diode. The emitting area of the former and the optics sensing part of the latter face each other and are installed on the walls of opposite sides of the feed throat. The overload protection circuit and the motor reversal detection circuit unit are connected to the control circuit unit.
The touch-sensitive paper shredder control system has adopted cascaded circuits to ensure human safety when a human touches the conductive touch panel. The electricity from the human body enables the bioelectricity controlled switching circuit, and then all the connected circuits. The control circuit unit disables the mechanical part of the shredder and it ensures human safety. Even if the power switch is turned on, the mechanical part of the shredder still doesn't work. The shredder realizes real time monitoring. The complete control process is both safe and sensitive. The machine performance is stable and reliable and easy to operate without human oversight.
The invention is generally shown by way of reference to the accompanying drawings in which:
Some embodiments are described in detail with reference to the related drawings. Additional embodiments, features and/or advantages will become apparent from the ensuing description or may be learned by practicing the invention. In the figures, which are not drawn to scale, like numerals refer to like features throughout the description. The following description is not to be taken in a limiting sense, but is made merely for the purpose of describing the general principles of the invention.
In one embodiment, the touch-sensitive paper shredder control system may include the following components: a function module, a power supply module, and shredder mechanical parts. Referring to
The power supply module consists of an AC power interface unit 81, security switch 82, fuse 83, control switch 84, power supply of control circuit unit 85, and the motor driving circuit unit 2. The control switch is a relay switch, and the security switch is a door switch. The first four of the above-mentioned units are connected in series and, through the control of function switch 86, connected to motor driving circuit unit. The power, through the fuse, is connected to the power supply of control circuit unit, and then to the control circuit unit.
Turning to
The ground switching circuit is also a switching transistor circuit. The output from the bioelectricity controlled switching circuit is connected to the input of the ground switching circuit, i.e. the emitter of transistor Q2. Transistor Q2 has its emitter connected directly to ground, its collector connected to VCC through resistor R7, and its collector connected to the input of control circuit unit through an optical coupler U1.
Referring to
The ground switching circuit is also a transistor circuit. The output from the bioelectricity controlled switching circuit, i.e. the emitter of transistor Q3, is connected directly to the base of the switching transistor Q2. The emitter of transistor Q2 is connected directly to ground, and the collector is connected to the input of the control circuit unit 3.
Referring to
Referring back to
Referring now to
Referring back to
The power supply of the control circuit unit is described below. AC input power is divided, rectified, regulated, and filtered by the circuit consists of resistors R1 and R2, capacitors C1 and C2, diodes D5 and D6, and Zener diode ZD1. The regulated 24 volts DC power is the power source for the control circuit unit. It's far below the safety voltage to pass through human body and will do no harm to human or animals.
The power supply for the touch detection circuit unit is described below. The AC input power, going through a bridge rectifier, is regulated and filtered to provide 12 volts DC voltage. The circuits consists of diodes D1-D4, Zener diode ZD2, resistor R12 and capacitor C3.
When a human touches the metal panel, the bioelectricity from the human body goes to the base of the transistor Q4 via a 1 MW resistor. The bioelectricity triggers transistors Q4 and Q2 on, cuts off transistor Q3, and thus cuts the motor power so that the shredder automatically stops when people touch the feed throat.
Referring now to
The overload protection and door open LED indicating functions are implemented by the circuit consists of R18, R14, R13, R11, and R12, light emitting diodes LED1 and LED2, diodes D10, D9, and D6, Zener diode ZD2, capacitor C5 and silicon controlled rectifier SCR.
The power supply for the control circuit unit includes a circuit consisting of resistors R1 and R2, capacitors C1 and C2, diodes D1 and D2, Zener diode ZD1, and capacitor C2. The same regulated 24 volts DC power is used as the power source for the control circuit unit. It's far below the safety voltage to pass through a human body and will do no harm to human or animals.
The touching function is described below. When human touches the metal panel, the bioelectricity from a human body goes to the base of the transistor Q3 via resistors R6 and R7. The signal triggers Q3 and Q2 on, turns Q1 off, and cuts the power to the motor. The motor stops turning and people are protected. The touch detection circuit unit will be more stable if it uses an independent bridge power supply and is isolated from the motor by an optical coupler.
When a human touches the panel, the touch of human on the metal part of the panel provides a triggering signal which via base bias circuit, turns Q3 on. The base bias circuit consists of resistors R7, R6 and R8, diode D4, and capacitor C3. With enough forward voltage from a human Q3 and Q2 are both turned on. When Q2 is on, its collector voltage drops and thus it turns on touch indicator via R5, turns off Q5 via D16, and turns off Q1 via D15. If the machine were turning reversely at this moment, Q5 would be on. But because of the touch voltage, Q5 is turned off and so is the motor. The other situation is when the machine is in a shredding state. In this case Q1 would be on to turn the motor in the forward direction. But because of human touch Q1 is turned off and motor is turned off, too. In either case, the machine is shut off to ensure the safety of human.
When a human no longer touches the machine's metal plate, transistor Q3 turns off because there is no trigger voltage and the machine returns to a normal working state. The working principle of the power on indicating circuit is as below. When the machine is in the shredding or reversal state as selected from the function switch, the power on indicator in on and when the machine is in a stopped state, the indicator is off. The indicator circuit includes an indicator lamp, resistors R17 and R16, and transistor Q4. When the machine is in the stop state, the indicator is off because transistor Q4 is not conducting. As for the reversal state, the emitter junction of transistor Q4, diode D12, and function switch complete a circuit and the power on indicator is on. While the machine is in the shredding state, the emitter of Q4, diode D13, and the function switch complete a circuit and the power indicator is on.
As detailed above, the touch-sensitive paper shredder control system has adopted cascaded circuits. On the machine feed throat there is a conductive touch panel, which is connected to bioelectricity controlled switching circuit, ground switching circuit, control circuit unit, and then shredder mechanical part. All these circuits ensure human safety when human touches the conductive touch panel. The electricity from a human body enables the bioelectricity controlled switching circuit, and then all the connected circuits. The control circuit unit disables the shredder mechanical part and it ensures human safety. Even if the power switch is turned on, the mechanical part of the shredder still won't work if a human is touching the touch panel. The shredder realizes real time monitoring and the complete control process is both safe and sensitive. The machine performance is stable and reliable. It is easy to operate without human intrusion, can be applied in wide situations, and brings safety assurance.
Although the present invention has been described by way of example with references to the circuit drawings, it is to be noted herein that various changes and modifications will be apparent to those skilled in the art. Therefore, unless such changes and modifications depart from the scope of the present invention, they should be construed as being included therein.
Number | Date | Country | Kind |
---|---|---|---|
2006 2 00439955 U | Aug 2006 | CN | national |
This U.S. Patent Application claims priority to, and is a Continuation of, U.S. application Ser. No. 11/827,798, entitled “Touch-Sensitive Paper Shredder Control System,” filed Jul. 12, 2007, which is a continuation-in-part of U.S. Pat. No. 7,471,017, which Patent being filed on Aug. 30, 2006 and issued on Dec. 30, 2008, with both Application and Patent being of the same inventor hereof, and both being assigned to the same Assignee hereof, and with both Application and Patent being respectively incorporated by reference in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
3111800 | Quianthy | Nov 1963 | A |
3629530 | Fischer | Dec 1971 | A |
3724766 | Bosland | Apr 1973 | A |
3728501 | Larson et al. | Apr 1973 | A |
3746815 | Drummer | Jul 1973 | A |
3769473 | Lay | Oct 1973 | A |
3780246 | Beckering et al. | Dec 1973 | A |
3785230 | Lokey | Jan 1974 | A |
3829850 | Guetersloh | Aug 1974 | A |
3860180 | Goldhammer | Jan 1975 | A |
3873796 | Worobec, Jr. | Mar 1975 | A |
3919596 | Bellis | Nov 1975 | A |
3947734 | Fyler | Mar 1976 | A |
3952239 | Owings et al. | Apr 1976 | A |
3953696 | Reimann et al. | Apr 1976 | A |
3971906 | Sahrbacker | Jul 1976 | A |
4002874 | Brown | Jan 1977 | A |
4016490 | Weckenmann et al. | Apr 1977 | A |
4018392 | Wagner | Apr 1977 | A |
4062282 | Miller et al. | Dec 1977 | A |
4068805 | Oswald | Jan 1978 | A |
4082232 | Brewer | Apr 1978 | A |
4107484 | Petersen, III | Aug 1978 | A |
4117752 | Yoneda | Oct 1978 | A |
4125228 | Brewer | Nov 1978 | A |
4135068 | Burns | Jan 1979 | A |
4162042 | Mommsen et al. | Jul 1979 | A |
4172400 | Brierley | Oct 1979 | A |
4180716 | Suzuki | Dec 1979 | A |
4187420 | Piber | Feb 1980 | A |
4194698 | Kosmowski | Mar 1980 | A |
4262179 | Bauer | Apr 1981 | A |
4276459 | Willett et al. | Jun 1981 | A |
4277666 | Vignaud | Jul 1981 | A |
4349814 | Akehurst | Sep 1982 | A |
4380721 | Bullock et al. | Apr 1983 | A |
4411391 | Crane | Oct 1983 | A |
4423844 | Sours et al. | Jan 1984 | A |
4449062 | Wilson | May 1984 | A |
4471915 | Levin et al. | Sep 1984 | A |
4510860 | LaBarge et al. | Apr 1985 | A |
4518958 | Cook et al. | May 1985 | A |
4549097 | Ulmer | Oct 1985 | A |
4562971 | Schwelling | Jan 1986 | A |
4564146 | Bleasdale | Jan 1986 | A |
4598182 | Breslin | Jul 1986 | A |
4664317 | Morton | May 1987 | A |
4673136 | Bianco et al. | Jun 1987 | A |
4683381 | Dufoug | Jul 1987 | A |
4693428 | Raterman et al. | Sep 1987 | A |
4706895 | Bricker | Nov 1987 | A |
4709197 | Goldhammer et al. | Nov 1987 | A |
4713509 | Chebowski | Dec 1987 | A |
4751603 | Kwan | Jun 1988 | A |
4753323 | Kahkipuro | Jun 1988 | A |
4767895 | Parrish | Aug 1988 | A |
4771359 | Link | Sep 1988 | A |
4784601 | Nitta | Nov 1988 | A |
4784602 | Nitta | Nov 1988 | A |
4798116 | Silver et al. | Jan 1989 | A |
4817877 | Itoh et al. | Apr 1989 | A |
4821967 | Moriyama | Apr 1989 | A |
4824029 | Stottmann et al. | Apr 1989 | A |
4839533 | Aga | Jun 1989 | A |
4842205 | Araki et al. | Jun 1989 | A |
4859172 | Nitta | Aug 1989 | A |
4882458 | Berg et al. | Nov 1989 | A |
4893027 | Kammerer et al. | Jan 1990 | A |
4900881 | Fischer | Feb 1990 | A |
4910365 | Kuo | Mar 1990 | A |
4944462 | Raterman et al. | Jul 1990 | A |
4982058 | Schroeder et al. | Jan 1991 | A |
5037033 | Stottmann et al. | Aug 1991 | A |
5044270 | Schwelling | Sep 1991 | A |
5045648 | Fogleman, Sr. | Sep 1991 | A |
5065947 | Farnsworth | Nov 1991 | A |
5081406 | Hughes et al. | Jan 1992 | A |
5100067 | Konig et al. | Mar 1992 | A |
5135178 | Strohmeyer | Aug 1992 | A |
5166679 | Vranish et al. | Nov 1992 | A |
5167374 | Strohmeyer | Dec 1992 | A |
5171143 | Sohn | Dec 1992 | A |
5186398 | Vigneaux, Jr. | Feb 1993 | A |
5207392 | Stangenberg et al. | May 1993 | A |
5236138 | Stangenberg et al. | Aug 1993 | A |
5268553 | Shimoji | Dec 1993 | A |
5269473 | Strohmeyer et al. | Dec 1993 | A |
5275342 | Galanty | Jan 1994 | A |
5279467 | Lydy | Jan 1994 | A |
5295633 | Kimbro et al. | Mar 1994 | A |
5318229 | Brown | Jun 1994 | A |
D348431 | Hoffman et al. | Jul 1994 | S |
5345138 | Mukaidono et al. | Sep 1994 | A |
5356286 | Sher | Oct 1994 | A |
5397890 | Schueler et al. | Mar 1995 | A |
5407346 | Sher | Apr 1995 | A |
5421720 | Sher | Jun 1995 | A |
5432308 | Howie, Jr. | Jul 1995 | A |
5436613 | Ghosh et al. | Jul 1995 | A |
5460516 | Sher | Oct 1995 | A |
5494229 | Rokos et al. | Feb 1996 | A |
5568895 | Webb et al. | Oct 1996 | A |
5607295 | Khemarangsan | Mar 1997 | A |
5621290 | Heller et al. | Apr 1997 | A |
5636801 | Kroger | Jun 1997 | A |
5655725 | Kroger | Aug 1997 | A |
5662280 | Nishio et al. | Sep 1997 | A |
5667152 | Mooring | Sep 1997 | A |
5680999 | Wada | Oct 1997 | A |
5704776 | Sher | Jan 1998 | A |
5724737 | Stones | Mar 1998 | A |
5775605 | Tsai | Jul 1998 | A |
5788476 | Sher | Aug 1998 | A |
5829697 | Kroger | Nov 1998 | A |
5829963 | Ichikawa | Nov 1998 | A |
5850342 | Nakamura et al. | Dec 1998 | A |
5868242 | Hall et al. | Feb 1999 | A |
5884855 | Chang | Mar 1999 | A |
5897065 | Schwelling | Apr 1999 | A |
5921367 | Kashioka et al. | Jul 1999 | A |
D412716 | Kroger | Aug 1999 | S |
5942975 | Sorensen | Aug 1999 | A |
5988542 | Henreckson | Nov 1999 | A |
6065696 | Tsai | May 2000 | A |
6079645 | Henreckson et al. | Jun 2000 | A |
6082643 | Kovacs | Jul 2000 | A |
6082644 | Turner | Jul 2000 | A |
6089482 | Chang | Jul 2000 | A |
6113017 | Tsai | Sep 2000 | A |
6116528 | Schwelling | Sep 2000 | A |
6247828 | Herst | Jun 2001 | B1 |
D444809 | Chang | Jul 2001 | S |
6260780 | Kroger et al. | Jul 2001 | B1 |
6265682 | Lee | Jul 2001 | B1 |
6274828 | Chu | Aug 2001 | B1 |
6308904 | Chang | Oct 2001 | B1 |
6325309 | Chang | Dec 2001 | B1 |
6340124 | Charles et al. | Jan 2002 | B1 |
6376939 | Suzuki et al. | Apr 2002 | B1 |
6418004 | Mather | Jul 2002 | B1 |
6501198 | Taylor et al. | Dec 2002 | B2 |
6536536 | Gass et al. | Mar 2003 | B1 |
6550701 | Chang | Apr 2003 | B1 |
6575285 | Jong | Jun 2003 | B2 |
D481416 | Chang | Oct 2003 | S |
6629654 | Neely et al. | Oct 2003 | B2 |
6655943 | Peterson et al. | Dec 2003 | B1 |
6676050 | Chang | Jan 2004 | B2 |
6676460 | Motsenbocker | Jan 2004 | B1 |
6682006 | Lee | Jan 2004 | B2 |
6724324 | Lambert | Apr 2004 | B1 |
D494607 | Hunag | Aug 2004 | S |
6775018 | Taniguchi | Aug 2004 | B1 |
6779747 | Mclean et al. | Aug 2004 | B2 |
6813983 | Gass et al. | Nov 2004 | B2 |
6822698 | Clapper | Nov 2004 | B2 |
6826988 | Gass et al. | Dec 2004 | B2 |
6834730 | Gass et al. | Dec 2004 | B2 |
6857345 | Gass et al. | Feb 2005 | B2 |
D502713 | Hunag | Mar 2005 | S |
D502714 | Hunag | Mar 2005 | S |
6877410 | Gass et al. | Apr 2005 | B2 |
6880440 | Gass et al. | Apr 2005 | B2 |
6920814 | Gass et al. | Jul 2005 | B2 |
6922153 | Pierga et al. | Jul 2005 | B2 |
6945148 | Gass et al. | Sep 2005 | B2 |
6945149 | Gass et al. | Sep 2005 | B2 |
6957601 | Gass et al. | Oct 2005 | B2 |
6962301 | Chang et al. | Nov 2005 | B1 |
6964386 | Ho | Nov 2005 | B2 |
6966513 | Chang | Nov 2005 | B2 |
6976648 | Chang | Dec 2005 | B2 |
6978954 | Kroger et al. | Dec 2005 | B2 |
6979813 | Avril | Dec 2005 | B2 |
6981667 | Hunag | Jan 2006 | B2 |
6983903 | Chang | Jan 2006 | B2 |
6994004 | Gass et al. | Feb 2006 | B2 |
6997090 | Gass et al. | Feb 2006 | B2 |
7000514 | Gass et al. | Feb 2006 | B2 |
7024975 | Gass et al. | Apr 2006 | B2 |
7040559 | Matlin et al. | May 2006 | B2 |
7044410 | Hunag | May 2006 | B2 |
7048218 | Hunag | May 2006 | B2 |
7055417 | Gass | Jun 2006 | B1 |
7077039 | Gass et al. | Jul 2006 | B2 |
7083129 | Beam, III | Aug 2006 | B2 |
7083131 | Ting | Aug 2006 | B2 |
7093668 | Gass et al. | Aug 2006 | B2 |
7098800 | Gass | Aug 2006 | B2 |
7100483 | Gass et al. | Sep 2006 | B2 |
7121358 | Gass et al. | Oct 2006 | B2 |
7137326 | Gass et al. | Nov 2006 | B2 |
7150422 | Wang | Dec 2006 | B2 |
7171879 | Gass et al. | Feb 2007 | B2 |
7171897 | Barajas et al. | Feb 2007 | B2 |
7195185 | Matlin | Mar 2007 | B2 |
7197969 | Gass et al. | Apr 2007 | B2 |
7210383 | Gass et al | May 2007 | B2 |
7225712 | Gass et al. | Jun 2007 | B2 |
7228772 | Gass | Jun 2007 | B2 |
7231856 | Gass et al. | Jun 2007 | B2 |
7284467 | Gass et al. | Oct 2007 | B2 |
7290472 | Gass et al. | Nov 2007 | B2 |
7303158 | Abramson et al. | Dec 2007 | B1 |
7308843 | Gass et al. | Dec 2007 | B2 |
7311276 | Matlin et al. | Dec 2007 | B2 |
7328752 | Gass et al. | Feb 2008 | B2 |
7344096 | Matlin et al. | Mar 2008 | B2 |
D583859 | Holderfield et al. | Dec 2008 | S |
D584342 | Parratt et al. | Jan 2009 | S |
D591335 | Holderfield et al. | Apr 2009 | S |
7631822 | Matlin et al. | Dec 2009 | B2 |
7631823 | Matlin et al. | Dec 2009 | B2 |
7631824 | Matlin et al. | Dec 2009 | B2 |
7635102 | Matlin et al. | Dec 2009 | B2 |
20010030114 | Thielman | Oct 2001 | A1 |
20020002942 | Abraham et al. | Jan 2002 | A1 |
20020017175 | Gass et al. | Feb 2002 | A1 |
20020017176 | Gass et al. | Feb 2002 | A1 |
20020017178 | Gass et al. | Feb 2002 | A1 |
20020017179 | Gass et al. | Feb 2002 | A1 |
20020017180 | Gass et al. | Feb 2002 | A1 |
20020017181 | Gass et al. | Feb 2002 | A1 |
20020017182 | Gass et al. | Feb 2002 | A1 |
20020017183 | Gass et al. | Feb 2002 | A1 |
20020017184 | Gass et al. | Feb 2002 | A1 |
20020017336 | Gass et al. | Feb 2002 | A1 |
20020020261 | Gass et al. | Feb 2002 | A1 |
20020020262 | Gass et al. | Feb 2002 | A1 |
20020020263 | Gass et al. | Feb 2002 | A1 |
20020020265 | Gass et al. | Feb 2002 | A1 |
20020056348 | Gass et al. | May 2002 | A1 |
20020056349 | Gass et al. | May 2002 | A1 |
20020056350 | Gass et al. | May 2002 | A1 |
20020059853 | Gass et al. | May 2002 | A1 |
20020059854 | Gass et al. | May 2002 | A1 |
20020059855 | Gass et al. | May 2002 | A1 |
20020066346 | Gass et al. | Jun 2002 | A1 |
20020069734 | Gass et al. | Jun 2002 | A1 |
20020111702 | Angel | Aug 2002 | A1 |
20020139877 | Beam | Oct 2002 | A1 |
20020170399 | Gass et al. | Nov 2002 | A1 |
20020170400 | Gass et al. | Nov 2002 | A1 |
20020190581 | Gass et al. | Dec 2002 | A1 |
20030002942 | Gass et al. | Jan 2003 | A1 |
20030005588 | Gass et al. | Jan 2003 | A1 |
20030015253 | Gass et al. | Jan 2003 | A1 |
20030019341 | Gass et al. | Jan 2003 | A1 |
20030037651 | Gass et al. | Feb 2003 | A1 |
20030056853 | Gass et al. | Mar 2003 | A1 |
20030058121 | Gass et al. | Mar 2003 | A1 |
20030090224 | Gass et al. | May 2003 | A1 |
20030090226 | Chen et al. | May 2003 | A1 |
20030196824 | Gass et al. | Oct 2003 | A1 |
20040008122 | Michael | Jan 2004 | A1 |
20040040426 | Gass et al. | Mar 2004 | A1 |
20040043696 | Suzuki | Mar 2004 | A1 |
20040163514 | Gass et al. | Aug 2004 | A1 |
20040173430 | Gass | Sep 2004 | A1 |
20040181951 | Wittke | Sep 2004 | A1 |
20040194594 | Dils et al. | Oct 2004 | A1 |
20040226800 | Pierga et al. | Nov 2004 | A1 |
20050039586 | Gass et al. | Feb 2005 | A1 |
20050039822 | Gass et al. | Feb 2005 | A1 |
20050041359 | Gass | Feb 2005 | A1 |
20050132859 | Hunag | Jun 2005 | A1 |
20050157203 | Nakakuki et al. | Jul 2005 | A1 |
20050166736 | Gass et al. | Aug 2005 | A1 |
20050218250 | Matlin et al. | Oct 2005 | A1 |
20050274834 | Huang | Dec 2005 | A1 |
20050274836 | Chang | Dec 2005 | A1 |
20060054724 | Matlin et al. | Mar 2006 | A1 |
20060054725 | Matlin | Mar 2006 | A1 |
20060091247 | Matlin | May 2006 | A1 |
20060157600 | Wang | Jul 2006 | A1 |
20060169619 | Wang | Aug 2006 | A1 |
20060219827 | Matlin et al. | Oct 2006 | A1 |
20060249609 | Huang | Nov 2006 | A1 |
20070012808 | Kao | Jan 2007 | A1 |
20070034725 | Duh | Feb 2007 | A1 |
20070246581 | Matlin et al. | Oct 2007 | A1 |
20080105772 | Matlin | May 2008 | A2 |
Number | Date | Country |
---|---|---|
2372057 | Apr 2000 | CN |
2383583 | Jun 2000 | CN |
733413 | Mar 1943 | DE |
7818838 | Nov 1979 | DE |
3247299 | Jul 1984 | DE |
3313232 | Oct 1984 | DE |
3208676 | Apr 1986 | DE |
3540896 | May 1987 | DE |
8619856 | Sep 1988 | DE |
8619856 | Oct 1988 | DE |
3819285 | Dec 1989 | DE |
4014669 | Nov 1991 | DE |
4121330 | Jan 1993 | DE |
19519858 | May 1996 | DE |
19703575 | Aug 1998 | DE |
19960267 | Jul 2000 | DE |
0191137 | Aug 1986 | EP |
0511535 | Apr 1992 | EP |
00522071 | May 1993 | EP |
0562076 | Sep 1993 | EP |
0736886 | Oct 1996 | EP |
855221 | Jul 1998 | EP |
0855221 | Jul 1998 | EP |
1069954 | Jan 2001 | EP |
1195202 | Apr 2002 | EP |
1442834 | Apr 2004 | EP |
2096919 | Oct 1982 | GB |
2199962 | Jul 1988 | GB |
2203063 | Oct 1988 | GB |
2234690 | Feb 1991 | GB |
52011691 | Jan 1977 | JP |
57-76734 | Jan 1982 | JP |
57076734 | May 1982 | JP |
62146877 | Jun 1987 | JP |
3143552 | Jun 1991 | JP |
4110143 | Apr 1992 | JP |
03143552 | May 1992 | JP |
04110143 | May 1992 | JP |
04157093 | May 1992 | JP |
04180852 | Jun 1992 | JP |
05014164 | Jan 1993 | JP |
05068906 | Mar 1993 | JP |
05092144 | Apr 1993 | JP |
05123593 | May 1993 | JP |
05211691 | Aug 1993 | JP |
05280243 | Oct 1993 | JP |
06137104 | May 1994 | JP |
06277548 | Oct 1994 | JP |
07039778 | May 1995 | JP |
07136539 | May 1995 | JP |
07155629 | Jun 1995 | JP |
07157012 | Jun 1995 | JP |
07299377 | Nov 1995 | JP |
07328469 | Dec 1995 | JP |
8001026 | Jan 1996 | JP |
09070551 | Mar 1997 | JP |
09075763 | Mar 1997 | JP |
09139161 | May 1997 | JP |
09262491 | Oct 1997 | JP |
10-048344 | Feb 1998 | JP |
10034003 | Feb 1998 | JP |
10-089592 | Apr 1998 | JP |
11216383 | Aug 1999 | JP |
20076014 | Mar 2000 | JP |
20346288 | Dec 2000 | JP |
2001150383 | Jun 2001 | JP |
2001-349139 | Dec 2001 | JP |
21349139 | Dec 2001 | JP |
24321993 | Nov 2004 | JP |
200432199 | Nov 2004 | JP |
26075831 | Mar 2006 | JP |
2007-075822 | Mar 2007 | JP |
27075822 | Mar 2007 | JP |
WO8403650 | Sep 1984 | WO |
WO9101860 | Feb 1991 | WO |
WO9200159 | Jan 1992 | WO |
WO9306570 | Apr 1993 | WO |
WO9308356 | Apr 1993 | WO |
WO9413441 | Jun 1994 | WO |
WO9413441 | Jun 1994 | WO |
WO9613362 | Sep 1996 | WO |
WO9637350 | Nov 1996 | WO |
WO9852728 | Nov 1998 | WO |
WO0048283 | Aug 2000 | WO |
WO02060588 | Aug 2002 | WO |
WO02082613 | Oct 2002 | WO |
WO03006213 | Jan 2003 | WO |
WO2005084861 | Sep 2005 | WO |
WO2005097331 | Oct 2005 | WO |
WO2005107951 | Nov 2005 | WO |
WO2006049784 | Jan 2006 | WO |
PCTUS2005028290 | Mar 2006 | WO |
WO2006031324 | Mar 2006 | WO |
WO2006031324 | Mar 2006 | WO |
WO2006074122 | Jul 2006 | WO |
WO2007060698 | May 2007 | WO |
WO2007109753 | Sep 2007 | WO |
WO2008011517 | Jan 2008 | WO |
WO2008014276 | Jan 2008 | WO |
WO2008014276 | Apr 2008 | WO |
WO2008042538 | Apr 2008 | WO |
WO2008064392 | Jun 2008 | WO |
Number | Date | Country | |
---|---|---|---|
20100116916 A1 | May 2010 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11827798 | Jul 2007 | US |
Child | 12576493 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11468651 | Aug 2006 | US |
Child | 11827798 | US |