The field of the invention is that of touch-sensitive systems, and more particularly touch-sensitive optical systems. The use of the system is not limited to a particular application but the system applies very particularly to aircraft instrument panels and their avionic systems.
In the earliest days of commercial aviation, five aircrew were necessary to effect a flight. This number was then reduced to three. In the 1980s, with the general adoption of “glass cockpits”, i.e. cockpits with large display screens dedicated to piloting and navigation, the flight engineer station was eliminated and the number of aircrew thus changed to two.
Today, interaction between the aircrew and cockpit screens is mainly effected via keyboards and “mouse” type computer interfaces or “trackballs”. However, the increasing workload on aircrew caused by the increase in air traffic and the tendency to reduce the number of aircrew are leading aircraft manufacturers and aeronautical systems suppliers to seek ever more efficient and ever more ergonomic man-machine interfaces. Designers are working in particular on the capability of the devices to be “multi-touch” devices, i.e. devices able to respond simultaneously to a plurality of actions effected by the pilot or aircrew.
The use of touch-sensitive screens as man-machine interaction means is becoming more and more widespread in everyday life. This interaction means greatly facilitates the use of the associated device, through being more intuitive and faster. The use of touch-sensitive screens thus facilitates interaction between the aircrew and the cockpit screens, thus increasing flight safety at the same time as reducing the workload on the aircrew.
However, the introduction of touch-sensitive screens into a cockpit gives rise to certain problems. A cockpit screen must respond to certain environmental requirements. These include optical constraints, vibration, electromagnetic interference, resistance to heat, shocks, liquids, etc. Adding the touch-sensitive technology to the screen makes it more difficult to comply with these requirements.
Today, few aircraft are equipped with touch-sensitive screens and for those which are the touch-sensitive screens are not critical screens such as the primary flight display (PFD) or navigation display (ND) screens that provide fundamental information concerning piloting and navigation.
There currently exist various so-called “multi-touch” touch-sensitive system technologies. They include resistive, projected capacitive. optical, acoustic and “in-cell” systems. Optical technologies include so-called “optical imaging”, “infrared matrix” and “frustrated total internal reflection” (FTIR) technologies. These technologies are nevertheless not perfectly adapted to use in an avionic environment for the critical screens in a cockpit.
The “multi-touch” capability is provided by the following technologies, which have the following limitations:
Resistive technology
Of the optical technologies. “optical imaging” systems are the most widespread at present. Various technological principles exist implementing this technology. One example is the “optical position detector” of the Japanese company EIT Co that is the subject matter of PCT patent application WO 2005/031554.
The technical principle described in the above application is represented in
Other variants of this system exist. For example, the border of the screen may be illuminated either by external infrared illuminators or by infrared illuminators integrated into the border. Two matrix sensors then image the light border and detect the presence of a shadow when a pointer interacts with the screen.
These technical solutions have the following limitations and drawbacks:
Whilst preserving the advantages of the “optical imaging” technology, the system of the invention solves several of the above problems in whole or in part. The solution consists in a set of optical sensors and sources of illumination positioned correctly to enable the detection of a pointer and its position on a screen where the display is dynamic or on a static display area. Unlike previous systems that rely on shadows, where the object to be detected appears dark on a bright background, the system of the invention operates by direct detection, the object to be detected being bright on a dark background at the level of the photosensitive surfaces.
This device preserves the advantages of so-called “optical imaging” systems, which are the non-degraded optical performance of the associated screen, the small overall size of the technology, the low cost because low-cost COTS components are used, the low mass of the system, the adaptability to different cockpit configurations, the possibility of having a very large touch-sensitive surface, etc.
Moreover, the solution of the invention solves the problems of NVG compatibility, “multi-touch” use, operation under high illumination, simple and controllable control electronics and associated software, the redundancy necessary to meet safety constraints.
Its other advantages are the use of a smaller number of light sources and great freedom in positioning them.
To be more precise, the invention consists in an optical touch-sensitive system mounted above a detection area of a display surface, said system comprising a first light source arranged to produce above said area of the display surface a “luminous layer” covering at least said area, a first imager and a second imager the optical fields of which cover at least said area, characterized in that, the first source being separate from the first and second imagers, when a first object is situated above said area, first and second luminous images of said object are captured by the first imager and the second imager, the system including analysis means enabling by triangulation of the known positions of the first and second luminous images, determination of the position of this first object above said area of the display surface.
The system advantageously includes a third imager so that, when first and second objects are situated above the area of the display surface, first, second and third luminous images of the first object are captured by the first, second and third imagers, fourth, fifth and sixth luminous images of the second object are captured by the first, second and third imagers, the system including analysis means enabling by triangulation of the known positions of the six luminous images, determination with certainty of the position of the first object and the second object above said area of the display surface.
The system advantageously includes a second light source separate from the first light source. In this case, in a first embodiment, the first and second light sources emit light periodically and never simultaneously during normal operation of the optical touch-sensitive system. In a second embodiment the first light source emits in a first spectral band, the second light source emits in a second spectral band separate from the first spectral band, the imagers comprising spectral filters enabling transmission of only one of the two spectral bands. The light sources may also be lit alternatively so as not to interfere with each other.
Advantageously, for night use with light-amplifying goggles, the source or sources emit or emits in a spectral band situated outside the amplification spectral band of night vision goggles and the imagers are sensitive in said spectral band of said light sources.
The light source or sources advantageously include or includes optical means arranged such that the mean illumination above the area of the display surface and in a plane perpendicular thereto is substantially constant. To be more precise the optical means comprise collimation optics and a light guide or a light guide including regularly disposed diffusing patterns.
The imager advantageously includes a sunshade and the periphery of the display surface is advantageously surrounded by a sunlight-absorbing barrier.
In a first application the display surface is of substantially rectangular shape and the touch-sensitive area covers the whole of said display surface.
In a second application the display surface includes a plurality of areas, the system including a plurality of light sources and imagers arranged so that the position of at least one object may be determined in each area.
The display surface is advantageously a display screen or includes static display areas.
In a preferred use the display surface belongs to an avionic system mounted in an aircraft cockpit. In this context the display surface covers a portion of or the whole of the instrument panel.
The invention will be better understood and other advantages will become apparent in the light of the following description, which is given by way of nonlimiting example, and the appended figures, in which:
The optical touch-sensitive system of the invention is mounted above a detection area of a display surface. It generally comprises a set of optical imagers C and sources S of illumination correctly positioned to enable the detection of one or more pointers P and their position above the display surface A.
The display surface A may be one or more display screens. The expression dynamic display is then used. It may be a static display area produced by means of stickers or screen printing or a combination of these two functions.
The pointer P may be one or more fingers of the user, a stylus or any other object. The only conditions are that the pointer is not too wide to be detected accurately and that it is at least in part diffusing.
The general operating principle of systems of the invention is shown in
The source S of illumination emits light parallel to the display area in a layer a few millimeters thick extending from the display surface. This “luminous layer” must of course cover all of the detection area and not illuminate the imagers. This light source is for illuminating the pointer P when it designates a particular location in the display area. Light-emitting diodes or laser diodes may be used. In this case, they are associated with a diffuser and/or optics for widening the beam to cover the whole of the touch-sensitive area.
Each imager includes focusing optics and an optical sensor. Each imager is in fact a micro-camera. The optical sensor is composed of photosensitive pixels, and may be of the area or linear type. It forms an image of the surface of the display area in a plane parallel to the plane of the display area. If there is no pointer on the display area, the sensor detects no light and the image is therefore dark. If the pointer is illuminated, it reflects and diffuses the light, which creates a luminous image on the sensors of the two imagers. The signals SC1 and SC2 delivered by the sensors and represented in
Prior calibration enables the positions and the orientations of the sensors relative to each other to be determined.
The system of the invention, in particular when it is used in an aeronautical environment, must function both under strong illumination by sunlight and, for some uses, at night.
To enable operation under solar illumination, various techniques illustrated in
If the pointer is illuminated by sunlight, which is a major problem for existing solution based on the “optical imaging” technology, the signal captured by the detector is not disturbed. To the contrary, it is amplified and the pointer is detected better because the rest of the image is still dark.
However, if the sunlight is reflected by an object other than the pointer disposed in the field of view of the sensors, this could cause a false activation. If that object is small, of equivalent size to the pointer, the light signal received by the sensors does not mask the signal emitted by the pointer. The position of the “intrusive” object is determined as being outside the touch-sensitive area and the system therefore ignores it.
To eliminate signals sufficiently strong to mask the signal from the pointer, the touch-sensitive area is surrounded by light-absorbing edges R.A. of sufficient thickness to cover the field of view of the sensors, i.e. a few millimeters.
Finally, in some cases, judicious positioning of the imagers can eliminate a great many of the solar illumination problems. Thus when the system is disposed on an instrument panel, positioning the imagers inside the lower portion of the cockpit glare shield enables direct illumination of the sensors by the sun to be prevented.
Moreover, a judicious design of the module integrating the sensor can prevent the sun from directly illuminating the sensor. On adding a glare shield G or a sunshade to the imager as shown in
At night, to ensure compatibility with the use of night vision goggles (NVG), the light sources have emission spectra situated beyond the amplification wavelength of the goggles, generally 930 nm. These sources may be laser diodes or light-emitting diodes. The sensors then have a spectral sensitivity adapted to these wavelengths.
As already stated, at least two sensors and one light source are required for operation in the so-called “mono-touch” mode detecting a single object. For operation in a mode detecting two objects, or more, known as the “dual-touch” mode, two imagers are no longer sufficient. As seen in
To resolve the indeterminacy, it suffices to add a third imager C3 as seen in
However, starting from the third imager, adding a new imager and at least one light source may interfere with the signal received by the other imagers as seen in
The first is to apply different spectral filtering to the different sensors by judiciously choosing the wavelengths of the light sources. For example, the detection spectral band of the sensors 1 and 2 is adapted to the wavelength of the source 1 while the wavelength of the source 2 is rejected by spectral filtering, and the detection spectral band of the sensor 3 is adapted to the wavelength of the source 2 while the wavelength of the source 1 is rejected by different spectral filtering.
The second solution is to sequence in time the signals emitted by the light sources.
Adding one or more sensors and one or more light sources enables, in addition to “multi-touch” operation, a redundancy that is beneficial in terms of meeting avionics safety constraints.
If a point source is used to illuminate the whole of the detection area, the illumination varies greatly according to the distance from the source of illumination. In theory, detection by the sensors is independent of the received light level. In practice, it may be advantageous for the light source to be uniformly distributed in a uniform beam covering the whole of the width of the area. To this end a light guide type of shaping optics is used to enable more uniform illumination of the designator whatever its position on the surface of the detection area.
It is equally possible to use a plurality of identical sources situated on the same side of an area to render the illumination uniform.
The optical touch-sensitive system of the invention applies very particularly to aeronautical applications and in particular to aircraft instrument panels. It is easy to adapt it to different cockpit configurations.
To summarize, the optical touch-sensitive systems of the invention have the following advantages:
Number | Date | Country | Kind |
---|---|---|---|
1101680 | Jun 2011 | FR | national |