This application claims the benefit of Korean Patent Application No. 10-2012-0061056, filed on Jun. 7, 2012, entitled “Touch Sensor and the Manufacturing Method”, which is hereby incorporated by reference in its entirety into this application.
1. Technical Field
The present invention relates to a touch sensor and a method of manufacturing the same.
2. Description of the Related Art
In accordance with the growth of computers using a digital technology, devices assisting computers have also been developed, and personal computers, portable transmitters and other personal information processors execute processing of text and graphics using a variety of input devices such as a keyboard and a mouse.
However, according to rapid advancement of an information-oriented society, since use of computers has increasingly expanded, it is difficult to efficiently operate a product using only the keyboard and the mouse currently serving as the input device. Therefore, the necessity for a device that is simple, has minimum malfunction, and is capable of easily inputting information has increased.
Furthermore, current techniques for input devices exceed the level of fulfilling general functions and thus are progressing towards techniques related to high reliability, durability, innovation, designing and manufacturing. To this end, a touch sensor has been developed as an input device capable of inputting information such as text and graphics.
This touch sensor is mounted on a display surface of an image display device such as an electronic organizer, a flat panel display device including a liquid crystal display (LCD) device, a plasma display panel (PDP), an electroluminescence (El) element, or the like, and a cathode ray tube (CRT) to thereby be used to allow a user to select desired information while viewing the image display device.
Meanwhile, the touch sensor is classified into a resistive type touch sensor, a capacitive type touch sensor, an electromagnetic type touch sensor, a surface acoustic wave (SAW) type touch sensor, and an infrared type touch sensor. These various types of touch sensors are adopted for an electronic product in consideration of not only signal amplification problems, resolution differences and the degree of difficulty of designing and manufacturing technology but also in light of optical properties, electrical properties, mechanical properties, resistance to the environment, input properties, durability and economic benefits. In particular, resistive and capacitive types are prevalently used at the present time.
Currently, as disclosed in Korean Patent Laid-Open Publication No. 2011-0102794, in the capacitive type touch sensor, an indium-tin oxide (ITO), a conductive polymer, a metal, or the like, has been used as a material of a transparent electrode.
However, in the case of forming the touch sensor by patterning the metal on a transparent substrate, a surface of the metal is smooth, such that reflection is easily generated. Therefore, when the display is viewed through the transparent substrate, the transparent electrode of the touch sensor is viewed with an eye, such that there is a problem in visibility.
Patent Document 1. Korean Patent Laid-Open Publication No. 2011-0102794
The present invention has been made in an effort to provide a touch sensor capable of decreasing reflection on a surface thereof, and a method of manufacturing the same.
According to a preferred embodiment of the present invention, there is provided a touch sensor including: a transparent substrate; a resin layer formed on one surface of the transparent substrate; and an electrode formed on one surface of the resin layer, wherein one surface of the resin layer is formed with a substrate prominence and depression part having a prominence and depression shape.
The resin layer may be made of an imprint resin.
The electrode may be a touch electrode.
One surface of the touch electrode positioned at the substrate prominence and depression part may be formed with an electrode prominence and depression part having a shape corresponding to that of the substrate prominence and depression part.
The touch electrode may be formed in a metal mesh pattern.
The touch electrode may be made of copper (Cu), aluminum (Al), gold (Au), silver (Ag), titanium (Ti), palladium (Pd), chromium (Cr), or a combination thereof.
The touch electrode may be made of metal silver formed by exposing/developing a silver salt emulsion layer.
The substrate prominence and depression part may be formed in a moth-eye shape.
The substrate prominence and depression part may have a pitch of 150 to 300 nm and a height one to three times larger than the pitch.
According to another preferred embodiment of the present invention, there is provided a method of manufacturing a touch sensor, the method including: a resin layer forming step of forming a resin layer on one surface of a transparent substrate; a substrate prominence and depression part forming step of forming a substrate prominence and depression part having a prominence and depression shape on one surface of the resin layer; and an electrode forming step of forming an electrode on the substrate prominence and depression part.
In the substrate prominence and depression part forming step, the resin layer may be made of an imprint resin, and one surface of the imprint resin may be imprinted to form the substrate prominence and depression part.
In the electrode forming step, one surface of the electrode positioned at the substrate prominence and depression part may be formed with an electrode prominence and depression part having a shape corresponding to that of the substrate prominence and depression part.
The electrode may be a touch electrode.
In the electrode forming step, the touch electrode may be formed by plating or sputtering.
The touch electrode may be formed in a metal mesh pattern.
The touch electrode may be made of copper (Cu), aluminum (Al), gold (Au), silver (Ag), titanium (Ti), palladium (Pd), chromium (Cr), or a combination thereof.
The touch electrode may be made of metal silver formed by exposing/developing a silver salt emulsion layer.
In the electrode forming step, the substrate prominence and depression part may be formed in a moth-eye shape.
In the substrate prominence and depression part forming step, a pitch of the substrate prominence and depression part may be 150 to 300 nm, and a height thereof may be one to three times larger than the pitch.
The above and other objects, features and advantages of the present invention will be more clearly understood from the following detailed description taken in conjunction with the accompanying drawings, in which:
The objects, features and advantages of the present invention will be more clearly understood from the following detailed description of the preferred embodiments taken in conjunction with the accompanying drawings. Throughout the accompanying drawings, the same reference numerals are used to designate the same or similar components, and redundant descriptions thereof are omitted. Further, in the following description, the terms “first”, “second”, “one side”, “the other side” and the like are used to differentiate a certain component from other components, but the configuration of such components should not be construed to be limited by the terms. Further, in the description of the present invention, when it is determined that the detailed description of the related art would obscure the gist of the present invention, the description thereof will be omitted.
Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the attached drawings.
Referring to
Hereinafter, the touch sensor 100 according to the preferred embodiment of the present invention will be described in detail with reference to
Referring to
Referring to
In addition, the resin layers 130 and 150 may be made of an imprint resin. Here, the imprint resins may be made of a thermoplastic resin; however, the imprint resins 130 and 150 according to the preferred embodiment of the present invention are not limited thereto.
Referring to
Here, a pitch of each of the substrate prominence and depression parts 131 and 151 may be 150 to 300 nm, and a height thereof may be one to three times larger than the pitch.
In addition, the substrate prominence and depression parts 131 and 151 may have a moth-eye shape, but are not necessarily limited thereto.
In addition, the substrate prominence and depression parts 131 and 151 may be formed by laminating or applying the imprint resin on one surface of the transparent substrate 110 to form the resin layers 130 and 150, and then pressing one surface of the resin layers 130 and 150 using a stamp or the like.
Referring to
In addition, the touch electrode 140 and 160 may be formed by depositing a metal on one surface of the substrate prominence and depression parts 131 and 151 using sputtering, plating, or the like.
In addition, the touch electrodes 140 and 160 includes electrode patterns 141 and 161 and electrode wirings 142 and 162 that sense a touch.
Further, the electrode patterns 141 and 161 may include a first electrode pattern 141 and a second electrode pattern 161, and the electrode wirings 142 and 162 may include a first electrode wiring 142 and a second electrode wiring 162.
Here, the first electrode wiring 142 receiving an electrical signal from the first electrode pattern 141 is formed at an edge of the first electrode pattern 140, and the second electrode wiring 162 receiving an electrical signal from the second electrode pattern 161 is formed at an edge of the second electrode pattern 161.
In addition, the electrode patterns 141 and 161 may be made of a metal mesh. Here, the metal mesh may be formed in a mesh pattern using copper (Cu), aluminum (Al), gold (Au), silver (Ag), titanium (Ti), palladium (Pd), chromium (Cr), or a combination thereof.
Meanwhile, in the case in which the electrode patterns 141 and 161 are made of copper (Cu), the substrate prominence and depression parts 131 and 151 prevent light from being reflected. Therefore, a separate black oxide treatment for preventing the light from being reflected on the surface of the electrode patterns 141 and 161 may be omitted.
In addition, in the electrode patterns 141 and 161, a line width is formed to be 7 μm or less, and a pitch is formed to be 900 μm or less, thereby making it possible to improve the visibility. However, the line width and the pitch of the electrode patterns 141 and 161 according to the preferred embodiment of the present invention are not limited thereto.
Further, the electrode patterns 141 and 161 may also be made of metal silver formed by exposing and developing a silver salt emulsion layer, in addition to the above-mentioned metal.
Meanwhile, referring to
Meanwhile, referring to
In the touch sensor 100 according to the preferred embodiment of the present invention as described above, the substrate prominence and depression parts 131 and 151 are formed on one surface of the transparent substrate 110, thereby making it possible to decrease or prevent reflection of the light, such that the visibility may be improved.
In addition, in the case in which the touch electrodes 140 and 161 are formed in the metal mesh pattern, the visibility is improved due to the substrate prominence and depression parts 131 and 151 formed on one surface of the transparent substrate 110 or electrode prominence and depression parts (143 and 163) formed on a lower surface of the touch electrode 140 and 161, thereby making it possible to omit the separate black oxide treatment for improving the visibility.
Referring to
Hereinafter, the method of manufacturing the touch sensor according to the preferred embodiment of the present invention will be described in more detail with reference to
Referring to
Referring to
Specifically, when one surface of the resin layer 130 is pressurized using a stamp 170 having a protrusion part 171 protruded on a lower surface thereof, a prominence and depression groove is formed at a portion pressurized by the protrusion part 171 in one surface of the resin layer 130, thereby making it possible to form the substrate prominence and depression part 131 at the resin layer 130. Here, although the substrate prominence and depression part 131 may have a moth-eye shape in which a plurality of protrusions having, for example, a conical shape, a pyramidal shape, or the like, are protruded in parallel with each other, the substrate prominence and depression part 131 according to the preferred embodiment of the present invention is not limited to having the above-mentioned shape.
Here, the substrate prominence and depression part 131 may be formed so that a pitch thereof is 150 to 300 nm, and a height thereof is one to three times larger than the pitch.
Referring to
Referring to
In addition, the forming of the metal layer may be formed by plating the metal or sputtering; however, the forming of the metal layer of the present invention is not necessarily limited thereto.
Referring to
Referring to
Referring to
Meanwhile, referring to
In addition, in order to form the second touch electrode 160, the imprint resin is additionally applied or laminated on one surface of the resin layer 130 having the first touch electrode 140 formed thereon, such that the resin layer 150 is formed, and the substrate prominence and depression part 151 is formed on one surface of the resin layer 150 additionally formed by the stamp 170.
Here, the metal layer is formed on one surface of the substrate prominence and depression part 151, the resist is selectively laminated, and exposure is performed on the metal layer to remove a portion in which the resist is not laminated, thereby making it possible to form the second touch electrode 160. Here, the resist laminated on the metal layer is removed. Here, since the forming of the second touch electrode 160 is the same as the forming of the first touch electrode 140, the detailed description thereof will be omitted.
Meanwhile, the first touch electrode 140 and the second touch electrode 160 may be formed so as to intersect with each other. Here, for example, the first touch electrode 140 may be formed in a horizontal direction, and the second touch electrode 160 may be formed in a vertical direction, which is not limited thereto.
In addition, the first touch electrode 140 and the second touch electrode 160 may be made of copper (Cu), aluminum (Al), gold (Au), silver (Ag), titanium (Ti), palladium (Pd), chromium (Cr), or a combination thereof; however, the material of the touch electrodes 140 and 160 of the present invention is not limited thereto.
In addition, the first touch electrode 140 and the second touch electrode 160 may be made of metal silver formed by exposing/developing the silver salt emulsion layer.
It may be appreciated from
As shown in
Therefore, the method of manufacturing the touch sensor according to the preferred embodiment of the present invention forms the substrate prominence and depression parts 131 and 151 on one surface of the transparent substrate 110, thereby making it possible to decrease the reflection of the light, such that the visibility may be improved.
In addition, at the time of forming the touch electrodes 140 and 160 formed in the metal mesh pattern, the visibility is improved due to the substrate prominence and depression parts 131 and 151 formed on one surface of the transparent substrate 110 or the electrode prominence and depression parts (143 and 163) formed on a lower surface of the touch electrode 140 and 160, thereby making it possible to omit the separate black oxide treatment which improves the visibility.
As set forth above, according to the preferred embodiment of the present invention, the reflection generated on the surface of the touch sensor is decreased, thereby making it possible to improve the visibility of the touch sensor.
In addition, according to the preferred embodiment of the present invention, at the time of forming the touch electrode in the metal mesh pattern, the black oxide treatment may be omitted.
Although the embodiments of the present invention have been disclosed for illustrative purposes, it will be appreciated that the present invention is not limited thereto, and those skilled in the art will appreciate that various modifications, additions and substitutions are possible, without departing from the scope and spirit of the invention.
Accordingly, any and all modifications, variations or equivalent arrangements should be considered to be within the scope of the invention, and the detailed scope of the invention will be disclosed by the accompanying claims
Number | Date | Country | Kind |
---|---|---|---|
10-2012-0061056 | Jun 2012 | KR | national |