This relates generally to touch sensor panels, and in particular, to touch sensor panel designs that can improve touch sensitivity and reduce negative optical artifacts.
Many types of input devices are presently available for performing operations in a computing system, such as buttons or keys, mice, trackballs, joysticks, touch sensor panels, touch screens and the like. Touch screens, in particular, are becoming increasingly popular because of their ease and versatility of operation as well as their declining price. Touch screens can include a touch sensor panel, which can be a clear panel with a touch-sensitive surface, and a display device such as a liquid crystal display (LCD) that can be positioned partially or fully behind the panel so that the touch-sensitive surface can cover at least a portion of the viewable area of the display device. Touch screens can allow a user to perform various functions by touching the touch sensor panel using a finger, stylus or other object at a location dictated by a user interface (UI) being displayed by the display device. In general, touch screens can recognize a touch event and the position of the touch event on the touch sensor panel, and the computing system can then interpret the touch event in accordance with the display appearing at the time of the touch event, and thereafter can perform one or more actions based on the touch event.
Mutual capacitance touch sensor panels can be formed from a matrix of drive and sense lines of a substantially transparent conductive material such as Indium Tim Oxide (ITO), often arranged in rows and columns in horizontal and vertical directions on a substantially transparent substrate. Drive signals can be transmitted through the drive lines, which can result in the formation of static mutual capacitance at the crossover points (sensing pixels) of the drive lines and the sense lines. The static mutual capacitance, and any changes to the static mutual capacitance due to a touch event, can be determined from sense signals that can be generated in the sense lines due to the drive signals.
The touch sensing pixels can be varied in size and/or spacing to enable touch sensitivity in large panels without increasing the number of drive and sense lines which can otherwise increase the processing burden and can cause negative optical artifacts when viewing the display device through the touch panel. However, increasing the size and/or spacing of the touch sensing pixels can negatively impact the resistance and capacitance (RC) time constant per pixel, thereby hindering touch sensitivity of the touch panel and limiting the speed at which the touch panel can operate.
This relates to a touch sensor panel including a plurality of shaped drive lines and a plurality of shaped sense lines formed on the same layer and utilizing conductive jumpers in crossover locations, according to one embodiment. The plurality of drive lines and the plurality of sense lines can be formed by interconnecting sections of at least one conductive material having a truncated diamond shape to reduce parasitic capacitance, although other shapes can also be used. Either the sections of the plurality of drive lines or the sections of the plurality of sense lines can be interconnected with one or more conductive cross-overs, which can be an opaque metal or other conductive material. A black mask or other opaque covering can be layered over the one or more conductive cross-overs to minimize visual artifacts. Also, at least one conductive dummy region can be disposed in an area of the touch sensor panel around the truncated diamond shaped sections of the plurality of drive lines and the plurality of sense lines to improve optical uniformity and enhance the touch detection capabilities of the touch sensor panel. One or more metal lines can be formed overlapping and electrically connected to the interconnected sections of each of the plurality of drive lines and the plurality of sense lines in order to further reduce resistance.
In an alternate embodiment, the plurality of drive lines and the plurality of sense lines can be formed by interconnecting sections of interconnected conductive lines. According to an embodiment, the interconnected conductive lines are formed of sections of at least one conductive material having an interdigitated comb design. The sections can be formed from a substantially transparent conductive material such as ITO, for example. Alternatively, the interconnected conductive lines may be thin metal lines in a web-like formation, without the substantially transparent conductive material.
The present disclosure, in accordance with one or more various embodiments, is described in detail with reference to the following figures. The drawings are provided for purposes of illustration only and merely depict exemplary embodiments of the disclosure. These drawings are provided to facilitate the reader's understanding of the disclosure and should not be considered limiting of the breadth, scope, or applicability of the disclosure. It should be noted that for clarity and ease of illustration these drawings are not necessarily made to scale.
a) illustrates an exemplary arrangement of drive and sense lines on the same side of a single substrate according to various embodiments.
b) illustrates an exemplary pixel generated from diamond-shaped drive and sense lines on the same side of a single substrate according to various embodiments.
a) illustrates an exemplary diamond-shaped section with thin arms according to various embodiments.
b) illustrates an exemplary truncated diamond-shaped section with thin arms according to various embodiments.
c) illustrates an exemplary diamond-shaped section with thick arms according to various embodiments.
d) illustrates an exemplary truncated diamond-shaped section with thick arms according to various embodiments.
a) illustrates a close-up view of interconnected truncated diamond-shaped sections according to various embodiments.
b) illustrates a close-up view of interconnected truncated diamond-shaped sections with angled arms according to various embodiments
a) illustrates a close-up view of interconnected truncated diamond-shaped sections with zigzagged metal traces according to various embodiments.
b) illustrates a close-up view of interconnected truncated diamond-shaped sections with a conductive pattern on each section according to various embodiments.
c) illustrates a close-up view of interconnected patterns without truncated diamond-shaped sections according to various embodiments.
d) illustrates a close-up view of interconnected truncated diamond-shaped sections with disjointed conductive patterns on each section according to various embodiments.
a) illustrates an exemplary mobile telephone that can include a touch sensor panel according to the various embodiments described herein.
b) illustrates an exemplary digital media player that can include a touch sensor panel according to the various embodiments described herein.
c) illustrates exemplary personal computer that can include a touch sensor panel according to the various embodiments described herein
In the following description of embodiments, reference is made to the accompanying drawings which form a part hereof, and in which it is shown by way of illustration specific embodiments that can be practiced. It is to be understood that other embodiments can be used and structural changes can be made without departing from the scope of the disclosed embodiments.
This relates to the formation of touch sensor panels, and in some embodiments, larger-size touch sensor panels. A touch sensor panel, according to various embodiments, can include a plurality of drive lines crossing a plurality of sense lines, forming an array. The plurality of drive lines and the plurality of sense lines can be formed by interconnecting sections of at least one conductive material having a truncated diamond shape in order to reduce parasitic capacitance, although other shapes can also be used. At least one conductive dummy region can be disposed in an area of the touch sensor panel around the truncated diamond shape sections of the plurality of drive lines and the plurality of sense lines, in order to provide visual uniformity and to further reduce parasitic capacitance. One or more metal lines (or lines formed from other conductive material) may be formed overlapping and in electrical contact with the interconnected sections of each of the plurality of drive lines and the plurality of sense lines, in order to further reduce resistance.
In an alternate embodiment, the plurality of drive lines and the plurality of sense lines can be formed by interconnecting sections of interconnected conductive lines. According to an embodiment, the interconnected conductive lines are formed of sections of at least one conductive material having an interdigitated comb design. The sections can be formed from a substantially transparent conductive material such as ITO, for example. Alternatively, the interconnected conductive lines may be thin metal lines in a web-like formation, without the substantially transparent conductive material.
Although embodiments may be described and illustrated herein in terms of mutual capacitance touch sensor panels, it should be understood that the various embodiments are not so limited, but can be additionally applicable to self-capacitance sensor panels, single and multi-touch sensor panels, and other sensors in which multiple simultaneous stimulation signals are used to generate a composite sense signal. Furthermore, it should be understood that various embodiments are also applicable to various touch sensor panel configurations, such as configurations in which the drive and sense lines are formed in non-orthogonal arrangements, on the back of a cover glass, on the same side of a single substrate, or integrated with display circuitry.
Charge pump 115 can be used to generate the supply voltage for the transmit section. Stimulation signals 116 (Vstim) can have amplitudes higher than the maximum voltage the ASIC process can tolerate by cascoding transistors. Therefore, using charge pump 115, the stimulus voltage can be higher (e.g. 6V) than the voltage level a single transistor can handle (e.g. 3.6 V). Although
Touch sensor panel 124 can include a capacitive sensing medium having a plurality of drive lines and a plurality of sense lines. The drive and sense lines can be formed from a transparent conductive medium such as Indium Tin Oxide (ITO) or Antimony Tin Oxide (ATO), although other transparent and non-transparent materials such as copper can also be used. In some embodiments, the drive and sense lines can be perpendicular to each other, although in other embodiments other non-Cartesian orientations are possible. For example, in a polar coordinate system, the sensing lines can be concentric circles and the driving lines can be radially extending lines (or vice versa). It should be understood, therefore, that the terms “drive lines” and “sense lines” as used herein are intended to encompass not only orthogonal grids, but the intersecting traces of other geometric configurations having first and second dimensions (e.g. the concentric and radial lines of a polar-coordinate arrangement). The drive and sense lines can be formed on, for example, a single side of a substantially transparent substrate.
At the “intersections” of the traces, where the drive and sense lines can pass adjacent to and above and below (cross) each other (but without making direct electrical contact with each other), the drive and sense lines can essentially form two electrodes (although more than two traces could intersect as well). Each intersection of drive and sense lines can represent a capacitive sensing node and can be viewed as picture element (pixel) 126, which can be particularly useful when touch sensor panel 124 is viewed as capturing an “image” of touch. (In other words, after touch controller 106 has determined whether a touch event has been detected at each touch sensor in the touch sensor panel, the pattern of touch sensors in the multi-touch panel at which a touch event occurred can be viewed as an “image” of touch (e.g. a pattern of fingers touching the panel).) The capacitance between drive and sense electrodes can appear as a stray capacitance when the given row is held at direct current (DC) voltage levels and as a mutual signal capacitance Csig when the given row is stimulated with an alternating current (AC) signal. The presence of a finger or other object near or on the touch sensor panel can be detected by measuring changes to a signal charge Qsig present at the pixels being touched, which is a function of Csig.
Computing system 100 can also include host processor 128 for receiving outputs from processor subsystems 102 and performing actions based on the outputs that can include, but are not limited to, moving an object such as a cursor or pointer, scrolling or panning, adjusting control settings, opening a file or document, viewing a menu, making a selection, executing instructions, operating a peripheral device connected to the host device, answering a telephone call, placing a telephone call, terminating a telephone call, changing the volume or audio settings, storing information related to telephone communications such as addresses, frequently dialed numbers, received calls, missed calls, logging onto a computer or a computer network, permitting authorized individuals access to restricted areas of the computer or computer network, loading a user profile associated with a user's preferred arrangement of the computer desktop, permitting access to web content, launching a particular program, encrypting or decoding a message, and/or the like. Host processor 128 can also perform additional functions that may not be related to panel processing, and can be coupled to program storage 132 and display device 130 such as an LCD display for providing a UI to a user of the device. In some embodiments, host processor 128 can be a separate component from touch controller 106, as shown. In other embodiments, host processor 128 can be included as part of touch controller 106. In still other embodiments, the functions of host processor 128 can be performed by processor subsystem 102 and/or distributed among other components of touch controller 106. Display device 130 together with touch sensor panel 124, when located partially or entirely under the touch sensor panel, can form touch screen 118.
Note that one or more of the functions described above can be performed, for example, by firmware stored in memory (e.g., one of the peripherals) and executed by processor subsystem 102, or stored in program storage 132 and executed by host processor 128. The firmware can also be stored and/or transported within any computer-readable medium for use by or in connection with an instruction execution system, apparatus, or device, such as a computer-based system, processor-containing system, or other system that can fetch the instructions from the instruction execution system, apparatus, or device and execute the instructions. In the context of this document, a “computer-readable medium” can be any medium that can contain or store the program for use by or in connection with the instruction execution system, apparatus, or device. The computer readable medium can include, but is not limited to, an electronic, magnetic, optical, electromagnetic, infrared, or semiconductor system, apparatus or device, a portable computer diskette (magnetic), a random access memory (RAM) (magnetic), a read-only memory (ROM) (magnetic), an erasable programmable read-only memory (EPROM) (magnetic), a portable optical disc such a CD, CD-R, CD-RW, DVD, DVD-R, or DVD-RW, or flash memory such as compact flash cards, secured digital cards, USB memory devices, memory sticks, and the like.
According to an embodiment of the present disclosure, the drive and sense lines of touch sensor panel 124 may be formed of diamond-shaped or truncated diamond-shaped sections of ITO, for example, that are interconnected.
b illustrates exemplary pixel 230 generated from diamond-shaped drive lines 202 and sense lines 204 on the same side of a single substrate according to various embodiments. If drive lines 202 is stimulated with a stimulation signal Vstim 220, a static mutual capacitance can be formed at intersection 216 of the necked-down areas. The static mutual capacitance at intersection 216 can be undesirable because a finger may not be able to block many of the fringing fields. Accordingly, in this embodiment the necked-down areas are made as small as possible; however, alternate arm designs of the diamond sections are described below with reference to other embodiments.
A fringe mutual capacitance 218 can also be formed between the diamonds in the stimulated drive lines and the adjacent sense line diamonds. Fringe mutual capacitance 218 between adjacent diamonds can be of roughly the same order as the mutual capacitance formed between drive and sense lines separated by a substrate. Fringe mutual capacitance 218 between adjacent row and column diamonds can be desirable because a finger or other object may be able to block some of the fringing electric field lines and effect a change in the mutual capacitance that can be detected by the analog channels connected to the rows. As shown in
a)-3(d) show exemplary ITO section architectures of drive lines sections 206 and sense line sections 210 that may be interconnected to form drive lines 202 and/or sense lines 204, although it should be understood that conductive materials other than ITO may also be used. Each section may include a variable size arm 300, which can connect to another arm 300 of an adjoining section or may be electrically connected to interconnect 212, which in turn can be connected to arm 300 of another sense line section 210, for example (e.g., to form sense line 204).
As shown in
Thus, using a section 206/210 design as shown in
a) is a close-up view of the connections of drive line sections 206 and sense line sections 210, using interconnects 212. Before interconnect 212 is formed, insulating material 214 can be applied over the conductive material (e.g., ITO) layer forming drive and sense lines 206 and 210. Interconnect 212, which can be made of metal or other conductive material, can then be applied over insulating material 214, extending beyond the insulating material to short together sense line sections 210. In alternative embodiments, the process of forming the ITO layer, insulating layer, and metal layer can be reversed, with the metal layer deposited first. In either embodiment, an optional layer of black mask (or other nonreflective material) can be applied over interconnect 212 to reduce negative visual artifacts. As can be seen in
Isolated “dummy” sections can be formed between drive lines 202 and sense lines 204 according to various embodiments.
A large parasitic mutual capacitance can be formed between stimulated drive line 202, for example, and dummy sections 600 and 602, but because dummy sections 600 and 602 are isolated, their voltage potential can move along with stimulated drive line 202 and can have minimal or no negative impact on touch detection. Reducing the size of each dummy section 600 and 602 in a particular area, thus increasing the number of dummy sections 600 and 602, can further reduce parasitic mutual capacitance.
Dummy sections 602 can also have a beneficial impact on touch detection. Because drive lines 202 and sense lines 204 can be formed on the same layer on the same side of a substrate, a large static mutual capacitance can be created between them. However, only a relatively small number of the electric field lines between drive lines 202 and sense lines 204 (those that extend beyond the cover of the touch sensor panel) are capable of being influenced by a finger or other object. Most of the electric field lines remain within the confines of the cover and are generally unaffected by a touch event. Therefore, a touch event may only cause a small change in the large static mutual capacitance, making it difficult to detect the touch event. However, with dummy sections 602 in place, instead of having static mutual capacitance form between drive lines 202 and sense lines 204 within the confines of the cover, parasitic mutual capacitance will instead be formed between the drive lines 202 and the dummy sections 602. Removal of static mutual capacitance unaffected by a touch event can improve the touch detection capabilities of the panel, because a higher percentage of the remaining static mutual capacitance can be influenced by a touch event.
a) illustrates an embodiment in which truncated diamond-shaped sections 206 and 210 are interconnected as described above with reference to
In the depicted embodiment, the metal traces are zigzagged in order to minimize visual artifacts when viewing the LCD, for example, through the touch panel sensor 124. The zigzag pattern can avoid Moire or other negative visual effects that can result from the metal traces being in alignment with the LCD structures. Alternatively, the pattern can be designed to be aligned over the black mask areas of the LCD to minimize blocking of the displayed image. However, the traces 800 may be straight or in any zigzag pattern without departing from the scope of the present disclosure. The metal traces 800 can be connected to metal interconnect 212, according to an embodiment. The metal traces 800 may be connected or disconnected between sections 206, for example. In addition, although
It is noted that the multiple conductive patterns 810 are not limited to any particular pattern 810, and one of skill in the art would realize that various patterns 810 can be formed within the scope of the present disclosure. For example,
In an alternate embodiment, the entire array of drive lines 202 and sense lines 204 can be rotated a predetermined amount (e.g., 15, 30 or 60 degrees) relative to the display module 716, for example, in order to minimize visual artifacts caused by the metal lines 800.
Alternative designs for sections 206 and 210 and dummy sections can be used in order to maintain touch sensitivity while minimizing negative visual artifacts.
Sections 900 and 1000 can be formed of a substantially transparent conductive material, such as ITO. Alternatively, sections 900 and/or 1000 can be made up of thin opaque metal lines in an interconnected web design to form rows 202 and columns 204. The web design of sections 900 and/or 1000 can include any number of digits disposed in various directions, and each digit can include any number of sub-digits branching therefrom.
a) illustrates an example mobile telephone 1336 that can include touch sensor panel 1324 and display device 1330, the touch sensor panel including a touch pixel design according to one of the various embodiments described herein.
b) illustrates an example digital media player 1340 that can include touch sensor panel 1324 and display device 1330, the touch sensor panel including a touch pixel design according to one of the various embodiments described herein.
c) illustrates an example personal computer 1344 that can include touch sensor panel (trackpad) 1324 and display 1330, the touch sensor panel and/or display of the personal computer (in embodiments where the display is part of a touch screen) including a touch pixel design according to the various embodiments described herein.
While various embodiments have been described above, it should be understood that they have been presented by way of example only, and not by way of limitation. Likewise, the various diagrams may depict an example architectural or other configuration for the disclosure, which is done to aid in understanding the features and functionality that can be included in the disclosure. The disclosure is not restricted to the illustrated example architectures or configurations, but can be implemented using a variety of alternative architectures and configurations. Additionally, although the disclosure is described above in terms of various exemplary embodiments and implementations, it should be understood that the various features and functionality described in one or more of the individual embodiments are not limited in their applicability to the particular embodiment with which they are described. They instead can be applied alone or in some combination, to one or more of the other embodiments of the disclosure, whether or not such embodiments are described, and whether or not such features are presented as being a part of a described embodiment. Thus the breadth and scope of the present disclosure should not be limited by any of the above-described exemplary embodiments.
Number | Name | Date | Kind |
---|---|---|---|
4087625 | Dym et al. | May 1978 | A |
4090092 | Serrano | May 1978 | A |
4304976 | Gottbreht et al. | Dec 1981 | A |
4475235 | Graham | Oct 1984 | A |
4659874 | Landmeier | Apr 1987 | A |
5194862 | Edwards | Mar 1993 | A |
5317919 | Awtrey | Jun 1994 | A |
5459463 | Gruaz et al. | Oct 1995 | A |
5483261 | Yasutake | Jan 1996 | A |
5488204 | Mead et al. | Jan 1996 | A |
5825352 | Bisset et al. | Oct 1998 | A |
5835079 | Shieh | Nov 1998 | A |
5841078 | Miller et al. | Nov 1998 | A |
5844506 | Binstead | Dec 1998 | A |
5880411 | Gillespie et al. | Mar 1999 | A |
6137427 | Binstead | Oct 2000 | A |
6163313 | Aroyan et al. | Dec 2000 | A |
6188391 | Seely et al. | Feb 2001 | B1 |
6310610 | Beaton et al. | Oct 2001 | B1 |
6323846 | Westerman et al. | Nov 2001 | B1 |
6452514 | Philipp | Sep 2002 | B1 |
6690387 | Zimmerman et al. | Feb 2004 | B2 |
6730863 | Gerpheide et al. | May 2004 | B1 |
6970160 | Mulligan et al. | Nov 2005 | B2 |
7015894 | Morohoshi | Mar 2006 | B2 |
7030860 | Hsu et al. | Apr 2006 | B1 |
7129935 | Mackey | Oct 2006 | B2 |
7138686 | Banerjee et al. | Nov 2006 | B1 |
7184064 | Zimmerman et al. | Feb 2007 | B2 |
7538760 | Hotelling et al. | May 2009 | B2 |
7548073 | Mackey et al. | Jun 2009 | B2 |
7639234 | Orsley | Dec 2009 | B2 |
7663607 | Hotelling et al. | Feb 2010 | B2 |
7932898 | Philipp et al. | Apr 2011 | B2 |
8120371 | Day et al. | Feb 2012 | B2 |
8223133 | Hristov | Jul 2012 | B2 |
8258986 | Makovetskyy | Sep 2012 | B2 |
8259078 | Hotelling et al. | Sep 2012 | B2 |
8283935 | Liu et al. | Oct 2012 | B2 |
8319747 | Hotelling et al. | Nov 2012 | B2 |
8441464 | Lin et al. | May 2013 | B1 |
8479122 | Hotelling et al. | Jul 2013 | B2 |
8487898 | Hotelling | Jul 2013 | B2 |
8576193 | Hotelling | Nov 2013 | B2 |
8593410 | Hong | Nov 2013 | B2 |
8593425 | Hong et al. | Nov 2013 | B2 |
8614688 | Chang | Dec 2013 | B2 |
8633915 | Hotelling et al. | Jan 2014 | B2 |
20030076325 | Thrasher | Apr 2003 | A1 |
20040017362 | Mulligan et al. | Jan 2004 | A1 |
20040090429 | Geaghan et al. | May 2004 | A1 |
20040119701 | Mulligan et al. | Jun 2004 | A1 |
20040239650 | Mackey | Dec 2004 | A1 |
20050069718 | Voss-Kehl et al. | Mar 2005 | A1 |
20050073507 | Richter et al. | Apr 2005 | A1 |
20050083307 | Aufderheide et al. | Apr 2005 | A1 |
20050126831 | Richter et al. | Jun 2005 | A1 |
20050146509 | Geaghan et al. | Jul 2005 | A1 |
20050270039 | Mackey | Dec 2005 | A1 |
20050280639 | Taylor et al. | Dec 2005 | A1 |
20060038791 | Mackey | Feb 2006 | A1 |
20060132463 | Lee et al. | Jun 2006 | A1 |
20060146484 | Kim et al. | Jul 2006 | A1 |
20060197753 | Hotelling | Sep 2006 | A1 |
20060278444 | Binstead | Dec 2006 | A1 |
20070008299 | Hristov | Jan 2007 | A1 |
20070012665 | Nelson et al. | Jan 2007 | A1 |
20070074914 | Geaghan et al. | Apr 2007 | A1 |
20070229468 | Peng et al. | Oct 2007 | A1 |
20070229470 | Snyder et al. | Oct 2007 | A1 |
20070247443 | Philipp | Oct 2007 | A1 |
20070262963 | Xiao-Ping et al. | Nov 2007 | A1 |
20070279395 | Philipp | Dec 2007 | A1 |
20070283832 | Hotelling | Dec 2007 | A1 |
20080024456 | Peng | Jan 2008 | A1 |
20080062140 | Hotelling et al. | Mar 2008 | A1 |
20080074398 | Wright | Mar 2008 | A1 |
20080136787 | Yeh et al. | Jun 2008 | A1 |
20080158167 | Hotelling et al. | Jul 2008 | A1 |
20080158181 | Hamblin et al. | Jul 2008 | A1 |
20080264699 | Chang et al. | Oct 2008 | A1 |
20080277259 | Chang | Nov 2008 | A1 |
20080283175 | Hagood et al. | Nov 2008 | A1 |
20080303022 | Tai et al. | Dec 2008 | A1 |
20080309633 | Hotelling et al. | Dec 2008 | A1 |
20080309635 | Matsuo | Dec 2008 | A1 |
20090002337 | Chang | Jan 2009 | A1 |
20090019344 | Yoon et al. | Jan 2009 | A1 |
20090054107 | Feland et al. | Feb 2009 | A1 |
20090085894 | Gandhi et al. | Apr 2009 | A1 |
20090091551 | Hotelling et al. | Apr 2009 | A1 |
20090135157 | Harley | May 2009 | A1 |
20090182189 | Lira | Jul 2009 | A1 |
20090184937 | Grivna | Jul 2009 | A1 |
20090205879 | Halsey, IV et al. | Aug 2009 | A1 |
20090236151 | Yeh et al. | Sep 2009 | A1 |
20090242283 | Chiu | Oct 2009 | A1 |
20090267902 | Nambu et al. | Oct 2009 | A1 |
20090273577 | Chen et al. | Nov 2009 | A1 |
20090303189 | Grunthaner et al. | Dec 2009 | A1 |
20090309850 | Yang | Dec 2009 | A1 |
20090314621 | Hotelling | Dec 2009 | A1 |
20090315854 | Matsuo | Dec 2009 | A1 |
20090322702 | Chien et al. | Dec 2009 | A1 |
20100001973 | Hotelling et al. | Jan 2010 | A1 |
20100007616 | Jang | Jan 2010 | A1 |
20100059294 | Elias et al. | Mar 2010 | A1 |
20100079384 | Grivna | Apr 2010 | A1 |
20100110035 | Selker | May 2010 | A1 |
20100117985 | Wadia | May 2010 | A1 |
20100143848 | Jain et al. | Jun 2010 | A1 |
20100149108 | Hotelling et al. | Jun 2010 | A1 |
20100194696 | Chang et al. | Aug 2010 | A1 |
20100253638 | Yousefpor et al. | Oct 2010 | A1 |
20100328228 | Elias | Dec 2010 | A1 |
20100328248 | Mozdzyn | Dec 2010 | A1 |
20110007020 | Hong et al. | Jan 2011 | A1 |
20110096016 | Yilmaz | Apr 2011 | A1 |
20110134050 | Harley | Jun 2011 | A1 |
20120026099 | Harley | Feb 2012 | A1 |
20120113047 | Hanauer | May 2012 | A1 |
20120169652 | Chang | Jul 2012 | A1 |
20120169653 | Chang | Jul 2012 | A1 |
20120169655 | Chang | Jul 2012 | A1 |
20120169656 | Chang | Jul 2012 | A1 |
20130120303 | Hong et al. | May 2013 | A1 |
20130224370 | Cok et al. | Aug 2013 | A1 |
20130257798 | Tamura et al. | Oct 2013 | A1 |
20140022186 | Hong et al. | Jan 2014 | A1 |
20140132860 | Hotelling et al. | May 2014 | A1 |
Number | Date | Country |
---|---|---|
1672119 | Sep 2005 | CN |
1711520 | Dec 2005 | CN |
1782837 | Jun 2006 | CN |
1818842 | Aug 2006 | CN |
1864124 | Nov 2006 | CN |
1945516 | Apr 2007 | CN |
101046720 | Oct 2007 | CN |
101071354 | Nov 2007 | CN |
11 2008 001 245 | Mar 2010 | DE |
0 853 230 | Jul 1998 | EP |
1 192 585 | Dec 2000 | EP |
1 192 585 | Dec 2000 | EP |
1 573 706 | Feb 2004 | EP |
1 573 706 | Feb 2004 | EP |
1 644 918 | Dec 2004 | EP |
1 986 084 | Oct 2008 | EP |
2 077 489 | Jul 2009 | EP |
1 546 317 | May 1979 | GB |
2 144 146 | Feb 1985 | GB |
2 428 306 | Jan 2007 | GB |
2 437 827 | Nov 2007 | GB |
2 450 207 | Dec 2008 | GB |
2000-163031 | Jun 2000 | JP |
2002-342033 | Nov 2002 | JP |
2004-503835 | Feb 2004 | JP |
2005-084128 | Mar 2005 | JP |
2007-018515 | Jan 2007 | JP |
2008-510251 | Apr 2008 | JP |
M344522 | Nov 2008 | TW |
M344544 | Nov 2008 | TW |
WO-0197204 | Dec 2001 | WO |
WO-02080637 | Oct 2002 | WO |
WO-2005114369 | Dec 2005 | WO |
WO-2006023147 | Mar 2006 | WO |
WO-2006023147 | Mar 2006 | WO |
WO-2006104745 | Oct 2006 | WO |
WO-2006104745 | Oct 2006 | WO |
WO-2006130584 | Dec 2006 | WO |
WO-2006130584 | Dec 2006 | WO |
WO-2007012899 | Feb 2007 | WO |
WO-2007034591 | Mar 2007 | WO |
WO-2007054018 | May 2007 | WO |
WO-2007115032 | Oct 2007 | WO |
WO-2007146785 | Dec 2007 | WO |
WO-2007146785 | Dec 2007 | WO |
WO-2008007118 | Jan 2008 | WO |
WO-2008007118 | Jan 2008 | WO |
WO-2008076237 | Jun 2008 | WO |
WO-2008076237 | Jun 2008 | WO |
WO-2008108514 | Sep 2008 | WO |
WO-2008135713 | Nov 2008 | WO |
WO-2009046363 | Apr 2009 | WO |
WO-2009103946 | Aug 2009 | WO |
WO-2009132146 | Oct 2009 | WO |
WO-2009132150 | Oct 2009 | WO |
WO-2010117882 | Oct 2010 | WO |
Entry |
---|
Notice of Allowance mailed Nov. 8, 2013, for U.S. Appl. No. 12,038,760, filed Feb. 27, 2008, 15 pages. |
Cassidy, R. (Feb. 23, 2007). “The Tissot T-Touch Watch—A Groundbreaking Timepiece,” located at <http://ezinearticles.com/?The-Tissot-T-Touch-Watch—-A-Groundbreaking-Timepiece&id . . . >, last visited Jan. 23, 2009, two pages. |
Chinese Search Report completed Jun. 3, 2011, for CN Patent Application No. ZL2009201524013, with English Translation, 20 pages. |
Chinese Search Report mailed Jan. 7, 2011, for CN Application No. 2009200081997, filed Apr. 24, 2009, with English Translation, 14 pages. |
Chinese Search Report mailed Jan. 10, 2011, for CN Application No. 2008201338142, filed Sep. 27, 2008, with English Translation, 25 pages. |
European Search Report mailed Mar. 19, 2009, for EP Application No. 08017396.6, filed Oct. 8, 2008, seven pages. |
Final Office Action mailed Jun. 8, 2011, for U.S. Appl. No. 12/038,760, filed Feb. 27, 2008, 20 pages. |
Final Office Action mailed Dec. 15, 2011, for U.S. Appl. No. 12/333,250, filed Dec. 11, 2008, 12 pages. |
Final Office Action mailed Jan. 19, 2012, for U.S. Appl. No. 12/110,024, filed Apr. 25, 2008, 12 pages. |
Final Office Action mailed Aug. 31, 2012, for U.S. Appl. No. 12/110,075, filed Apr. 25, 2008, 15 pages. |
Final Office Action mailed Dec. 24, 2012, for U.S. Appl. No. 12/110,024, filed Apr. 25, 2008, 21 pages. |
Final Office Action mailed Jan. 3, 2013, for U.S. Appl. No. 11/818,498, filed Jun. 13, 2007, 17 pages. |
Final Office Action mailed Feb. 5, 2013, for U.S. Appl. No. 12/500,911, filed Jul. 10, 2009, 15 pages. |
Final Office Action mailed Apr. 30, 2013, for U.S. Appl. No. 12/494,173, filed Jun. 29, 2009, 7 pages. |
Final Office Action mailed May 22, 2013, for U.S. Appl. No. 12/206,680, filed Sep. 8, 2008, 16 pages. |
Final Office Action mailed Jul. 19, 2013, for U.S. Appl. No. 12,545/604, filed Aug. 21, 2009, 17 pages. |
Final Office Action mailed Jul. 23, 2013, for U.S. Appl. No. 12,038,760, filed Feb. 27, 2008, 20 pages. |
Great Britain Search Report mailed Jan. 19, 2009, for GB Application No. GB0817242.1, filed Sep. 22, 2008, two pages. |
Great Britain Search Report mailed Jan. 19, 2010, for GB Application No. GB0817242.1, filed Sep. 22, 2008, two pages. |
International Search Report mailed on Mar. 19, 2009, for PCT Application No. PCT/US2008/078836, filed on Oct. 3, 2008, four pages. |
International Search Report mailed Jul. 17, 2009, for PCT Application No. PCT/US2009/041460, three pages. |
International Search Report mailed Aug. 5, 2009, for PCT Application No. PCT/US2009/041465, filed Apr. 22, 2009, four pages. |
International Search Report mailed Jan. 14, 2011, for PCT Application No. PCT/US2010/029698, filed Apr. 1, 2010, 5 pages. |
Lee, S.K. et al. (Apr. 1985). “A Multi-Touch Three Dimensional Touch-Sensitive Tablet,” Proceedings of CHI: ACM Conference on Human Factors in Computing Systems, pp. 21-25. |
Non-Final Office Action mailed Feb. 4, 2011, for U.S. Appl. No. 12/038,760, filed Feb. 27, 2008, 18 pages. |
Non-Final Office Action mailed Jun. 9, 2011, for U.S. Appl. No. 12/206,680, filed Sep. 8, 2008, 13 pages. |
Non-Final Office Action mailed Jul. 8, 2011, for U.S. Appl. No. 12/110,075, filed Apr. 25, 2008, 14 pages. |
Non-Final Office Action mailed Jul. 11, 2011, for U.S. Appl. No. 12/110,024, filed Apr. 25, 2008, 12 pages. |
Non-Final Office Action mailed Aug. 17, 2011, for U.S. Appl. No. 12/333,250, filed Dec. 11, 2008, 12 pages. |
Non-Final Office Action mailed Jan. 25, 2012, for U.S. Appl. No. 12/110,075, filed Apr. 25, 2008, 21 pages. |
Non-Final Office Action mailed May 25, 2012, for U.S. Appl. No. 11/818,498, filed Jun. 13, 2007, 16 pages. |
Non-Final Office Action mailed Jun. 7, 2012, for U.S. Appl. No. 12/500,911, filed Jul. 10, 2009, 16 pages. |
Non-Final Office Action mailed Jul. 3, 2012, for U.S. Appl. No. 12/110,024, filed Apr. 25, 2008, 19 pages. |
Non-Final Office Action mailed Sep. 26, 2012, for U.S. Appl. No. 12/206,680, filed Sep. 8, 2008, 14 pages. |
Non-Final Office Action mailed Nov. 28, 2012, for U.S. Appl. No. 12/494,173, filed Jun. 29, 2009, six pages. |
Non-Final Office Action mailed Jan. 2, 2013, for U.S. Appl. No. 12/038,760, filed Feb. 27, 2008, 18 pages. |
Non-Final office Action mailed Jan. 7, 2013, for U.S. Appl. No. 12/545,604, filed Aug. 21, 2009, 12 pages. |
Non-Final Office Action mailed Mar. 28, 2013, for U.S. Appl. No. 12/110,075 filed Apr. 25, 2008, 14 pages. |
Non-Final Office Action mailed Mar. 29, 2013 for U.S. Appl. No. 13/737,779 filed Jan. 9, 2013, nine pages. |
Non-Final Office Action mailed Sep. 30, 2013, for U.S. Appl. No. 12/206,680, filed Sep. 8, 2008, 18 pages. |
Notice of Allowance mailed Aug. 28, 2012, for U.S. Appl. No. 12/333,250, filed Dec. 11, 2008, nine pages. |
Notice of Allowance mailed May 23, 2013, for U.S. Appl. No. 12/110,024, filed Apr. 25, 2008, five pages. |
Notice of Allowance mailed Aug. 19, 2013, for U.S. Appl. No. 12/500,911, filed Jul. 10, 2009, six pages. |
Notice of Allowance mailed Sep. 3, 2013, for U.S. Appl. No. 13/737,779, filed Jan. 9, 2013, 10 pages. |
Rubine, D.H. (Dec. 1991). “The Automatic Recognition of Gestures,” CMU-CS-91-202, Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in Computer Science at Carnegie Mellon University, 285 pages. |
Rubine, D.H. (May 1992). “Combining Gestures and Direct Manipulation,” CHI '92, pp. 659-660. |
Search Report mailed Apr. 29, 2009, for NL Application No. 2001672, with English translation of Written Opinion, eight pages. |
Westerman, W. (Spring 1999). “Hand Tracking, Finger Identification, and Chordic Manipulation on a Multi-Touch Surface,” A Dissertation Submitted to the Faculty of the University of Delaware in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in Electrical Engineering, 364 pages. |
Final Office Action mailed Feb. 1, 2013, for U.S. Appl. No. 12/642,466, filed Dec. 18, 2009, nine pages. |
Final Office Action mailed Jan. 27, 2014, for U.S. Appl. No. 12/206,680, filed Sep. 8, 2008, 20 pages. |
Final Office Action mailed Apr. 23, 2014 for U.S. Appl. No. 12/847,987 filed Jul. 30, 2010, 16 pages. |
Final Office Action mailed May 9, 2014, for U.S. Appl. No. 12/642,466, filed Dec. 18, 2009, 13 pages. |
International Search Report mailed May 2, 2011, for PCT Application No. PCT/US2010/058988, filed Dec. 3, 2010, five pages. |
Non-Final Office Action mailed Aug. 28, 2012, for U.S. Appl. No. 12/642,466, filed Dec. 18, 2009, nine pages. |
Non-Final Office Action mailed Sep. 6, 2013, for U.S. Appl. No. 12/847,987 filed Jul. 30, 2010, 15 pages. |
Non-Final Office Action mailed Nov. 8, 2013, for U.S. Appl. No. 12/642,466, filed Dec. 18, 2009, 12 pages. |
Non-Final office Action mailed Dec. 19, 2013, for U.S. Appl. No. 12/545,604, filed Aug. 21, 2009, 17 pages. |
Notice of Allowance mailed Oct. 15, 2014, for U.S. Appl. No. 12/494,173, filed Jun. 29, 2009, eight pages. |
Final Office Action mailed Jul. 16, 2014, for U.S. Appl. No. 12/545,604, filed Aug. 21, 2009, 18 pages. |
Number | Date | Country | |
---|---|---|---|
20140098051 A1 | Apr 2014 | US |
Number | Date | Country | |
---|---|---|---|
61168543 | Apr 2009 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13737779 | Jan 2013 | US |
Child | 14055717 | US | |
Parent | 12500911 | Jul 2009 | US |
Child | 13737779 | US |