This relates generally to touch sensor panels, and in particular, to touch sensor panel designs that can improve touch sensitivity and reduce negative optical artifacts.
Many types of input devices are presently available for performing operations in a computing system, such as buttons or keys, mice, trackballs, joysticks, touch sensor panels, touch screens and the like. Touch screens, in particular, are becoming increasingly popular because of their ease and versatility of operation as well as their declining price. Touch screens can include a touch sensor panel, which can be a clear panel with a touch-sensitive surface, and a display device such as a liquid crystal display (LCD) that can be positioned partially or fully behind the panel so that the touch-sensitive surface can cover at least a portion of the viewable area of the display device. Touch screens can allow a user to perform various functions by touching the touch sensor panel using a finger, stylus or other object at a location dictated by a user interface (UI) being displayed by the display device. In general, touch screens can recognize a touch event and the position of the touch event on the touch sensor panel, and the computing system can then interpret the touch event in accordance with the display appearing at the time of the touch event, and thereafter can perform one or more actions based on the touch event.
Mutual capacitance touch sensor panels can be formed from a matrix of drive and sense lines of a substantially transparent conductive material such as Indium Tim Oxide (ITO), often arranged in rows and columns in horizontal and vertical directions on a substantially transparent substrate. Drive signals can be transmitted through the drive lines, which can result in the formation of static mutual capacitance at the crossover points (sensing pixels) of the drive lines and the sense lines. The static mutual capacitance, and any changes to the static mutual capacitance due to a touch event, can be determined from sense signals that can be generated in the sense lines due to the drive signals.
The touch sensing pixels can be varied in size and/or spacing to enable touch sensitivity in large panels without increasing the number of drive and sense lines which can otherwise increase the processing burden and can cause negative optical artifacts when viewing the display device through the touch panel. However, increasing the size and/or spacing of the touch sensing pixels can negatively impact the resistance and capacitance (RC) time constant per pixel, thereby hindering touch sensitivity of the touch panel and limiting the speed at which the touch panel can operate.
This relates to a touch sensor panel including a plurality of shaped drive lines and a plurality of shaped sense lines formed on the same layer and utilizing conductive jumpers in crossover locations, according to one embodiment. The plurality of drive lines and the plurality of sense lines can be formed by interconnecting sections of at least one conductive material having a truncated diamond shape to reduce parasitic capacitance, although other shapes can also be used. Either the sections of the plurality of drive lines or the sections of the plurality of sense lines can be interconnected with one or more conductive cross-overs, which can be an opaque metal or other conductive material. A black mask or other opaque covering can be layered over the one or more conductive cross-overs to minimize visual artifacts. Also, at least one conductive dummy region can be disposed in an area of the touch sensor panel around the truncated diamond shaped sections of the plurality of drive lines and the plurality of sense lines to improve optical uniformity and enhance the touch detection capabilities of the touch sensor panel. One or more metal lines can be formed overlapping and electrically connected to the interconnected sections of each of the plurality of drive lines and the plurality of sense lines in order to further reduce resistance.
In an alternate embodiment, the plurality of drive lines and the plurality of sense lines can be formed by interconnecting sections of interconnected conductive lines. According to an embodiment, the interconnected conductive lines are formed of sections of at least one conductive material having an interdigitated comb design. The sections can be formed from a substantially transparent conductive material such as ITO, for example. Alternatively, the interconnected conductive lines may be thin metal lines in a web-like formation, without the substantially transparent conductive material.
The present disclosure, in accordance with one or more various embodiments, is described in detail with reference to the following figures. The drawings are provided for purposes of illustration only and merely depict exemplary embodiments of the disclosure. These drawings are provided to facilitate the reader's understanding of the disclosure and should not be considered limiting of the breadth, scope, or applicability of the disclosure. It should be noted that for clarity and ease of illustration these drawings are not necessarily made to scale.
In the following description of embodiments, reference is made to the accompanying drawings which form a part hereof, and in which it is shown by way of illustration specific embodiments that can be practiced. It is to be understood that other embodiments can be used and structural changes can be made without departing from the scope of the disclosed embodiments.
This relates to the formation of touch sensor panels, and in some embodiments, larger-size touch sensor panels. A touch sensor panel, according to various embodiments, can include a plurality of drive lines crossing a plurality of sense lines, forming an array. The plurality of drive lines and the plurality of sense lines can be formed by interconnecting sections of at least one conductive material having a truncated diamond shape in order to reduce parasitic capacitance, although other shapes can also be used. At least one conductive dummy region can be disposed in an area of the touch sensor panel around the truncated diamond shape sections of the plurality of drive lines and the plurality of sense lines, in order to provide visual uniformity and to further reduce parasitic capacitance. One or more metal lines (or lines formed from other conductive material) may be formed overlapping and in electrical contact with the interconnected sections of each of the plurality of drive lines and the plurality of sense lines, in order to further reduce resistance.
In an alternate embodiment, the plurality of drive lines and the plurality of sense lines can be formed by interconnecting sections of interconnected conductive lines. According to an embodiment, the interconnected conductive lines are formed of sections of at least one conductive material having an interdigitated comb design. The sections can be formed from a substantially transparent conductive material such as ITO, for example. Alternatively, the interconnected conductive lines may be thin metal lines in a web-like formation, without the substantially transparent conductive material.
Although embodiments may be described and illustrated herein in terms of mutual capacitance touch sensor panels, it should be understood that the various embodiments are not so limited, but can be additionally applicable to self-capacitance sensor panels, single and multi-touch sensor panels, and other sensors in which multiple simultaneous stimulation signals are used to generate a composite sense signal. Furthermore, it should be understood that various embodiments are also applicable to various touch sensor panel configurations, such as configurations in which the drive and sense lines are formed in non-orthogonal arrangements, on the back of a cover glass, on the same side of a single substrate, or integrated with display circuitry.
Charge pump 115 can be used to generate the supply voltage for the transmit section. Stimulation signals 116 (Vstim) can have amplitudes higher than the maximum voltage the ASIC process can tolerate by cascoding transistors. Therefore, using charge pump 115, the stimulus voltage can be higher (e.g. 6V) than the voltage level a single transistor can handle (e.g. 3.6 V). Although
Touch sensor panel 124 can include a capacitive sensing medium having a plurality of drive lines and a plurality of sense lines. The drive and sense lines can be formed from a transparent conductive medium such as Indium Tin Oxide (ITO) or Antimony Tin Oxide (ATO), although other transparent and non-transparent materials such as copper can also be used. In some embodiments, the drive and sense lines can be perpendicular to each other, although in other embodiments other non-Cartesian orientations are possible. For example, in a polar coordinate system, the sensing lines can be concentric circles and the driving lines can be radially extending lines (or vice versa). It should be understood, therefore, that the terms “drive lines” and “sense lines”as used herein are intended to encompass not only orthogonal grids, but the intersecting traces of other geometric configurations having first and second dimensions (e.g. the concentric and radial lines of a polar-coordinate arrangement). The drive and sense lines can be formed on, for example, a single side of a substantially transparent substrate.
At the “intersections” of the traces, where the drive and sense lines can pass adjacent to and above and below (cross) each other (but without making direct electrical contact with each other), the drive and sense lines can essentially form two electrodes (although more than two traces could intersect as well). Each intersection of drive and sense lines can represent a capacitive sensing node and can be viewed as picture element (pixel) 126, which can be particularly useful when touch sensor panel 124 is viewed as capturing an “image” of touch. (In other words, after touch controller 106 has determined whether a touch event has been detected at each touch sensor in the touch sensor panel, the pattern of touch sensors in the multi-touch panel at which a touch event occurred can be viewed as an “image” of touch (e.g. a pattern of fingers touching the panel).) The capacitance between drive and sense electrodes can appear as a stray capacitance when the given row is held at direct current (DC) voltage levels and as a mutual signal capacitance Csig when the given row is stimulated with an alternating current (AC) signal. The presence of a finger or other object near or on the touch sensor panel can be detected by measuring changes to a signal charge Qsig present at the pixels being touched, which is a function of Csig.
Computing system 100 can also include host processor 128 for receiving outputs from processor subsystems 102 and performing actions based on the outputs that can include, but are not limited to, moving an object such as a cursor or pointer, scrolling or panning, adjusting control settings, opening a file or document, viewing a menu, making a selection, executing instructions, operating a peripheral device connected to the host device, answering a telephone call, placing a telephone call, terminating a telephone call, changing the volume or audio settings, storing information related to telephone communications such as addresses, frequently dialed numbers, received calls, missed calls, logging onto a computer or a computer network, permitting authorized individuals access to restricted areas of the computer or computer network, loading a user profile associated with a user's preferred arrangement of the computer desktop, permitting access to web content, launching a particular program, encrypting or decoding a message, and/or the like. Host processor 128 can also perform additional functions that may not be related to panel processing, and can be coupled to program storage 132 and display device 130 such as an LCD display for providing a UI to a user of the device. In some embodiments, host processor 128 can be a separate component from touch controller 106, as shown. In other embodiments, host processor 128 can be included as part of touch controller 106. In still other embodiments, the functions of host processor 128 can be performed by processor subsystem 102 and/or distributed among other components of touch controller 106. Display device 130 together with touch sensor panel 124, when located partially or entirely under the touch sensor panel, can form touch screen 118.
Note that one or more of the functions described above can be performed, for example, by firmware stored in memory (e.g., one of the peripherals) and executed by processor subsystem 102, or stored in program storage 132 and executed by host processor 128. The firmware can also be stored and/or transported within any computer-readable medium for use by or in connection with an instruction execution system, apparatus, or device, such as a computer-based system, processor-containing system, or other system that can fetch the instructions from the instruction execution system, apparatus, or device and execute the instructions. In the context of this document, a “computer-readable medium” can be any medium that can contain or store the program for use by or in connection with the instruction execution system, apparatus, or device. The computer readable medium can include, but is not limited to, an electronic, magnetic, optical, electromagnetic, infrared, or semiconductor system, apparatus or device, a portable computer diskette (magnetic), a random access memory (RAM) (magnetic), a read-only memory (ROM) (magnetic), an erasable programmable read-only memory (EPROM) (magnetic), a portable optical disc such a CD, CD-R, CD-RW, DVD, DVD-R, or DVD-RW, or flash memory such as compact flash cards, secured digital cards, USB memory devices, memory sticks, and the like.
According to an embodiment of the present disclosure, the drive and sense lines of touch sensor panel 124 may be formed of diamond-shaped or truncated diamond-shaped sections of ITO, for example, that are interconnected.
A fringe mutual capacitance 218 can also be formed between the diamonds in the stimulated drive lines and the adjacent sense line diamonds. Fringe mutual capacitance 218 between adjacent diamonds can be of roughly the same order as the mutual capacitance formed between drive and sense lines separated by a substrate. Fringe mutual capacitance 218 between adjacent row and column diamonds can be desirable because a finger or other object may be able to block some of the fringing electric field lines and effect a change in the mutual capacitance that can be detected by the analog channels connected to the rows. As shown in
As shown in
Thus, using a section 206/210 design as shown in
Isolated “dummy” sections can be formed between drive lines 202 and sense lines 204 according to various embodiments.
A large parasitic mutual capacitance can be formed between stimulated drive line 202, for example, and dummy sections 600 and 602, but because dummy sections 600 and 602 are isolated, their voltage potential can move along with stimulated drive line 202 and can have minimal or no negative impact on touch detection. Reducing the size of each dummy section 600 and 602 in a particular area, thus increasing the number of dummy sections 600 and 602, can further reduce parasitic mutual capacitance.
Dummy sections 602 can also have a beneficial impact on touch detection. Because drive lines 202 and sense lines 204 can be formed on the same layer on the same side of a substrate, a large static mutual capacitance can be created between them. However, only a relatively small number of the electric field lines between drive lines 202 and sense lines 204 (those that extend beyond the cover of the touch sensor panel) are capable of being influenced by a finger or other object. Most of the electric field lines remain within the confines of the cover and are generally unaffected by a touch event. Therefore, a touch event may only cause a small change in the large static mutual capacitance, making it difficult to detect the touch event. However, with dummy sections 602 in place, instead of having static mutual capacitance form between drive lines 202 and sense lines 204 within the confines of the cover, parasitic mutual capacitance will instead be formed between the drive lines 202 and the dummy sections 602. Removal of static mutual capacitance unaffected by a touch event can improve the touch detection capabilities of the panel, because a higher percentage of the remaining static mutual capacitance can be influenced by a touch event.
In the depicted embodiment, the metal traces are zigzagged in order to minimize visual artifacts when viewing the LCD, for example, through the touch panel sensor 124. The zigzag pattern can avoid Moiré or other negative visual effects that can result from the metal traces being in alignment with the LCD structures. Alternatively, the pattern can be designed to be aligned over the black mask areas of the LCD to minimize blocking of the displayed image. However, the traces 800 may be straight or in any zigzag pattern without departing from the scope of the present disclosure. The metal traces 800 can be connected to metal interconnect 212, according to an embodiment. The metal traces 800 may be connected or disconnected between sections 206, for example. In addition, although
It is noted that the multiple conductive patterns 810 are not limited to any particular pattern 810, and one of skill in the art would realize that various patterns 810 can be formed within the scope of the present disclosure. For example,
In an alternate embodiment, the entire array of drive lines 202 and sense lines 204 can be rotated a predetermined amount (e.g., 15, 30 or 60 degrees) relative to the display module 716, for example, in order to minimize visual artifacts caused by the metal lines 800.
Alternative designs for sections 206 and 210 and dummy sections can be used in order to maintain touch sensitivity while minimizing negative visual artifacts.
Sections 900 and 1000 can be formed of a substantially transparent conductive material, such as ITO. Alternatively, sections 900 and/or 1000 can be made up of thin opaque metal lines in an interconnected web design to form rows 202 and columns 204. The web design of sections 900 and/or 1000 can include any number of digits disposed in various directions, and each digit can include any number of sub-digits branching therefrom.
While various embodiments have been described above, it should be understood that they have been presented by way of example only, and not by way of limitation. Likewise, the various diagrams may depict an example architectural or other configuration for the disclosure, which is done to aid in understanding the features and functionality that can be included in the disclosure. The disclosure is not restricted to the illustrated example architectures or configurations, but can be implemented using a variety of alternative architectures and configurations. Additionally, although the disclosure is described above in terms of various exemplary embodiments and implementations, it should be understood that the various features and functionality described in one or more of the individual embodiments are not limited in their applicability to the particular embodiment with which they are described. They instead can be applied alone or in some combination, to one or more of the other embodiments of the disclosure, whether or not such embodiments are described, and whether or not such features are presented as being a part of a described embodiment. Thus the breadth and scope of the present disclosure should not be limited by any of the above-described exemplary embodiments.
Number | Name | Date | Kind |
---|---|---|---|
4087625 | Dym et al. | May 1978 | A |
4090092 | Serrano | May 1978 | A |
4304976 | Gottbreht et al. | Dec 1981 | A |
4475235 | Graham | Oct 1984 | A |
4550221 | Mabusth | Oct 1985 | A |
4659874 | Landmeier | Apr 1987 | A |
5194862 | Edwards | Mar 1993 | A |
5317919 | Awtrey | Jun 1994 | A |
5459463 | Gruaz et al. | Oct 1995 | A |
5483261 | Yasutake | Jan 1996 | A |
5488204 | Mead et al. | Jan 1996 | A |
5543590 | Gillespie et al. | Aug 1996 | A |
5631670 | Tomiyoshi et al. | May 1997 | A |
5825352 | Bisset et al. | Oct 1998 | A |
5835079 | Shieh | Nov 1998 | A |
5841078 | Miller et al. | Nov 1998 | A |
5844506 | Binstead | Dec 1998 | A |
5880411 | Gillespie et al. | Mar 1999 | A |
5914465 | Allen et al. | Jun 1999 | A |
6057903 | Colgan et al. | May 2000 | A |
6137427 | Binstead | Oct 2000 | A |
6163313 | Aroyan et al. | Dec 2000 | A |
6188391 | Seely et al. | Feb 2001 | B1 |
6239788 | Nohno et al. | May 2001 | B1 |
6310610 | Beaton et al. | Oct 2001 | B1 |
6323846 | Westerman et al. | Nov 2001 | B1 |
6452514 | Philipp | Sep 2002 | B1 |
6456952 | Nathan | Sep 2002 | B1 |
6690387 | Zimmerman et al. | Feb 2004 | B2 |
6730863 | Gerpheide et al. | May 2004 | B1 |
6970160 | Mulligan et al. | Nov 2005 | B2 |
7015894 | Morohoshi | Mar 2006 | B2 |
7030860 | Hsu et al. | Apr 2006 | B1 |
7129935 | Mackey | Oct 2006 | B2 |
7138686 | Banerjee et al. | Nov 2006 | B1 |
7180508 | Kent et al. | Feb 2007 | B2 |
7184064 | Zimmerman et al. | Feb 2007 | B2 |
7337085 | Soss | Feb 2008 | B2 |
7412586 | Rajopadhye et al. | Aug 2008 | B1 |
7504833 | Sequine | Mar 2009 | B1 |
7538760 | Hotelling et al. | May 2009 | B2 |
7548073 | Mackey et al. | Jun 2009 | B2 |
7639234 | Orsley | Dec 2009 | B2 |
7663607 | Hotelling et al. | Feb 2010 | B2 |
7701539 | Shih et al. | Apr 2010 | B2 |
7719523 | Hillis | May 2010 | B2 |
7907126 | Yoon et al. | Mar 2011 | B2 |
7932898 | Philipp et al. | Apr 2011 | B2 |
8026904 | Westerman | Sep 2011 | B2 |
8040321 | Peng | Oct 2011 | B2 |
8040326 | Hotelling et al. | Oct 2011 | B2 |
8045783 | Lee et al. | Oct 2011 | B2 |
8058884 | Betancourt | Nov 2011 | B2 |
8068097 | GuangHai | Nov 2011 | B2 |
8120371 | Day et al. | Feb 2012 | B2 |
8125312 | Orr | Feb 2012 | B2 |
8169421 | Wright | May 2012 | B2 |
8223133 | Hristov | Jul 2012 | B2 |
8258986 | Makovetskyy | Sep 2012 | B2 |
8259078 | Hotelling et al. | Sep 2012 | B2 |
8283935 | Liu et al. | Oct 2012 | B2 |
8319747 | Hotelling et al. | Nov 2012 | B2 |
8339286 | Cordeiro | Dec 2012 | B2 |
8441464 | Lin et al. | May 2013 | B1 |
8479122 | Hotelling et al. | Jul 2013 | B2 |
8484838 | Badaye | Jul 2013 | B2 |
8487898 | Hotelling | Jul 2013 | B2 |
8507811 | Hotelling et al. | Aug 2013 | B2 |
8537126 | Yousefpor et al. | Sep 2013 | B2 |
8542208 | Krah et al. | Sep 2013 | B2 |
8576193 | Hotelling | Nov 2013 | B2 |
8593410 | Hong | Nov 2013 | B2 |
8593425 | Hong et al. | Nov 2013 | B2 |
8614688 | Chang | Dec 2013 | B2 |
8633915 | Hotelling et al. | Jan 2014 | B2 |
8680877 | Lee | Mar 2014 | B2 |
8760412 | Hotelling et al. | Jun 2014 | B2 |
8773146 | Hills et al. | Jul 2014 | B1 |
8810543 | Kurikawa | Aug 2014 | B1 |
8884917 | Seo | Nov 2014 | B2 |
8902172 | Peng | Dec 2014 | B2 |
8922521 | Hotelling et al. | Dec 2014 | B2 |
8957874 | Elias | Feb 2015 | B2 |
8976133 | Yao et al. | Mar 2015 | B2 |
8982096 | Hong et al. | Mar 2015 | B2 |
9001082 | Rosenberg et al. | Apr 2015 | B1 |
9035895 | Bussat et al. | May 2015 | B2 |
9075463 | Pyo et al. | Jul 2015 | B2 |
9086774 | Hotelling et al. | Jul 2015 | B2 |
9261997 | Chang et al. | Feb 2016 | B2 |
9280251 | Shih | Mar 2016 | B2 |
9292137 | Kogo | Mar 2016 | B2 |
9317165 | Hotelling et al. | Apr 2016 | B2 |
9329674 | Lee et al. | May 2016 | B2 |
9329723 | Benbasat et al. | May 2016 | B2 |
9372576 | Westerman | Jun 2016 | B2 |
9582131 | Elias | Feb 2017 | B2 |
9874975 | Benbasat et al. | Jan 2018 | B2 |
9880655 | O'Connor | Jan 2018 | B2 |
9886141 | Yousefpor | Feb 2018 | B2 |
20030076325 | Thrasher | Apr 2003 | A1 |
20030164820 | Kent | Sep 2003 | A1 |
20030210235 | Roberts | Nov 2003 | A1 |
20040017362 | Mulligan et al. | Jan 2004 | A1 |
20040061687 | Kent et al. | Apr 2004 | A1 |
20040090429 | Geaghan et al. | May 2004 | A1 |
20040188151 | Gerpheide et al. | Sep 2004 | A1 |
20040239650 | Mackey | Dec 2004 | A1 |
20050007353 | Smith et al. | Jan 2005 | A1 |
20050012724 | Kent | Jan 2005 | A1 |
20050069718 | Voss-Kehl et al. | Mar 2005 | A1 |
20050073507 | Richter et al. | Apr 2005 | A1 |
20050083307 | Aufderheide et al. | Apr 2005 | A1 |
20050126831 | Richter et al. | Jun 2005 | A1 |
20050146509 | Geaghan et al. | Jul 2005 | A1 |
20050239532 | Inamura | Oct 2005 | A1 |
20050270039 | Mackey | Dec 2005 | A1 |
20050270273 | Marten | Dec 2005 | A1 |
20050280639 | Taylor et al. | Dec 2005 | A1 |
20060001640 | Lee | Jan 2006 | A1 |
20060017710 | Lee et al. | Jan 2006 | A1 |
20060038791 | Mackey | Feb 2006 | A1 |
20060132463 | Lee et al. | Jun 2006 | A1 |
20060146484 | Kim et al. | Jul 2006 | A1 |
20060197753 | Hotelling | Sep 2006 | A1 |
20060202969 | Hauck | Sep 2006 | A1 |
20060238522 | Westerman et al. | Oct 2006 | A1 |
20060267953 | Peterson et al. | Nov 2006 | A1 |
20060278444 | Binstead | Dec 2006 | A1 |
20060279548 | Geaghan | Dec 2006 | A1 |
20060293864 | Soss | Dec 2006 | A1 |
20070008299 | Hristov | Jan 2007 | A1 |
20070012665 | Nelson et al. | Jan 2007 | A1 |
20070023523 | Onishi | Feb 2007 | A1 |
20070074914 | Geaghan | Apr 2007 | A1 |
20070075982 | Morrison et al. | Apr 2007 | A1 |
20070216637 | Ito | Sep 2007 | A1 |
20070216657 | Konicek | Sep 2007 | A1 |
20070229468 | Peng et al. | Oct 2007 | A1 |
20070229470 | Snyder et al. | Oct 2007 | A1 |
20070247443 | Philipp | Oct 2007 | A1 |
20070262963 | Xiao-Ping et al. | Nov 2007 | A1 |
20070262969 | Pak | Nov 2007 | A1 |
20070268273 | Westerman et al. | Nov 2007 | A1 |
20070268275 | Westerman et al. | Nov 2007 | A1 |
20070279395 | Philipp | Dec 2007 | A1 |
20070283832 | Hotelling | Dec 2007 | A1 |
20070285365 | Lee | Dec 2007 | A1 |
20080006454 | Hotelling | Jan 2008 | A1 |
20080018581 | Park et al. | Jan 2008 | A1 |
20080024456 | Peng | Jan 2008 | A1 |
20080036742 | Garmon | Feb 2008 | A1 |
20080042986 | Westerman et al. | Feb 2008 | A1 |
20080042987 | Westerman et al. | Feb 2008 | A1 |
20080042992 | Kim | Feb 2008 | A1 |
20080047764 | Lee et al. | Feb 2008 | A1 |
20080062140 | Hotelling et al. | Mar 2008 | A1 |
20080062148 | Hotelling et al. | Mar 2008 | A1 |
20080062151 | Kent | Mar 2008 | A1 |
20080074398 | Wright | Mar 2008 | A1 |
20080136787 | Yeh et al. | Jun 2008 | A1 |
20080136792 | Peng et al. | Jun 2008 | A1 |
20080158145 | Westerman | Jul 2008 | A1 |
20080158146 | Westerman | Jul 2008 | A1 |
20080158167 | Hotelling et al. | Jul 2008 | A1 |
20080158172 | Hotelling et al. | Jul 2008 | A1 |
20080158174 | Land et al. | Jul 2008 | A1 |
20080158181 | Hamblin et al. | Jul 2008 | A1 |
20080158182 | Westerman | Jul 2008 | A1 |
20080158185 | Westerman | Jul 2008 | A1 |
20080162996 | Krah et al. | Jul 2008 | A1 |
20080188267 | Sagong | Aug 2008 | A1 |
20080224962 | Kasai et al. | Sep 2008 | A1 |
20080238871 | Tam | Oct 2008 | A1 |
20080264699 | Chang et al. | Oct 2008 | A1 |
20080277259 | Chang | Nov 2008 | A1 |
20080283175 | Hagood et al. | Nov 2008 | A1 |
20080303022 | Tai et al. | Dec 2008 | A1 |
20080303964 | Lee et al. | Dec 2008 | A1 |
20080309626 | Westerman et al. | Dec 2008 | A1 |
20080309627 | Hotelling | Dec 2008 | A1 |
20080309629 | Westerman et al. | Dec 2008 | A1 |
20080309632 | Westerman et al. | Dec 2008 | A1 |
20080309633 | Hotelling | Dec 2008 | A1 |
20080309635 | Matsuo | Dec 2008 | A1 |
20090002337 | Chang | Jan 2009 | A1 |
20090019344 | Yoon et al. | Jan 2009 | A1 |
20090020343 | Rothkopf et al. | Jan 2009 | A1 |
20090054107 | Feland et al. | Feb 2009 | A1 |
20090070681 | Dawes et al. | Mar 2009 | A1 |
20090073138 | Lee et al. | Mar 2009 | A1 |
20090085894 | Gandhi et al. | Apr 2009 | A1 |
20090091551 | Hotelling | Apr 2009 | A1 |
20090114456 | Wisniewski | May 2009 | A1 |
20090128516 | Rimon et al. | May 2009 | A1 |
20090135157 | Harley | May 2009 | A1 |
20090160787 | Westerman et al. | Jun 2009 | A1 |
20090174676 | Westerman | Jul 2009 | A1 |
20090174688 | Westerman | Jul 2009 | A1 |
20090182189 | Lira | Jul 2009 | A1 |
20090184937 | Grivna | Jul 2009 | A1 |
20090194344 | Harley | Aug 2009 | A1 |
20090205879 | Halsey, IV et al. | Aug 2009 | A1 |
20090213090 | Mamba et al. | Aug 2009 | A1 |
20090236151 | Yeh et al. | Sep 2009 | A1 |
20090242283 | Chiu | Oct 2009 | A1 |
20090251427 | Hung et al. | Oct 2009 | A1 |
20090267902 | Nambu et al. | Oct 2009 | A1 |
20090267903 | Cady et al. | Oct 2009 | A1 |
20090273577 | Chen et al. | Nov 2009 | A1 |
20090303189 | Grunthaner et al. | Dec 2009 | A1 |
20090309850 | Yang | Dec 2009 | A1 |
20090314621 | Hotelling | Dec 2009 | A1 |
20090315854 | Matsuo | Dec 2009 | A1 |
20090322702 | Chien et al. | Dec 2009 | A1 |
20100001973 | Hotelling et al. | Jan 2010 | A1 |
20100006350 | Elias | Jan 2010 | A1 |
20100007616 | Jang | Jan 2010 | A1 |
20100039396 | Ho et al. | Feb 2010 | A1 |
20100059294 | Elias | Mar 2010 | A1 |
20100060608 | Yousefpor | Mar 2010 | A1 |
20100079384 | Grivna | Apr 2010 | A1 |
20100079401 | Staton | Apr 2010 | A1 |
20100102027 | Liu et al. | Apr 2010 | A1 |
20100110035 | Selker | May 2010 | A1 |
20100117985 | Wadia | May 2010 | A1 |
20100143848 | Jain et al. | Jun 2010 | A1 |
20100149108 | Hotelling et al. | Jun 2010 | A1 |
20100156846 | Long et al. | Jun 2010 | A1 |
20100194696 | Chang et al. | Aug 2010 | A1 |
20100194707 | Hotelling et al. | Aug 2010 | A1 |
20100245286 | Parker | Sep 2010 | A1 |
20100253638 | Yousefpor et al. | Oct 2010 | A1 |
20100328248 | Mozdzyn | Dec 2010 | A1 |
20110007020 | Hong | Jan 2011 | A1 |
20110025629 | Grivna et al. | Feb 2011 | A1 |
20110025635 | Lee | Feb 2011 | A1 |
20110096016 | Yilmaz | Apr 2011 | A1 |
20110134050 | Harley | Jun 2011 | A1 |
20110175846 | Wang et al. | Jul 2011 | A1 |
20110199105 | Otagaki et al. | Aug 2011 | A1 |
20110227874 | Faahraeus et al. | Sep 2011 | A1 |
20110231139 | Yokota | Sep 2011 | A1 |
20110241907 | Cordeiro | Oct 2011 | A1 |
20110248949 | Chang et al. | Oct 2011 | A1 |
20110261005 | Joharapurkar et al. | Oct 2011 | A1 |
20110261007 | Joharapurkar et al. | Oct 2011 | A1 |
20110282606 | Ahed et al. | Nov 2011 | A1 |
20110298727 | Yousefpor et al. | Dec 2011 | A1 |
20110310033 | Liu et al. | Dec 2011 | A1 |
20110310064 | Keski-Jaskari et al. | Dec 2011 | A1 |
20120026099 | Harley | Feb 2012 | A1 |
20120044199 | Karpin et al. | Feb 2012 | A1 |
20120050206 | Welland | Mar 2012 | A1 |
20120050216 | Kremin et al. | Mar 2012 | A1 |
20120054379 | Leung et al. | Mar 2012 | A1 |
20120056662 | Wilson et al. | Mar 2012 | A1 |
20120056851 | Chen et al. | Mar 2012 | A1 |
20120092288 | Wadia | Apr 2012 | A1 |
20120113047 | Hanauer | May 2012 | A1 |
20120146726 | Huang | Jun 2012 | A1 |
20120146942 | Kamoshida et al. | Jun 2012 | A1 |
20120154324 | Wright et al. | Jun 2012 | A1 |
20120169652 | Chang | Jul 2012 | A1 |
20120169653 | Chang | Jul 2012 | A1 |
20120169655 | Chang | Jul 2012 | A1 |
20120169656 | Chang | Jul 2012 | A1 |
20120169664 | Milne | Jul 2012 | A1 |
20120182251 | Krah | Jul 2012 | A1 |
20120211264 | Milne | Aug 2012 | A1 |
20120262395 | Chan | Oct 2012 | A1 |
20120320385 | Mu et al. | Dec 2012 | A1 |
20130015868 | Peng | Jan 2013 | A1 |
20130021291 | Kremin et al. | Jan 2013 | A1 |
20130027118 | Ho et al. | Jan 2013 | A1 |
20130027346 | Yarosh et al. | Jan 2013 | A1 |
20130057511 | Shepelev et al. | Mar 2013 | A1 |
20130069911 | You | Mar 2013 | A1 |
20130076648 | Krah et al. | Mar 2013 | A1 |
20130100038 | Yilmaz et al. | Apr 2013 | A1 |
20130120303 | Hong et al. | May 2013 | A1 |
20130127739 | Guard et al. | May 2013 | A1 |
20130141383 | Woolley | Jun 2013 | A1 |
20130154996 | Trend et al. | Jun 2013 | A1 |
20130173211 | Hoch et al. | Jul 2013 | A1 |
20130176271 | Sobel et al. | Jul 2013 | A1 |
20130176273 | Li et al. | Jul 2013 | A1 |
20130215049 | Lee | Aug 2013 | A1 |
20130224370 | Cok et al. | Aug 2013 | A1 |
20130234964 | Kim et al. | Sep 2013 | A1 |
20130257785 | Brown et al. | Oct 2013 | A1 |
20130257797 | Wu et al. | Oct 2013 | A1 |
20130257798 | Tamura et al. | Oct 2013 | A1 |
20130265276 | Obeidat et al. | Oct 2013 | A1 |
20130271427 | Benbasat | Oct 2013 | A1 |
20130278447 | Kremin | Oct 2013 | A1 |
20130278498 | Jung et al. | Oct 2013 | A1 |
20130278525 | Lim et al. | Oct 2013 | A1 |
20130307821 | Kogo | Nov 2013 | A1 |
20130321289 | Dubery et al. | Dec 2013 | A1 |
20130342479 | Pyo et al. | Dec 2013 | A1 |
20140002406 | Cormier et al. | Jan 2014 | A1 |
20140009438 | Liu et al. | Jan 2014 | A1 |
20140022186 | Hong et al. | Jan 2014 | A1 |
20140022201 | Boychuk | Jan 2014 | A1 |
20140043546 | Yamazaki et al. | Feb 2014 | A1 |
20140071084 | Sugiura | Mar 2014 | A1 |
20140078096 | Tan et al. | Mar 2014 | A1 |
20140104225 | Davidson et al. | Apr 2014 | A1 |
20140104228 | Chen et al. | Apr 2014 | A1 |
20140111707 | Song et al. | Apr 2014 | A1 |
20140132560 | Huang et al. | May 2014 | A1 |
20140132860 | Hotelling et al. | May 2014 | A1 |
20140145997 | Tiruvuru | May 2014 | A1 |
20140160376 | Wang et al. | Jun 2014 | A1 |
20140168540 | Wang et al. | Jun 2014 | A1 |
20140204043 | Lin et al. | Jul 2014 | A1 |
20140240291 | Nam | Aug 2014 | A1 |
20140247245 | Lee | Sep 2014 | A1 |
20140253470 | Havilio | Sep 2014 | A1 |
20140267070 | Shahparnia et al. | Sep 2014 | A1 |
20140267128 | Bulea et al. | Sep 2014 | A1 |
20140267146 | Chang et al. | Sep 2014 | A1 |
20140285469 | Wright et al. | Sep 2014 | A1 |
20140347574 | Tung et al. | Nov 2014 | A1 |
20140354301 | Trend | Dec 2014 | A1 |
20140362034 | Mo et al. | Dec 2014 | A1 |
20140368436 | Abzarian et al. | Dec 2014 | A1 |
20140368460 | Mo et al. | Dec 2014 | A1 |
20140375598 | Shen et al. | Dec 2014 | A1 |
20140375603 | Hotelling et al. | Dec 2014 | A1 |
20140375903 | Westhues et al. | Dec 2014 | A1 |
20150002176 | Kwon et al. | Jan 2015 | A1 |
20150002448 | Brunet et al. | Jan 2015 | A1 |
20150002464 | Nishioka et al. | Jan 2015 | A1 |
20150015528 | Vandermeijden | Jan 2015 | A1 |
20150026398 | Kim | Jan 2015 | A1 |
20150042607 | Takanohashi | Feb 2015 | A1 |
20150049043 | Yousefpor | Feb 2015 | A1 |
20150049044 | Yousefpor | Feb 2015 | A1 |
20150077375 | Hotelling et al. | Mar 2015 | A1 |
20150103047 | Hanauer et al. | Apr 2015 | A1 |
20150123939 | Kim et al. | May 2015 | A1 |
20150242028 | Roberts et al. | Aug 2015 | A1 |
20150253907 | Elias | Sep 2015 | A1 |
20150268789 | Liao et al. | Sep 2015 | A1 |
20150268795 | Kurasawa et al. | Sep 2015 | A1 |
20150309610 | Rabii et al. | Oct 2015 | A1 |
20150370387 | Yamaguchi et al. | Dec 2015 | A1 |
20150378465 | Shih et al. | Dec 2015 | A1 |
20160011702 | Shih | Jan 2016 | A1 |
20160018348 | Yau et al. | Jan 2016 | A1 |
20160062533 | O'Connor | Mar 2016 | A1 |
20160139728 | Jeon et al. | May 2016 | A1 |
20160154505 | Chang | Jun 2016 | A1 |
20160154529 | Westerman | Jun 2016 | A1 |
20160195954 | Wang et al. | Jul 2016 | A1 |
20160224177 | Krah | Aug 2016 | A1 |
20160224189 | Yousefpor et al. | Aug 2016 | A1 |
20160246423 | Fu | Aug 2016 | A1 |
20160266676 | Wang et al. | Sep 2016 | A1 |
20160266679 | Shahparnia et al. | Sep 2016 | A1 |
20160283023 | Shin et al. | Sep 2016 | A1 |
20160299603 | Tsujioka et al. | Oct 2016 | A1 |
20160357344 | Benbasat et al. | Dec 2016 | A1 |
20170090619 | Yousefpor | Mar 2017 | A1 |
20170090622 | Badaye | Mar 2017 | A1 |
20170097703 | Lee | Apr 2017 | A1 |
20170139539 | Yao et al. | May 2017 | A1 |
20170168626 | Konicek | Jun 2017 | A1 |
20170285804 | Yingxuan et al. | Oct 2017 | A1 |
Number | Date | Country |
---|---|---|
1246638 | Mar 2000 | CN |
1527274 | Sep 2004 | CN |
1672119 | Sep 2005 | CN |
1689677 | Nov 2005 | CN |
1711520 | Dec 2005 | CN |
1782837 | Jun 2006 | CN |
1818842 | Aug 2006 | CN |
1864124 | Nov 2006 | CN |
1945516 | Apr 2007 | CN |
101046720 | Oct 2007 | CN |
101071354 | Nov 2007 | CN |
101419516 | Apr 2009 | CN |
103049148 | Apr 2013 | CN |
103294321 | Sep 2013 | CN |
103 365 500 | Oct 2013 | CN |
103809810 | May 2014 | CN |
104020908 | Sep 2014 | CN |
11 2008 001 245 | Mar 2010 | DE |
10 2011 089693 | Jun 2013 | DE |
0 853 230 | Jul 1998 | EP |
1 192 585 | Dec 2000 | EP |
1 192 585 | Dec 2000 | EP |
1 573 706 | Feb 2004 | EP |
1 573 706 | Feb 2004 | EP |
1 455 264 | Sep 2004 | EP |
1 644 918 | Dec 2004 | EP |
1 717 677 | Nov 2006 | EP |
1 717 677 | Nov 2006 | EP |
1 918 803 | May 2008 | EP |
1 986 084 | Oct 2008 | EP |
2 077 489 | Jul 2009 | EP |
2 256 606 | Dec 2010 | EP |
1 546 317 | May 1979 | GB |
2 144 146 | Feb 1985 | GB |
2 428 306 | Jan 2007 | GB |
2 437 827 | Nov 2007 | GB |
2 450 207 | Dec 2008 | GB |
2000-163031 | Jun 2000 | JP |
2002-342033 | Nov 2002 | JP |
2004-503835 | Feb 2004 | JP |
2005-030901 | Feb 2005 | JP |
2005-084128 | Mar 2005 | JP |
2005-301373 | Oct 2005 | JP |
2007-018515 | Jan 2007 | JP |
3134925 | Aug 2007 | JP |
2008-510251 | Apr 2008 | JP |
2008-225415 | Sep 2008 | JP |
10-2004-0091728 | Oct 2004 | KR |
10-2007-0002327 | Jan 2007 | KR |
10-2008-0019125 | Mar 2008 | KR |
10-2013-0094495 | Aug 2013 | KR |
10-2013-0117499 | Oct 2013 | KR |
10-2014-0074454 | Jun 2014 | KR |
10-1609992 | Apr 2016 | KR |
200715015 | Apr 2007 | TW |
200826032 | Jun 2008 | TW |
2008-35294 | Aug 2008 | TW |
M341273 | Sep 2008 | TW |
M344522 | Nov 2008 | TW |
M344544 | Nov 2008 | TW |
201115442 | May 2011 | TW |
201401129 | Jan 2014 | TW |
201419071 | May 2014 | TW |
WO-9935633 | Jul 1999 | WO |
WO-9935633 | Jul 1999 | WO |
WO-01097204 | Dec 2001 | WO |
WO-02080637 | Oct 2002 | WO |
WO-2005114369 | Dec 2005 | WO |
WO-2006020305 | Feb 2006 | WO |
WO-2006020305 | Feb 2006 | WO |
WO-2006023147 | Mar 2006 | WO |
WO-2006023147 | Mar 2006 | WO |
WO-2006104745 | Oct 2006 | WO |
WO-2006104745 | Oct 2006 | WO |
WO-2006130584 | Dec 2006 | WO |
WO-2006130584 | Dec 2006 | WO |
WO-2007012899 | Feb 2007 | WO |
WO-2007034591 | Mar 2007 | WO |
WO-2007054018 | May 2007 | WO |
WO-2007066488 | Jun 2007 | WO |
WO-2007089766 | Aug 2007 | WO |
WO-2007089766 | Aug 2007 | WO |
WO-2007115032 | Oct 2007 | WO |
WO-2007146785 | Dec 2007 | WO |
WO-2007146785 | Dec 2007 | WO |
WO-2008007118 | Jan 2008 | WO |
WO-2008007118 | Jan 2008 | WO |
WO-2008047990 | Apr 2008 | WO |
WO-2008076237 | Jun 2008 | WO |
WO-2008076237 | Jun 2008 | WO |
WO-2008108514 | Sep 2008 | WO |
WO-2008135713 | Nov 2008 | WO |
WO-2009046363 | Apr 2009 | WO |
WO-2009103946 | Aug 2009 | WO |
WO-2009132146 | Oct 2009 | WO |
WO-2009132150 | Oct 2009 | WO |
WO-2010088659 | Aug 2010 | WO |
WO-2010117882 | Oct 2010 | WO |
WO-2011137200 | Nov 2011 | WO |
WO-2013158570 | Oct 2013 | WO |
WO-2014105942 | Jul 2014 | WO |
WO-2014127716 | Aug 2014 | WO |
WO-2015017196 | Feb 2015 | WO |
WO-2015023410 | Feb 2015 | WO |
WO-2015072722 | May 2015 | WO |
WO-2015107969 | Jul 2015 | WO |
WO-2015178920 | Nov 2015 | WO |
WO-2016048269 | Mar 2016 | WO |
WO-2016069642 | May 2016 | WO |
WO-2016126525 | Aug 2016 | WO |
WO-2016144437 | Sep 2016 | WO |
WO-2017058413 | Apr 2017 | WO |
WO-2017058415 | Apr 2017 | WO |
Entry |
---|
Non-Final Office Action dated Apr. 10, 2015, for U.S. Appl. No. 14/082,074, filed Nov. 15, 2013, 23 pages. |
Non-Final Office Action dated May 4, 2015, for U.S. Appl. No. 12/642,466, filed Dec. 18, 2009, nine pages. |
Non-Final Office Action dated May 8, 2015, for U.S. Appl. No. 14/082,003, filed Nov. 15, 2013, 25 pages. |
Final Office Action dated Aug. 31, 2015, for U.S. Appl. No. 14/157,737, filed Jan. 17, 2014, 27 pages. |
Cassidy, R. (Feb. 23, 2007). “The Tissot T-Touch Watch—A Groundbreaking Timepiece,” located at <http://ezinearticles.com/?The-Tissot-T-Touch-Watch---A-Groundbreaking-Timepiece&id . . . >, last visited Jan. 23, 2009, two pages. |
Chinese Search Report dated Jan. 7, 2011, for CN Application No. 2009200081997, filed Apr. 24, 2009, with English Translation, 14 pages. |
Chinese Search Report dated Jan. 10, 2011, for CN Application No. 2008201338142, filed Sep. 27, 2008, with English Translation, 25 pages. |
Chinese Search Report completed Jun. 3, 2011, for CN Patent Application No. ZL2009201524013, with English Translation, 20 pages. |
European Search Report dated Mar. 19, 2009, for EP Application No. 08017396.6, filed Oct. 8, 2008, seven pages. |
Final Office Action dated Jun. 8, 2011, for U.S. Appl. No. 12/038,760, filed Feb. 27, 2008, 20 pages. |
Final Office Action dated Dec. 15, 2011, for U.S. Appl. No. 12/333,250, filed Dec. 11, 2008, 12 pages. |
Final Office Action dated Jan. 5, 2012, for U.S. Appl. No. 12/206,680, filed Sep. 8, 2008, 15 pages. |
Final Office Action dated Jan. 19, 2012, for U.S. Appl. No. 12/110,024, filed Apr. 25, 2008, 12 pages. |
Final Office Action dated Aug. 31, 2012, for U.S. Appl. No. 12/110,075, filed Apr. 25, 2008, 15 pages. |
Final Office Action dated Dec. 24, 2012, for U.S. Appl. No. 12/110,024, filed Apr. 25, 2008, 21 pages. |
Final Office Action dated Jan. 3, 2013, for U.S. Appl. No. 11/818,498, filed Jun. 13, 2007, 17 pages. |
Final Office Action dated Feb. 1, 2013, for U.S. Appl. No. 12/642,466, filed Dec. 18, 2009, nine pages. |
Final Office Action dated Feb. 5, 2013, for U.S. Appl. No. 12/500,911, filed Jul. 10, 2009, 15 pages. |
Final Office Action dated Apr. 30, 2013, for U.S. Appl. No. 12/494,173, filed Jun. 29, 2009, 7 pages. |
Final Office Action dated May 22, 2013, for U.S. Appl. No. 12/206,680, filed Sep. 8, 2008, 16 pages. |
Final Office Action dated Jul. 19, 2013, for U.S. Appl. No. 12,545/604, filed Aug. 21, 2009, 17 pages. |
Final Office Action dated Jul. 23, 2013, for U.S. Appl. No. 12,038,760, filed Feb. 27, 2008, 20 pages. |
Final Office Action dated Jan. 27, 2014, for U.S. Appl. No. 12/206,680, filed Sep. 8, 2008, 20 pages. |
Final Office Action dated Apr. 23, 2014 for U.S. Appl. No. 12/847,987 filed Jul. 30, 2010, 16 pages. |
Final Office Action dated May 9, 2014, for U.S. Appl. No. 12/642,466, filed Dec. 18, 2009, 13 pages. |
Final Office Action dated Jul. 16, 2014, for U.S. Appl. No. 12/545,604, filed Aug. 21, 2009, 18 pages. |
Great Britain Search Report dated Jan. 19, 2009, for GB Application No. GB0817242.1, filed Sep. 22, 2008, two pages. |
Great Britain Search Report dated Jan. 19, 2010, for GB Application No. GB0817242.1, filed Sep. 22, 2008, two pages. |
International Search Report dated Mar. 19, 2009, for PCT Application No. PCT/US2008/078836, filed on Oct. 3, 2008, four pages. |
International Search Report dated Jul. 17, 2009, for PCT Application No. PCT/US2009/041460, three pages. |
International Search Report dated Aug. 5, 2009, for PCT Application No. PCT/US2009/041465, filed Apr. 22, 2009, four pages. |
International Search Report dated Jan. 14, 2011, for PCT Application No. PCT/US2010/029698, filed Apr. 1, 2010, 5 pages. |
International Search Report dated May 2, 2011, for PCT Application No. PCT/US2010/058988, filed Dec. 3, 2010, five pages. |
International Search Report dated Jan. 29, 2015, for PCT Application No. PCT/US2014/047888, filed Jul. 23, 2014, six pages. |
Lee, S.K. et al. (Apr. 1985). “A Multi-Touch Three Dimensional Touch-Sensitive Tablet,” Proceedings of CHI: ACM Conference on Human Factors in Computing Systems, pp. 21-25. |
Non-Final Office Action dated Feb. 4, 2011, for U.S. Appl. No. 12/038,760, filed Feb. 27, 2008, 18 pages. |
Non-Final Office Action dated Jun. 9, 2011, for U.S. Appl. No. 12/206,680, filed Sep. 8, 2008, 13 pages. |
Non-Final Office Action dated Jul. 8, 2011, for U.S. Appl. No. 12/110,075, filed Apr. 25, 2008, 14 pages. |
Non-Final Office Action dated Jul. 11, 2011, for U.S. Appl. No. 12/110,024, filed Apr. 25, 2008, 12 pages. |
Non-Final Office Action dated Aug. 17, 2011, for U.S. Appl. No. 12/333,250, filed Dec. 11, 2008, 12 pages. |
Non-Final Office Action dated Jan. 25, 2012, for U.S. Appl. No. 12/110,075, filed Apr. 25, 2008, 21 pages. |
Non-Final Office Action dated May 25, 2012, for U.S. Appl. No. 11/818,498, filed Jun. 13, 2007, 16 pages. |
Non-Final Office Action dated Jun. 7, 2012, for U.S. Appl. No. 12/500,911, filed Jul. 10, 2009, 16 pages. |
Non-Final Office Action dated Jul. 3, 2012, for U.S. Appl. No. 12/110,024, filed Apr. 25, 2008, 19 pages. |
Non-Final Office Action dated Aug. 28, 2012, for U.S. Appl. No. 12/642,466, filed Dec. 18, 2009, nine pages. |
Non-Final Office Action dated Sep. 26, 2012, for U.S. Appl. No. 12/206,680, filed Sep. 8, 2008, 14 pages. |
Non-Final Office Action dated Nov. 28, 2012, for U.S. Appl. No. 12/494,173, filed Jun. 29, 2009, six pages. |
Non-Final Office Action dated Jan. 2, 2013, for U.S. Appl. No. 12/038,760, filed Feb. 27, 2008, 18 pages. |
Non-Final office Action dated Jan. 7, 2013, for U.S. Appl. No. 12/545,604, filed Aug. 21, 2009, 12 pages. |
Non-Final Office Action dated Mar. 28, 2013, for U.S. Appl. No. 12/110,075 filed Apr. 25, 2008, 14 pages. |
Non-Final Office Action dated Mar. 29, 2013 for U.S. Appl. No. 13/737,779 filed Jan. 9, 2013, nine pages. |
Non-Final Office Action dated Sep. 6, 2013, for U.S. Appl. No. 12/847,987 filed Jul. 30, 2010, 15 pages. |
Non-Final Office Action dated Sep. 30, 2013, for U.S. Appl. No. 12/206,680, filed Sep. 8, 2008, 18 pages. |
Non-Final Office Action dated Nov. 8, 2013, for U.S. Appl. No. 12/642,466, filed Dec. 18, 2009, 12 pages. |
Non-Final office Action dated Dec. 19, 2013, for U.S. Appl. No. 12/545,604, filed Aug. 21, 2009, 17 pages. |
Non-Final Office Action dated Apr. 10, 2014, for U.S. Appl. No. 14/055,717, filed Oct. 16, 2013, 10 pages. |
Non-Final Office Action dated Feb. 10, 2015, for U.S. Appl. No. 14/157,737, filed Jan. 17, 2014, 23 pages. |
Notice of Allowance dated Aug. 28, 2012, for U.S. Appl. No. 12/333,250, filed Dec. 11, 2008, nine pages. |
Notice of Allowance dated May 23, 2013, for U.S. Appl. No. 12/110,024, filed Apr. 25, 2008, five pages. |
Notice of Allowance dated Aug. 19, 2013, for U.S. Appl. No. 12/110,075, filed Apr. 25, 2008, eight pages. |
Notice of Allowance dated Aug. 19, 2013, for U.S. Appl. No. 12/500,911, filed Jul. 10, 2009, six pages. |
Notice of Allowance dated Sep. 3, 2013, for U.S. Appl. No. 13/737,779, filed Jan. 9, 2013, 10 pages. |
Notice of Allowance dated Nov. 8, 2013, for U.S. Appl. No. 12,038,760, filed Feb. 27, 2008, 15 pages. |
Notice of Allowance dated Oct. 15, 2014, for U.S. Appl. No. 12/494,173, filed Jun. 29, 2009, eight pages. |
Notice of Allowance dated Nov. 7, 2014, for U.S. Appl. No. 14/055,717, filed Oct. 16, 2013, six pages. |
Rubine, D.H. (Dec. 1991). “The Automatic Recognition of Gestures,” CMU-CS-91-202, Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in Computer Science at Carnegie Mellon University, 285 pages. |
Rubine, D.H. (May 1992). “Combining Gestures and Direct Manipulation,” CHI '92, pp. 659-660. |
Search Report dated Apr. 29, 2009, for NL Application No. 2001672, with English translation of Written Opinion, eight pages. |
Westerman, W. (Spring 1999). “Hand Tracking, Finger Identification, and Chordic Manipulation on a Multi-Touch Surface,” A Dissertation Submitted to the Faculty of the University of Delaware in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in Electrical Engineering, 364 pages. |
Final Office Action dated Apr. 8, 2016, for U.S. Appl. No. 13/899,391, filed May 21, 2013, ten pages. |
Non-Final Office Action dated Apr. 14, 2016, for U.S. Appl. No. 14/558,529, filed Dec. 2, 2014, 20 pages. |
Chinese Search Report completed Dec. 14, 2011, for CN Patent Application No. ZL201020108330X, filed Feb. 2, 2010, with English Translation, 12 pages. |
Chinese Search Report completed May 18, 2015, for CN Patent Application No. 201310042816.6, filed Feb. 2, 2010, two pages. |
Chinese Search Report dated Nov. 3, 2015, for CN Patent Application No. 201310330348.2 with English Translation, 4 pages. |
European Search Report dated Jul. 21, 2010, for EP Patent Application 10151969.2, six pages. |
European Search Report dated Apr. 25, 2012, for EP Patent Application No. 08022505.5, 12 pages. |
European Search Report dated Dec. 3, 2012, for EP Patent Application No. 12162177.5, seven pages. |
European Search Report dated Feb. 13, 2013, for EP Patent Application No. 12192450.0, six pages. |
European Search Report dated Aug. 31, 2015, for EP Application No. 15166813.4, eight pages. |
Final Office Action dated Jun. 21, 2013, for U.S. Appl. No. 12/545,754, filed Aug. 21, 2009, 6 pages. |
Final Office Action dated Aug. 12, 2013, for U.S. Appl. No. 12/238,333, filed Sep. 25, 2008, 19 pages. |
Final Office Action dated Aug. 13, 2013, for U.S. Appl. No. 12/238,342, filed Sep. 25, 2008, 14 pages. |
Final Office Action dated Oct. 22, 2014, for U.S. Appl. No. 12/238,342, filed Sep. 25, 2008, 16 pages. |
Final Office Action dated Oct. 22, 2014, for U.S. Appl. No. 13/448,182, filed Apr. 16, 2012, 11 pages. |
Final Office Action dated Apr. 22, 2015, for U.S. Appl. No. 12/238,333, filed Sep. 25, 2008, 23 pages. |
Final Office Action dated Jun. 11, 2015, for U.S. Appl. No. 13/448,182, filed Apr. 16, 2012, 12 pages. |
Final Office Action dated Nov. 12, 2015, for U.S. Appl. No. 14/082,074, filed Nov. 15, 2013, 22 pages. |
Final Office Action dated Jan. 4, 2016, for U.S. Appl. No. 14/082,003, filed Nov. 15, 2013, 25 pages. |
Final Office Action dated Jan. 29, 2016, for U.S. Appl. No. 12/642,466, filed Dec. 18, 2009, nine pages. |
International Search Report dated Mar. 10, 2010, for PCT Application No. PCT/US2010/22868, filed Feb. 2, 2010, three pages. |
International Search Report dated Aug. 6, 2013, for PCT Application No. PCT/US2013/036662, filed Apr. 15, 2013, three pages. |
International Search Report dated Sep. 24, 2104, for PCT Application No. PCT/US/2014/39245, eleven pages. |
International Search Report dated Dec. 12, 2014, for PCT Application No. PCT/US2014/56795, two pages. |
International Search Report dated Jan. 8, 2016, for PCT Application No. PCT/US2015/057644, filed Oct. 27, 2015, four pages. |
Malik, S. et al. (2004). “Visual Touchpad: A Two-Handed Gestural Input Device,” Proceedings of the 6th International Conference on Multimodal Interfaces, State College, PA, Oct. 13-15, 2004, ICMI '04, ACM pp. 289-296. |
Non-Final Office Action dated Mar. 9, 2012, for U.S. Appl. No. 12/238,342, filed Sep. 25, 2008, 26 pgs. |
Non-Final Office Action dated May 3, 2012, for U.S. Appl. No. 12/238,333, filed Sep. 25, 2008, 22 pgs. |
Non-Final Office Action dated Oct. 5, 2012, for U.S. Appl. No. 12/545,754, filed Aug. 21, 2009, 10 pages. |
Non-Final Office Action dated Nov. 23, 2012, for U.S. Appl. No. 12/545,557, filed Aug. 21, 2009, 11 pages. |
Non-Final Office Action dated Jan. 7, 2013, for U.S. Appl. No. 12/238,333, filed Sep. 25, 2008, 20 pgs. |
Non-Final Office Action dated Feb. 15, 2013, for U.S. Appl. No. 12/238,342, filed Sep. 25, 2008, 15 pages. |
Non-Final Office Action dated Sep. 10, 2013, for U.S. Appl. No. 12/545,754, filed Aug. 21, 2009, six pages. |
Non-Final Office Action dated Jan. 2, 2014, for U.S. Appl. No. 12/545,754, filed Aug. 21, 2009, 11 pages. |
Non-Final Office Action dated Jan. 3, 2014 , for U.S. Appl. No. 12/545,557, filed Aug. 21, 2009, 9 pages. |
Non-Final Office Action dated Jan. 31, 2014, for U.S. Appl. No. 13/448,182, filed Apr. 16, 2012, 18 pages. |
Non-Final Office Action dated Mar. 12, 2014, for U.S. Appl. No. 12/238,342, filed Sep. 25, 2008, 15 pages. |
Non-Final Office Action dated Sep. 18, 2014, for U.S. Appl. No. 12/238,333, filed Sep. 25, 2008, 21 pages. |
Non-Final Office Action dated Aug. 20, 2015 , for U.S. Appl. No. 14/550,686, filed Nov. 21, 2014, ten pages. |
Non-Final Office Action dated Oct. 6, 2015, for U.S. Appl. No. 14/318,157, filed Jun. 27, 2014, seven pages. |
Notice of Allowance mailed Jun. 10, 2013, for U.S. Appl. No. 12/545,557, filed Aug. 21, 2009, 9 pages. |
Notice of Allowance dated Apr. 11, 2014, for U.S. Appl. No. 12/545,557, filed Aug. 21, 2009, 9 pages. |
Notice of Allowance dated Aug. 21, 2014, for U.S. Appl. No. 12/545,754, filed Aug. 21, 2009, ten pages. |
Notice of Allowance dated Mar. 16, 2015, for U.S. Appl. No. 14/312,489, filed Jun. 23, 2014, 10 pages. |
Notice of Allowance dated Nov. 2, 2015, for U.S. Appl. No. 14/329,719, filed Jul. 11, 2014, eight pages. |
Notice of Allowance dated Dec. 1, 2015, for U.S. Appl. No. 12/238,333, filed Sep. 25, 2008, nine pages. |
Notice of Allowance dated Dec. 14, 2015, for U.S. Appl. No. 14/157,737, filed Jan. 17, 2014, five pages. |
Notice of Allowance dated Jan. 8, 2016, for U.S. Appl. No. 13/448,182, filed Apr. 16, 2012, nine pages. |
Rekimoto, J. (2002). “SmartSkin: An Infrastructure for Freehand Manipulation on Interactive Surfaces,” CHI 2002, Apr. 20-25, 2002. [(Apr. 20, 2002). 4(1):113-120]. |
Search Report dated Oct. 14, 2015, for TW Application No. 103116003, one page. |
Search Report dated Nov. 12, 2015, for ROC (Taiwan) Patent Application No. 103105965, with English translation, two pages. |
Wilson, A.D. (Oct. 15, 2006). “Robust Computer Vision-Based Detection of Pinching for One and Two-Handed Gesture Input,” ACM, USIT '06, Montreux, Switzerland, Oct. 15-18, 2006, pp. 255-258. |
Yang, J-H. et al. (Jul. 2013). “A Noise-Immune High-Speed Readout Circuit for In-Cell Touch Screen Panels,” IEEE Transactions on Circuits and Systems -1: Regular Papers 60(7):1800-1809. |
Final Office Action dated May 9, 2016, for U.S. Appl. No. 14/318,157, filed Jun. 27, 2014, ten pages. |
Final Office Action dated Jun. 14, 2016, for U.S. Appl. No. 14/550,686, filed Nov. 21, 2014, ten pages. |
Final Office Action dated Sep. 29, 2016, for U.S. Appl. No. 14/558,529, filed Dec. 2, 2014, 22 pages. |
Final Office Action dated Nov. 4, 2016, for U.S. Appl. No. 14/082,003, filed Nov. 15, 2013, 18 pages. |
International Search Report dated May 9, 2016, for PCT Application No. PCT/US2016/015479, filed Jan. 28, 2016, five pages. |
International Search Report dated May 11, 2016, for PCT Application No. PCT/US2016/016011, filed Feb. 1, 2016, six pages. |
International Search Report dated Oct. 31, 2016, for PCT Application No. PCT/US2016/048694, filed Aug. 25, 2016, six pages. |
Non-Final Office Action dated May 25, 2016, for U.S. Appl. No. 14/082,003, filed Nov. 15, 2013, 23 pages. |
Non-Final Office Action dated Jun. 1, 2016, for U.S. Appl. No. 14/615,186, filed Feb. 5, 2015, eight pages. |
TW Search Report dated May 4, 2016, for TW Application No. 104115152, one page. |
Non-Final Office Action dated Oct. 5, 2015, for U.S. Appl. No. 13/899,391, filed May 21, 2013, ten pages. |
Non-Final Office Action dated Dec. 14, 2016, for U.S. Appl. No. 14/550,686, filed Nov. 21, 2014, eight pages. |
Non-Final Office Action dated Dec. 19, 2016, for U.S. Appl. No. 14/318,157, filed Jun. 27, 2014, eleven pages. |
Non-Final Office Action dated Mar. 13, 2017, for U.S. Appl. No. 14/082,003, filed Nov. 15, 2013, 20 pages. |
Non-Final Office Action dated Apr. 7, 2017, for U.S. Appl. No. 15/144,706, filed May 2, 2016, eight pages. |
Notice of Allowance dated Dec. 2, 2016, for U.S. Appl. No. 14/615,186, filed Feb. 5, 2015, seven pages. |
European Search Report dated Jul. 27, 2017, for EP Application No. 14902458.0, four pages. |
Final Office Action dated Jul. 26, 2017, for U.S. Appl. No. 14/318,157, filed Jun. 27, 2014, 10 pages. |
Final Office Action dated Aug. 21, 2017, for U.S. Appl. No. 14/550,686, filed Nov. 21, 2014, 11 pages. |
Final Office Action dated Dec. 5, 2017, for U.S. Appl. No. 15/006,987, filed Jan. 26, 2016, 16 pages. |
Non-Final Office Action dated Jun. 14, 2017, for U.S. Appl. No. 15/006,987, filed Jan. 26, 2016, 14 pages. |
Non-Final Office Action dated Jun. 26, 2017, for U.S. Appl. No. 14/558,529, filed Dec. 2, 2014, six pages. |
Non-Final Office Action dated Sep. 14, 2017 , for U.S. Appl. No. 15/017,463, filed Feb. 5, 2016, 22 pages. |
Non-Final Office Action dated Nov. 3, 2017, for U.S. Appl. No. 15/090,555, filed Apr. 4, 2016, 27 pages. |
Non-Final Office Action dated Dec. 22, 2017 , for U.S. Appl. No. 14/993,017, filed Jan. 11, 2016, 23 pages. |
Notice of Allowance dated Sep. 20, 2017, for U.S. Appl. No. 14/082,003, filed Nov. 15, 2013, eight pages. |
Notice of Allowance dated Sep. 20, 2017, for U.S. Appl. No. 15/144,706, filed May 2, 2016, nine pages. |
Notice of Allowance dated Oct. 3, 2017, for U.S. Appl. No. 14/082,003, filed Nov. 15, 2013, nine pages. |
Notice of Allowance dated Oct. 13, 2017, for U.S. Appl. No. 14/558,529, filed Dec. 2, 2014, eight pages. |
European Search Report dated Jan. 31, 2018, for EP Application No. 17183937.6, four pages. |
Non-Final Office Action dated Jan. 22, 2018 , for U.S. Appl. No. 15/097,179, filed Apr. 12, 2016, 11 pages. |
Notice of Allowance dated Feb. 9, 2018, for U.S. Appl. No. 14/550,686, filed Nov. 21, 2014, eleven pages. |
Number | Date | Country | |
---|---|---|---|
20150227240 A1 | Aug 2015 | US |
Number | Date | Country | |
---|---|---|---|
61168543 | Apr 2009 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14055717 | Oct 2013 | US |
Child | 14645120 | US | |
Parent | 13737779 | Jan 2013 | US |
Child | 14055717 | US | |
Parent | 12500911 | Jul 2009 | US |
Child | 13737779 | US |