Touch surface for simulating materials

Information

  • Patent Grant
  • 10459521
  • Patent Number
    10,459,521
  • Date Filed
    Tuesday, April 5, 2016
    8 years ago
  • Date Issued
    Tuesday, October 29, 2019
    4 years ago
  • Inventors
  • Original Assignees
  • Examiners
    • Harris; Dorothy
    Agents
    • Brownstein Hyatt Farber Schreck, LLP
Abstract
A system for simulating materials using touch surfaces includes a touch surface, an actuator and/or an temperature control device, and a control unit. The control unit controls the actuator or the temperature control device to cause at least a portion of the touch surface to simulate a material. Such control may include utilizing the actuator to vibrate the surface to simulate the tactile sensation of texture. Such control may also include utilizing the temperature control device (such as a Peltier device) to control the temperature of the surface in order to simulate the thermal conductivity of a material. In some cases, the temperature control may be performed utilizing a temperature sensor to adjust the temperature of the surface. In various cases, the vibration and/or temperature may be varied over time, such as in response to one or more touches detected using one or more touch sensors.
Description
TECHNICAL FIELD

This disclosure relates generally to touch surfaces, and more specifically to a touch surface for simulating materials.


BACKGROUND

Electronic devices may have touch devices that include touch surfaces for receiving input from, and/or providing output to, one or more users. Such touch devices may include touch screens, track pads, button elements, and/or other such touch devices. In some cases, the touch devices may be able to detect a touch (such as the touch of a user's body part, a stylus, and/or other such touch) and interpret that touch as input. Such touch detection may include detection that a touch has occurred, the location of the touch, the force of the touch, the duration of the touch, movement across the touch surface associated with the touch, and/or any other such characteristics of the touch. In various cases, the touch device may be able to provide output, such as haptic feedback and/or output.


Typically, touch surfaces are smooth surfaces constructed of various plastics, metals, or glass. The tactile characteristics of such touch surfaces may be limited by the physical characteristics of the materials utilized to construct the surfaces.


SUMMARY

The present disclosure discloses systems and methods for simulating materials using touch surfaces. In one or more embodiments, a system for simulating materials using touch surfaces may include at least one touch surface, at least one actuator or at least one temperature control device, and at least one control unit. The control unit may control the actuator or the temperature control device to cause at least a portion of the touch surface to simulate a material.


Such control may include utilizing the actuator to vibrate at least a portion of the touch surface. Such vibrations may simulate the tactile sensation of texture. In some cases, the vibrations may be varied over time, such as in response to one or more touches detected using one or more touch sensors.


Such control may also include utilizing the temperature control device (such as a Peltier device) to control the temperature of at least a portion of the touch surface in order to simulate the tactile sensation of the thermal conductivity of a material. In some cases, the temperature control may be performed utilizing data from one or more temperature sensors to adjust the temperature of the touch surface. In some cases, the temperature may be varied over time, such as in response to one or more touches detected using one or more touch sensors.


In various implementations, the entire touch surface may be caused to simulate the material. However, in other implementations, the touch surface may include a plurality of regions that are each controllable. In some cases, each of the plurality of regions may include one or more actuators, temperature control devices, touch sensors, and/or temperature sensors. Further, in various cases, each of the plurality of regions may be simultaneously controllable to simulate different materials than one or more of the other regions.


In some implementations, the touch surface may include a layer of diamond material. The diamond material may be a layer of chemical vapor deposited diamond, such as a layer of carbon vapor deposited diamond. Such a layer of diamond may provide extremely high thermal conductivity, extreme mechanical hardness, and/or optical broadband optical transparency.


In some embodiments, a method for simulating materials using a touch surface may include determining at least one material to simulate using a touch surface and controlling at least one of at least one actuator or at least one temperature control device to case the at least one touch surface to simulate at least one material.


In various embodiments, a touch device may include at least one touch surface, at least one actuator or at least one temperature control device, and at least one control unit. The control unit may control the actuator or the temperature control device to cause at least a portion of the touch surface to simulate a material.


It is to be understood that both the foregoing general description and the following detailed description are for purposes of example and explanation and do not necessarily limit the present disclosure. The accompanying drawings, which are incorporated in and constitute a part of the specification, illustrate subject matter of the disclosure. Together, the descriptions and the drawings serve to explain the principles of the disclosure.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1A is a isometric view of an example system for simulating materials using touch surfaces.



FIG. 1B is a front cross-sectional view of the example system of FIG. 1 taken along line 1B in FIG. 1.



FIG. 1C is a block diagram illustrating an example functional relationship of the components of the touch device system of the example system of FIG. 1B.



FIG. 2 is a bottom view of an alternative embodiment of a portion of the example system of FIG. 1A.



FIG. 3 is a flow chart illustrating a method for simulating materials using touch surfaces. This method may be performed by the system of FIG. 1A-1C or 2.





DETAILED DESCRIPTION

The description that follows includes sample systems, methods, and computer program products that embody various elements of the present disclosure. However, it should be understood that the described disclosure may be practiced in a variety of forms in addition to those described herein.


The present disclosure discloses systems and methods for simulating materials using touch surfaces. A touch device may include at least one touch surface, at least one actuator or at least one temperature control device, and at least one control unit. The control unit may control the actuator or the temperature control device to cause at least a portion of the touch surface to simulate a material.


Such control may include utilizing the actuator to move vertically and/or horizontally to vibrate at least a portion of the touch surface. Such vibrations may simulate the tactile sensation of texture. Rougher surfaces may be simulated by producing stronger vibrations than those produces to simulate smoother surfaces. Simulation of a material as smooth as the touch surface itself may include not utilizing the actuator to produce vibrations.


In some cases, the vibrations may be varied over time, such as in response to one or more touches detected using one or more touch sensors (such as position sensors, force sensors, capacitive sensors, and/or other sensors capable of detecting one or more characteristics of a touch). For example, the vibrations may be varied over time in response to detection of a touch moving across the touch surface in order to simulate the grain of a wood surface.


Such control may also include utilizing the temperature control device to control the temperature of at least a portion of the touch surface. Such a temperature control device may include at least one Peltier device. The temperature control may simulate the tactile sensation of the thermal conductivity of a material. For example, a glass surface may be controlled to have the temperature of a relatively cooler metal material and/or a relatively warmer wood material. In some cases, the temperature control may be performed utilizing data from one or more temperature sensors that detect a temperature of the touch surface. In such cases, the temperature control device may be adjusted based on the data to adjust the temperature of the touch surface.


In some cases, the temperature may be varied over time, such as in response to one or more touches detected using one or more touch sensors. For example, a metal material may increase in temperature while touched in response to heat from a user's finger. To simulate such a metal material, the temperature of a touch surface may varied over time to increase when a user touch is maintained.


In various implementations, the actuator(s) and/or temperature control device(s) may be controlled to cause the entire touch surface to simulate the material. However, in other implementations, the touch surface may include a plurality of regions that are each controllable to simulate one or more materials. In some cases, each of the plurality of regions may include one or more actuators, temperature control devices, touch sensors, and/or temperature sensors. Further, in various cases, each of the plurality of regions may be simultaneously controllable to simulate different materials than one or more of the other regions.


In some implementations, the touch surface may include a layer of diamond material. The diamond material may be a layer of chemical vapor deposited diamond, such as a layer of carbon vapor deposited diamond. Such a layer of diamond may provide extremely high thermal conductivity (which may exceed that of copper by approximately a factor of five), extreme mechanical hardness (providing exceptional wear resistance), and/or optical broadband optical transparency (being transparent from approximately ultraviolet to far infrared).



FIG. 1A is a isometric view of an example system 100 for simulating materials using touch surfaces. The system may include an electronic device 101 and a touch device 102. The touch device may be formed from a variety of different materials such as one or more metals, plastic, glass, and/or any other such suitable material.


As illustrated, the electronic device 101 is a laptop computing device. However, it is understood that this is an example. In various implementations, the electronic device may be any electronic device that includes a touch device 102 and/or any touch surface without departing from the scope of the present disclosure. For example, such an electronic device may be a desktop computing device, a mobile computing device, a tablet computing device, a laptop computing device, a digital media player, a kitchen appliance, a display device, a cellular phone, a smart phone, a wearable device, an automobile, and/or any other kind of electronic device.


Further, as illustrated, the touch device 102 is a touch pad. However, it is understood that this is an example. In various implementations, the touch device may be any kind of touch surface without departing from the scope of the present disclosure. For example, the touch device may be a track pad, a touch screen, a button element, and/or any other kind of touch surface.



FIG. 1B is a front cross-sectional view of the example system 100 of FIG. 1 taken along line 1B in FIG. 1. As illustrated, the touch device 102 may be part of a touch device system 112. The touch device system may include one or more temperature control devices 104 (such as one or more Peltier devices), temperature sensors 105, actuators 106 (such as one or more electromechanical actuators), touch sensors 107 (such as one or more position sensors, force sensors, capacitive sensors, and/or other sensors capable of detecting one or more characteristics of a touch), drive circuits 108, control units 109 (such as one or more processing units), sensing circuits 110, and/or substrates 111 (such as one or more printed circuit boards).


The control unit 109, drive circuit 108, and sensing circuit 110 may be mounted to the substrate 111. The drive circuit may be communicably coupled to the actuator 106 and/or the temperature control device 104 and the sensing circuit may be coupled to the touch sensor 107 and/or the temperature sensor 105. The control unit may be communicably coupled to the drive circuit and/or the sensing circuit in order to receive data from the touch sensor and/or the temperature sensor and/or control the actuator and/or the temperature control device in order to simulate one or more materials.


The actuator 106 may be operable to move (such as horizontally or vertically) in order provide one or more vibrations via the touch device 102. Such vibrations may be provided as haptic output and/or feedback. Such vibrations may also be provided to simulate the tactile sensation of the texture of a material. The actuator may vibrate all of the touch device or just one or more portions of the touch device.


For example, the control unit 109 may cause the actuator 106 to vibrate in order to simulate a rougher material (such as wood) than the material from the touch device 102 is actually made (such as plastic). The control unit may cause the actuator to vibrate more to simulate rougher materials and less to simulate smoother materials. When simulating a material as smooth or smoother than the materials from which the touch device is actually made, the control unit may not cause the actuator to vibrate.


The control unit 109 may vary the vibrations that the actuator 106 is caused to provide over time. In some cases, the vibrations may be varied based on one or more touches detected by the touch sensor 107. For example, the control unit may increase the vibrations provided by the actuator in response to the touch sensor detecting that a user's finger is moving across the touch device 102 in order to simulate the grain of a wood material. By way of another example, the control unit may increase the vibrations provided by the actuator in response to the touch sensor detecting that a user's finger is pressing with increase force on the touch device 102 in order to simulate the application of increased force to the texture of the material.


The temperature control device 104 may be operable to control the temperature (such as by increasing, decreasing, and/or maintaining the temperature) of the touch device 102. This control may be accomplished by heating, cooling, sinking heat, dissipating or diffusing heat, activating fans or other cooling mechanisms, and so on. Such temperature control may simulate the tactile sensation of the thermal conductivity of a material. The temperature control device may control the temperature of all of the touch device or just one or more portions of the touch device.


For example, the control unit 109 may cause the temperature control device 104 to decrease the temperature of the touch device 102 in order to simulate a relatively cooler material (such as metal) than the material from the touch device is actually made (such as glass). By way of another example, the control unit may cause the temperature control device to increase the temperature of the touch device in order to simulate a relatively warmer material (such as wood) than the material from the touch device is actually made (such as metal).


The control unit 109 may vary the temperature that the temperature control device 104 is caused to control over time. In some cases, the temperature may be varied based on one or more touches detected by the touch sensor 107. For example, the control unit may increase the temperature of a particular portion of the touch device 102 in response to the touch sensor detecting that a user's finger is touching that portion for an extended period of time in order to simulate the warming of a metal material in response to sustained exposure to heat from the user's finger.



FIG. 1C is a block diagram illustrating an example functional relationship of the components of touch device system 112 of the example system 100 of FIG. 1B. As illustrated, the control unit 109 may be communicably coupled to the drive circuit 108 and/or the sensing circuit 110, the drive circuit may be communicably coupled to the temperature control device 104 and/or the actuator 106, and/or the sensing circuit may be communicably coupled to the touch sensor 107 and/or the temperature sensor 105.


In some implementations, the touch device system 112 may include additional components not shown. For example, in some implementations, the touch device system may include one or more non-transitory storage media (not shown), which may take the form of, but is not limited to, a magnetic storage medium; optical storage medium; magneto-optical storage medium; read only memory; random access memory; erasable programmable memory; flash memory; and so on. Such a non-transitory storage medium may include one or more settings (such as user defined settings, default settings, system configuration settings, and so on) which specify one or more materials to simulate, how to determine which material to simulate, conditions to evaluate regarding when and which material to simulate, specifications as to how to simulate a particular material, and so on.


Although the actuator 106 and the temperature control device 104 are shown and described as separate components, it is understood that this is an example. In various implementations, these components may be separate components, portions of the same component (such as a piezoelectric actuator that also produces heat along with changing shape in response to electrical charge), combined components (such as temperature control devices laminated or otherwise attached to the top of actuators), and so on.


Further, in some cases, use of the actuator 106 may produce undesirable heat. For example, an actuator that produces heat during operation may cause the temperature of a touch surface to be warmer than the temperature of a cement surface in order to produce sufficient vibration to simulate the texture of the cement. To ameliorate this heating, the touch surface may be cooled (or heat sunk or otherwise heat dissipated or diffused) by one or more temperature cooling devices in order to prevent the simulation of texture from causing the touch surface to have temperature properties even less like the simulated material than it would normally.


In various implementations, the actuator(s) and/or temperature control device(s) may be controlled to cause the entire touch surface to simulate the material. However, in other implementations, the touch surface may include a plurality of regions that are each controllable to simulate one or more materials. For example, FIG. 2 is a bottom view of an alternative embodiment of a portion of the example system 100 of FIG. 1. As illustrated, in this embodiment the touch device 202 includes a plurality of regions 203 that are connected to one or more control lines 204.


In some cases, the control lines 204 may connect to the temperature control device 104 and may be operable to control the temperature of the regions 203 under the direction of the temperature control device. In other cases, the regions may each include an actuator 106 and the control lines may connect the actuators to the drive circuit 108 in order to control the respective actuator for a particular region.


In still other cases, the regions 203 may each include one or more temperature control devices 104, temperature sensors 105, actuators 106, and/or touch sensors 107. As such, the control lines 204 may connect to one or more of the drive circuit 108 and/or the sensing circuit 110 such that the control unit 109 is able to independently control vibration and/or temperature of each of the regions.


In various cases, a touch surface such as plastic may have multiple regions that are individually controllable and may include individually controllable actuators and/or temperature control devices. For example, such regions may be individually controllable such that one region is controlled to simulate the rougher texture of wood and heated to simulate the relatively warmer temperature of wood while another region is controlled to simulate the smoother texture of metal and cooled (or heat sunk or otherwise heat dissipated or diffused) to simulate the relatively cooler temperature of metal. In this way, a single touch surface may be utilized to simulate multiple different materials simultaneously.


By way of another example, such regions may be individually controllable to simulate more complex behaviors of a material. The temperature of a touched portion of a glass touch surface may be increased to simulate a metal material increasing in temperature in response to the heat of the touch. However, due to the temperature properties of the glass touch surface, the temperature from the heating may diffuse to surrounding areas causing the surrounding areas to have a higher temperature than if the surface was actually metal. As such, in addition to heating the portion corresponding to the touch, the surrounding portions may be cooled (or heat sunk or otherwise heat dissipated or diffused) such that the temperature of the surrounding portions more closely simulates the diffusion of heat from the touch in metal.


Returning to FIG. 1B, in some implementations, the touch surface may include a layer of diamond material 103. The diamond material may be a layer of chemical vapor deposited diamond, such as a layer of carbon vapor deposited diamond. Such a layer of diamond may provide extremely high thermal conductivity (which may exceed that of copper by approximately a factor of five), extreme mechanical hardness (providing exceptional wear resistance), and/or optical broadband optical transparency (being transparent from approximately ultraviolet to far infrared).



FIG. 3 is a flow chart illustrating a method 300 for simulating materials using touch surfaces. This method may be performed by the system 100 of FIGS. 1A-1C and/or 2.


The flow may begin at block 301 and proceed to block 302 where the control unit 109 determines a material to simulate. The flow then proceeds to block 303 where the control unit controls at least one of the actuator 106 or temperature control device 104 to simulate the material using a touch surface. The flow then proceeds to block 304.


At block 304, the control unit 109 determines whether or not to continue simulating the material using the touch surface. Such continuation may include updating the control based on one or more detected temperatures, one or more detected touches, the passage of time, one or more settings specifying how simulation is to be controlled, and so on.


If so, the flow returns to block 303 where the control unit continues to control at least one of the actuator or the temperature control device to continue simulating the material using the touch surface. Otherwise, the flow proceeds to block 305 and ends.


As discussed above and illustrated in the accompanying figures, the present disclosure discloses systems and methods for simulating materials using touch surfaces. A touch device may include at least one touch surface, at least one actuator or at least one temperature control device, and at least one control unit. The control unit may control the actuator or the temperature control device to cause at least a portion of the touch surface to simulate a material.


In the present disclosure, the methods disclosed may be implemented as sets of instructions or software readable by a device. Further, it is understood that the specific order or hierarchy of steps in the methods disclosed are examples of sample approaches. In other embodiments, the specific order or hierarchy of steps in the method can be rearranged while remaining within the disclosed subject matter. The accompanying method claims present elements of the various steps in a sample order, and are not necessarily meant to be limited to the specific order or hierarchy presented.


The described disclosure may be provided as a computer program product, or software, that may include a non-transitory machine-readable medium having stored thereon instructions, which may be used to program a computer system (or other electronic devices) to perform a process according to the present disclosure. A non-transitory machine-readable medium includes any mechanism for storing information in a form (e.g., software, processing application) readable by a machine (e.g., a computer). The non-transitory machine-readable medium may take the form of, but is not limited to, a magnetic storage medium (e.g., floppy diskette, video cassette, and so on); optical storage medium (e.g., CD-ROM); magneto-optical storage medium; read only memory (ROM); random access memory (RAM); erasable programmable memory (e.g., EPROM and EEPROM); flash memory; and so on.


It is believed that the present disclosure and many of its attendant advantages will be understood by the foregoing description, and it will be apparent that various changes may be made in the form, construction and arrangement of the components without departing from the disclosed subject matter or without sacrificing all of its material advantages. The form described is merely explanatory, and it is the intention of the following claims to encompass and include such changes.


While the present disclosure has been described with reference to various embodiments, it will be understood that these embodiments are illustrative and that the scope of the disclosure is not limited to them. Many variations, modifications, additions, and improvements are possible. More generally, embodiments in accordance with the present disclosure have been described in the context or particular embodiments. Functionality may be separated or combined in blocks differently in various embodiments of the disclosure or described with different terminology. These and other variations, modifications, additions, and improvements may fall within the scope of the disclosure as defined in the claims that follow.

Claims
  • 1. A method of simulating a material using a touch-sensitive surface, comprising: locally controlling a temperature of a portion of the touch-sensitive surface using a temperature control device positioned directly beneath the touch-sensitive surface; andvibrating the portion of the touch-sensitive surface using one of a set of actuators that are positioned directly beneath the touch-sensitive surface in contact with the touch-sensitive surface; wherein a temperature and vibration of the portion of the touch-sensitive surface simulates a temperature and feel of the material.
  • 2. The method of claim 1, further comprising compensating for heat produced by the one of the set of actuators.
  • 3. The method of claim 1, wherein said locally controlling the temperature of the portion of the touch-sensitive and vibrating the portion of the touch-sensitive surface are performed in response to detection of a touch on the portion of the touch-sensitive surface.
  • 4. The method of claim 1, further comprising measuring the temperature of the portion of the touch-sensitive surface prior to compensating for heat produced by the one of the set of actuators.
  • 5. The method of claim 1, wherein said locally controlling the temperature of the portion of the touch-sensitive surface comprises: heating a first part of the portion of the touch-sensitive surface; andcooling a second part of the portion of the touch-sensitive surface.
  • 6. The method of claim 1, further comprising compensating for heat produced by the one of the set of actuators using the temperature control device by dissipating or diffusing the heat.
  • 7. The method of claim 1, further comprising vibrating an additional portion of the touch-sensitive surface differently than the portion of the touch-sensitive surface.
  • 8. An electronic device, comprising: a touch-sensitive surface;a group of temperature control devices operably connected to, and positioned directly beneath, the touch-sensitive surface, each of the group of temperature control devices associated with different unique regions of the touch-sensitive surface;a group of actuators directly coupled to, and positioned directly beneath, the touch-sensitive surface; anda processing unit that simulates a material on a designated region of the touch-sensitive surface located above at least one of the group of temperature control devices and at least one of the group of actuators, the processing unit configured to execute instructions that: controls a temperature of the designated region of the touch-sensitive surface using the at least one of the group of temperature control devices; andvibrates the designated region of the touch-sensitive surface using at least one of the actuators that is located beneath the designated region.
  • 9. The electronic device of claim 8, further comprising a temperature sensor coupled to the touch-sensitive surface that measures a temperature of the designated region of the touch-sensitive surface wherein the temperature sensor is coupled to a different surface of the touch-sensitive surface than the group of temperature control devices and the group of actuators.
  • 10. The electronic device of claim 8, wherein the touch-sensitive surface comprises a capacitive touch screen.
  • 11. The electronic device of claim 8, wherein the touch-sensitive surface comprises a capacitive trackpad.
  • 12. The electronic device of claim 8, wherein the group of actuators includes a piezoelectric actuator.
  • 13. The electronic device of claim 8, further comprising a touch sensor coupled to the touch-sensitive surface wherein the processing unit simulates the material on the designated region of the touch-sensitive surface based at least on data from the touch sensor regarding a touch to the designated region of the touch-sensitive surface.
  • 14. The electronic device of claim 8, wherein the group of actuators includes an actuator that is operable to move horizontally with respect to the touch-sensitive surface.
  • 15. An electronic device, comprising: a touch-sensitive surface;a group of temperature control devices that are each positioned directly below unique areas of the touch-sensitive surface;a group of actuators that contact the touch-sensitive surface directly below the unique areas; anda processing unit configured to execute instructions that simulate a material using a selected area of the touch-sensitive surface by: controlling a temperature of the selected area of the touch surface using one of the group of temperature control devices;vibrating the selected area of the touch-sensitive surface using one of the group of actuators.
  • 16. The electronic device of claim 15, wherein the processing unit controls the temperature of the selected area of the touch-sensitive surface and vibrates the selected area of the touch-sensitive surface using a combined temperature control and actuator component.
  • 17. The electronic device of claim 16, wherein the combined temperature control and actuator component comprises a temperature control component laminated to an actuator.
  • 18. The electronic device of claim 15, wherein the processing unit is operable to simulate an additional material using an additional selected area of the touch-sensitive surface.
  • 19. The electronic device of claim 18, wherein the processing unit is operable to simulate the additional material using the additional selected area of the touch-sensitive surface simultaneously with simulating the material using the selected area of the touch-sensitive surface.
  • 20. The electronic device of claim 15, wherein the touch-sensitive surface is optically transparent approximately between ultraviolet and far infrared.
CROSS-REFERENCE TO RELATED APPLICATION

This application is a continuation of U.S. patent application Ser. No. 14/059,693, filed Oct. 22, 2013, and entitled “Touch Surface for Simulating Materials,” the contents of which are incorporated herein by reference as if fully enclosed herein.

US Referenced Citations (489)
Number Name Date Kind
3001049 Didier Sep 1961 A
3390287 Sonderegger Jun 1968 A
3419739 Clements Dec 1968 A
4236132 Zissimopoulos Nov 1980 A
4412148 Klicker et al. Oct 1983 A
4414984 Zarudiansky Nov 1983 A
4490815 Umehara et al. Dec 1984 A
4695813 Nobutoki et al. Sep 1987 A
4975616 Park Dec 1990 A
5010772 Bourland Apr 1991 A
5245734 Issartel Sep 1993 A
5283408 Chen Feb 1994 A
5293161 MacDonald et al. Mar 1994 A
5317221 Kubo et al. May 1994 A
5365140 Ohya Nov 1994 A
5434549 Hirabayashi et al. Jul 1995 A
5436622 Gutman et al. Jul 1995 A
5510584 Norris Apr 1996 A
5510783 Findlater et al. Apr 1996 A
5513100 Parker et al. Apr 1996 A
5587875 Sellers Dec 1996 A
5590020 Sellers Dec 1996 A
5602715 Lempicki et al. Feb 1997 A
5619005 Shibukawa et al. Apr 1997 A
5621610 Moore et al. Apr 1997 A
5625532 Sellers Apr 1997 A
5629578 Winzer et al. May 1997 A
5635928 Takagi et al. Jun 1997 A
5718418 Gugsch Feb 1998 A
5739759 Nakazawa et al. Apr 1998 A
5742242 Sellers Apr 1998 A
5783765 Muramatsu Jul 1998 A
5793605 Sellers Aug 1998 A
5812116 Malhi Sep 1998 A
5813142 Demon Sep 1998 A
5818149 Safari et al. Oct 1998 A
5896076 Van Namen Apr 1999 A
5907199 Miller May 1999 A
5951908 Cui et al. Sep 1999 A
5959613 Rosenberg et al. Sep 1999 A
5973441 Lo et al. Oct 1999 A
5982304 Selker et al. Nov 1999 A
5982612 Roylance Nov 1999 A
5995026 Sellers Nov 1999 A
5999084 Armstrong Dec 1999 A
6069433 Lazarus et al. May 2000 A
6078308 Rosenberg et al. Jun 2000 A
6104947 Heikkila et al. Aug 2000 A
6127756 Iwaki Oct 2000 A
6135886 Armstrong Oct 2000 A
6218966 Goodwin Apr 2001 B1
6219033 Rosenberg Apr 2001 B1
6220550 McKillip, Jr. Apr 2001 B1
6222525 Armstrong Apr 2001 B1
6252336 Hall Jun 2001 B1
6342880 Rosenberg et al. Jan 2002 B2
6351205 Armstrong Feb 2002 B1
6373465 Jolly et al. Apr 2002 B2
6408187 Merriam Jun 2002 B1
6411276 Braun et al. Jun 2002 B1
6429849 An Aug 2002 B1
6438393 Surronen Aug 2002 B1
6444928 Okamoto et al. Sep 2002 B2
6455973 Ineson Sep 2002 B1
6465921 Horng Oct 2002 B1
6552404 Hynes Apr 2003 B1
6552471 Chandran et al. Apr 2003 B1
6557072 Osborn Apr 2003 B2
6642857 Schediwy Nov 2003 B1
6693626 Rosenberg Feb 2004 B1
6717573 Shahoian et al. Apr 2004 B1
6747400 Maichl et al. Jun 2004 B2
6809462 Pelrine et al. Oct 2004 B2
6809727 Piot et al. Oct 2004 B2
6864877 Braun et al. Mar 2005 B2
6906697 Rosenberg Jun 2005 B2
6906700 Armstrong Jun 2005 B1
6906703 Vablais et al. Jun 2005 B2
6952203 Banerjee et al. Oct 2005 B2
6954657 Bork et al. Oct 2005 B2
6963762 Kaaresoja et al. Nov 2005 B2
6995752 Lu Feb 2006 B2
7005811 Wakuda et al. Feb 2006 B2
7016707 Fujisawa et al. Mar 2006 B2
7022927 Hsu Apr 2006 B2
7023112 Miyamoto et al. Apr 2006 B2
7081701 Yoon et al. Jul 2006 B2
7091948 Chang et al. Aug 2006 B2
7121147 Okada Oct 2006 B2
7123948 Nielsen Oct 2006 B2
7130664 Williams Oct 2006 B1
7136045 Rosenberg et al. Nov 2006 B2
7158122 Roberts Jan 2007 B2
7161580 Bailey et al. Jan 2007 B2
7162928 Shank et al. Jan 2007 B2
7170498 Huang Jan 2007 B2
7176906 Williams et al. Feb 2007 B2
7180500 Marvit et al. Feb 2007 B2
7182691 Schena Feb 2007 B1
7217891 Fischer et al. May 2007 B2
7218310 Tierling et al. May 2007 B2
7219561 Okada May 2007 B2
7253350 Noro et al. Aug 2007 B2
7269484 Hein Sep 2007 B2
7333604 Zernovizky et al. Feb 2008 B2
7334350 Ellis Feb 2008 B2
7348968 Dawson Mar 2008 B2
7388741 Konuma et al. Jun 2008 B2
7392066 Hapamas Jun 2008 B2
7423631 Shahoian et al. Sep 2008 B2
7446752 Goldenberg et al. Nov 2008 B2
7469155 Chu Dec 2008 B2
7469595 Kessler et al. Dec 2008 B2
7471033 Thiesen et al. Dec 2008 B2
7495358 Kobayashi et al. Feb 2009 B2
7508382 Denoue et al. Mar 2009 B2
7561142 Shahoian et al. Jul 2009 B2
7562468 Ellis Jul 2009 B2
7569086 Chandran Aug 2009 B2
7575368 Guillaume Aug 2009 B2
7586220 Roberts Sep 2009 B2
7619498 Miura Nov 2009 B2
7639232 Grant et al. Dec 2009 B2
7641618 Noda et al. Jan 2010 B2
7649305 Priya et al. Jan 2010 B2
7675253 Dorel Mar 2010 B2
7675414 Ray Mar 2010 B2
7679611 Schena Mar 2010 B2
7707742 Ellis May 2010 B2
7710399 Bruneau et al. May 2010 B2
7732951 Mukaide Jun 2010 B2
7737828 Yang et al. Jun 2010 B2
7742036 Grant et al. Jun 2010 B2
7788032 Moloney Aug 2010 B2
7793429 Ellis Sep 2010 B2
7793430 Ellis Sep 2010 B2
7798982 Zets et al. Sep 2010 B2
7868489 Amemiya et al. Jan 2011 B2
7886621 Smith et al. Feb 2011 B2
7888892 McReynolds et al. Feb 2011 B2
7893922 Klinghult et al. Feb 2011 B2
7919945 Houston et al. Apr 2011 B2
7929382 Yamazaki Apr 2011 B2
7946483 Miller et al. May 2011 B2
7952261 Lipton et al. May 2011 B2
7952566 Poupyrev et al. May 2011 B2
7956770 Klinghult et al. Jun 2011 B2
7961909 Mandella et al. Jun 2011 B2
8018105 Erixon et al. Sep 2011 B2
8031172 Kruse et al. Oct 2011 B2
8044940 Narusawa Oct 2011 B2
8069881 Cunha Dec 2011 B1
8072418 Crawford et al. Dec 2011 B2
8077145 Rosenberg et al. Dec 2011 B2
8081156 Ruettiger Dec 2011 B2
8082640 Takeda Dec 2011 B2
8084968 Murray et al. Dec 2011 B2
8098234 Lacroix et al. Jan 2012 B2
8123660 Kruse et al. Feb 2012 B2
8125453 Shahoian et al. Feb 2012 B2
8141276 Ellis Mar 2012 B2
8156809 Tierling et al. Apr 2012 B2
8169401 Hardwick May 2012 B2
8174344 Yakima et al. May 2012 B2
8174372 da Costa May 2012 B2
8179027 Berta et al. May 2012 B2
8179202 Cruz-Hernandez et al. May 2012 B2
8188623 Park et al. May 2012 B2
8205356 Ellis Jun 2012 B2
8210942 Shimabukuro et al. Jul 2012 B2
8232494 Purcocks Jul 2012 B2
8242641 Bae Aug 2012 B2
8248277 Peterson et al. Aug 2012 B2
8248278 Schlosser et al. Aug 2012 B2
8253686 Kyung et al. Aug 2012 B2
8255004 Huang et al. Aug 2012 B2
8261468 Ellis Sep 2012 B2
8264465 Grant et al. Sep 2012 B2
8270114 Argumedo et al. Sep 2012 B2
8270148 Griffith et al. Sep 2012 B2
8288899 Park et al. Oct 2012 B2
8291614 Ellis Oct 2012 B2
8294600 Peterson et al. Oct 2012 B2
8344834 Niiyama Jan 2013 B2
8378797 Pance et al. Feb 2013 B2
8378798 Bells et al. Feb 2013 B2
8378965 Gregorio et al. Feb 2013 B2
8384316 Houston et al. Feb 2013 B2
8384679 Paleczny et al. Feb 2013 B2
8390594 Modarres et al. Mar 2013 B2
8395587 Cauwels et al. Mar 2013 B2
8398570 Mortimer et al. Mar 2013 B2
8411058 Wong Apr 2013 B2
8446264 Tanase May 2013 B2
8451255 Weber et al. May 2013 B2
8452345 Lee et al. May 2013 B2
8461951 Gassmann et al. Jun 2013 B2
8466889 Tong et al. Jun 2013 B2
8471690 Hennig et al. Jun 2013 B2
8487759 Hill Jul 2013 B2
8515398 Song et al. Aug 2013 B2
8542134 Peterson et al. Sep 2013 B2
8545322 George et al. Oct 2013 B2
8547341 Takashima et al. Oct 2013 B2
8547350 Anglin et al. Oct 2013 B2
8552859 Pakula et al. Oct 2013 B2
8570291 Motomura Oct 2013 B2
8575794 Lee et al. Nov 2013 B2
8587955 DiFonzo et al. Nov 2013 B2
8596755 Hibi Dec 2013 B2
8598893 Camus Dec 2013 B2
8599047 Schlosser et al. Dec 2013 B2
8599152 Wurtenberger et al. Dec 2013 B1
8600354 Esaki Dec 2013 B2
8614431 Huppi et al. Dec 2013 B2
8621348 Ramsay et al. Dec 2013 B2
8629843 Steeves et al. Jan 2014 B2
8633916 Bernstein et al. Jan 2014 B2
8674941 Casparian et al. Mar 2014 B2
8680723 Subramanian Mar 2014 B2
8681092 Harada et al. Mar 2014 B2
8682396 Yang et al. Mar 2014 B2
8686952 Pope et al. Apr 2014 B2
8710966 Hill Apr 2014 B2
8717309 Almalki May 2014 B2
8723813 Park et al. May 2014 B2
8735755 Peterson et al. May 2014 B2
8760273 Casparian et al. Jun 2014 B2
8780060 Maschmeyer et al. Jul 2014 B2
8787006 Golko et al. Jul 2014 B2
8797152 Henderson et al. Aug 2014 B2
8798534 Rodriguez et al. Aug 2014 B2
8803842 Wakasugi et al. Aug 2014 B2
8836502 Culbert et al. Sep 2014 B2
8845071 Yamamoto et al. Sep 2014 B2
8857248 Shih et al. Oct 2014 B2
8860562 Hill Oct 2014 B2
8861776 Lastrucci Oct 2014 B2
8866600 Yang et al. Oct 2014 B2
8918215 Bosscher et al. Dec 2014 B2
8928621 Ciesla et al. Jan 2015 B2
8947383 Ciesla et al. Feb 2015 B2
8948821 Newham et al. Feb 2015 B2
8952937 Shih et al. Feb 2015 B2
8970534 Adachi et al. Mar 2015 B2
8976141 Myers et al. Mar 2015 B2
9012795 Niu Apr 2015 B2
9013426 Cole et al. Apr 2015 B2
9019088 Zawacki et al. Apr 2015 B2
9024738 Van Schyndel et al. May 2015 B2
9035887 Prud'Hommeaux et al. May 2015 B1
9072576 Nishiura Jul 2015 B2
9083821 Hughes Jul 2015 B2
9092129 Abdo et al. Jul 2015 B2
9098991 Park et al. Aug 2015 B2
9117347 Matthews Aug 2015 B2
9131039 Behles Sep 2015 B2
9134834 Reshef Sep 2015 B2
9141225 Cok et al. Sep 2015 B2
9158379 Cruz-Hernandez et al. Oct 2015 B2
9178509 Bernstein Nov 2015 B2
9189932 Kerdemelidis et al. Nov 2015 B2
9201458 Hunt et al. Dec 2015 B2
9202355 Hill Dec 2015 B2
9219401 Kim et al. Dec 2015 B2
9235267 Pope et al. Jan 2016 B2
9274601 Faubert et al. Mar 2016 B2
9274602 Garg et al. Mar 2016 B2
9274603 Modarres et al. Mar 2016 B2
9275815 Hoffmann Mar 2016 B2
9285923 Liao et al. Mar 2016 B2
9293054 Bruni et al. Mar 2016 B2
9300181 Maeda et al. Mar 2016 B2
9310950 Takano et al. Apr 2016 B2
9317116 Ullrich et al. Apr 2016 B2
9317118 Puskarich Apr 2016 B2
9317154 Perlin et al. Apr 2016 B2
9318942 Sugita et al. Apr 2016 B2
9325230 Yamada et al. Apr 2016 B2
9357052 Ullrich May 2016 B2
9360944 Pinault Jun 2016 B2
9367238 Tanada Jun 2016 B2
9380145 Tartz et al. Jun 2016 B2
9390599 Weinberg Jul 2016 B2
9396434 Rothkopf Jul 2016 B2
9411423 Heubel Aug 2016 B2
9417695 Griffin et al. Aug 2016 B2
9430042 Levin Aug 2016 B2
9449476 Lynn Sep 2016 B2
9452268 Badaye et al. Sep 2016 B2
9477342 Daverman et al. Oct 2016 B2
9501912 Hayskjold et al. Nov 2016 B1
9542028 Filiz et al. Jan 2017 B2
9544694 Abe et al. Jan 2017 B2
9576445 Cruz-Hernandez Feb 2017 B2
9622214 Ryu Apr 2017 B2
9659482 Yang et al. May 2017 B2
9594450 Lynn et al. Jul 2017 B2
9727157 Ham et al. Aug 2017 B2
9778743 Grant et al. Oct 2017 B2
9779592 Hoen Oct 2017 B1
9823833 Grant et al. Nov 2017 B2
9904393 Frey et al. Feb 2018 B2
9934661 Hill Apr 2018 B2
9990099 Ham et al. Jun 2018 B2
10038361 Hajati et al. Jul 2018 B2
10067585 Kim Sep 2018 B2
10127778 Hajati et al. Nov 2018 B2
10133352 Lee et al. Nov 2018 B2
10139907 Billington Nov 2018 B2
10139959 Butler et al. Nov 2018 B2
10198097 Lynn et al. Feb 2019 B2
20020169924 Osborn Nov 2002 A1
20020194284 Haynes Dec 2002 A1
20030210259 Liu Nov 2003 A1
20040021663 Suzuki et al. Feb 2004 A1
20040127198 Roskind et al. Jul 2004 A1
20050057528 Kleen Mar 2005 A1
20050107129 Kaewell et al. May 2005 A1
20050110778 Ben Ayed May 2005 A1
20050118922 Endo Jun 2005 A1
20050217142 Ellis Oct 2005 A1
20050237306 Klein et al. Oct 2005 A1
20050248549 Dietz et al. Nov 2005 A1
20050258715 Schlabach Nov 2005 A1
20060014569 DelGiorno Jan 2006 A1
20060154674 Landschaft et al. Jul 2006 A1
20060178764 Bieswanger Aug 2006 A1
20060209037 Wang et al. Sep 2006 A1
20060239746 Grant Oct 2006 A1
20060252463 Liao Nov 2006 A1
20070032270 Orr Feb 2007 A1
20070043725 Hotelling et al. Feb 2007 A1
20070099574 Wang May 2007 A1
20070152974 Kim et al. Jul 2007 A1
20070168430 Brun et al. Jul 2007 A1
20070178942 Sadler et al. Aug 2007 A1
20070188450 Hernandez et al. Aug 2007 A1
20080084384 Gregorio et al. Apr 2008 A1
20080165148 Williamson Jul 2008 A1
20080181501 Faraboschi Jul 2008 A1
20080181706 Jackson Jul 2008 A1
20080192014 Kent et al. Aug 2008 A1
20080204428 Pierce et al. Aug 2008 A1
20080255794 Levine Oct 2008 A1
20090002328 Ullrich Jan 2009 A1
20090043531 Kahn et al. Feb 2009 A1
20090115734 Fredriksson et al. May 2009 A1
20090120105 Ramsay May 2009 A1
20090128503 Grant et al. May 2009 A1
20090135142 Fu et al. May 2009 A1
20090167702 Nurmi Jul 2009 A1
20090167704 Terlizzi et al. Jul 2009 A1
20090218148 Hugeback et al. Sep 2009 A1
20090225046 Kim et al. Sep 2009 A1
20090236210 Clark et al. Sep 2009 A1
20090267892 Faubert Oct 2009 A1
20090291670 Sennett et al. Nov 2009 A1
20090299543 Cox Dec 2009 A1
20090313542 Cruz-Hernandez et al. Dec 2009 A1
20100020036 Hui et al. Jan 2010 A1
20100053087 Dai et al. Mar 2010 A1
20100079264 Hoellwarth Apr 2010 A1
20100089735 Takeda et al. Apr 2010 A1
20100141408 Doy et al. Jun 2010 A1
20100141606 Bae et al. Jun 2010 A1
20100148944 Kim et al. Jun 2010 A1
20100152620 Ramsay et al. Jun 2010 A1
20100156818 Burrough Jun 2010 A1
20100156843 Paleczny Jun 2010 A1
20100164894 Kim et al. Jul 2010 A1
20100188422 Shingai et al. Jul 2010 A1
20100194547 Terrell et al. Aug 2010 A1
20100210313 Huang Aug 2010 A1
20100231508 Cruz-Hernandez et al. Sep 2010 A1
20100231550 Cruz-Hernandez et al. Sep 2010 A1
20100265197 Purdy Oct 2010 A1
20100267424 Kim Oct 2010 A1
20100309141 Cruz-Hernandez et al. Dec 2010 A1
20100328229 Weber et al. Dec 2010 A1
20110007023 Abrahamsson et al. Jan 2011 A1
20110043454 Modarres Feb 2011 A1
20110053577 Lee et al. Mar 2011 A1
20110107958 Pance et al. May 2011 A1
20110121765 Anderson et al. May 2011 A1
20110128239 Polyakov et al. Jun 2011 A1
20110148608 Grant et al. Jun 2011 A1
20110157052 Lee et al. Jun 2011 A1
20110163985 Bae et al. Jul 2011 A1
20110193824 Modarres Aug 2011 A1
20110248948 Griffin et al. Oct 2011 A1
20110260988 Colgate et al. Oct 2011 A1
20110263200 Thornton et al. Oct 2011 A1
20110291950 Tong Dec 2011 A1
20110304559 Pasquero Dec 2011 A1
20120028577 Rodriguez Feb 2012 A1
20120050172 Wong Mar 2012 A1
20120068957 Puskarich Mar 2012 A1
20120075198 Sulem et al. Mar 2012 A1
20120092263 Peterson et al. Apr 2012 A1
20120126959 Zarrabi May 2012 A1
20120127088 Pance et al. May 2012 A1
20120133494 Cruz-Hernandez May 2012 A1
20120139844 Ramstein et al. Jun 2012 A1
20120206248 Biggs Aug 2012 A1
20120256848 Madabusi Srinivasan Oct 2012 A1
20120268412 Cruz-Hernandez Oct 2012 A1
20120274578 Snow et al. Nov 2012 A1
20120280927 Ludwig Nov 2012 A1
20120286847 Peshkin Nov 2012 A1
20120319987 Woo Dec 2012 A1
20120327006 Israr et al. Dec 2012 A1
20130027345 Binzel Jan 2013 A1
20130033967 Chuang et al. Feb 2013 A1
20130058816 Kim Mar 2013 A1
20130063285 Elias Mar 2013 A1
20130063356 Martisauskas Mar 2013 A1
20130106699 Babatunde May 2013 A1
20130120290 Yumiki May 2013 A1
20130154814 Pance Jun 2013 A1
20130191741 Dickinson et al. Jul 2013 A1
20130200732 Jun et al. Aug 2013 A1
20130207793 Weaber et al. Aug 2013 A1
20130217491 Hilbert Aug 2013 A1
20130222280 Sheynblat Aug 2013 A1
20130228023 Drasnin et al. Sep 2013 A1
20130261811 Yagi et al. Oct 2013 A1
20130300590 Dietz et al. Nov 2013 A1
20140035397 Endo et al. Feb 2014 A1
20140082490 Jung et al. Mar 2014 A1
20140085065 Biggs et al. Mar 2014 A1
20140143785 Mistry et al. May 2014 A1
20140168153 Deichmann et al. Jun 2014 A1
20140197936 Biggs et al. Jul 2014 A1
20140232534 Birnbaum et al. Aug 2014 A1
20140247227 Jiang et al. Sep 2014 A1
20140267076 Birnbaum et al. Sep 2014 A1
20140267952 Sirois Sep 2014 A1
20140320436 Modarres Oct 2014 A1
20150005039 Liu et al. Jan 2015 A1
20150040005 Faaborg Feb 2015 A1
20150090572 Lee et al. Apr 2015 A1
20150098309 Adams et al. Apr 2015 A1
20150169059 Behles et al. Jun 2015 A1
20150192414 Das et al. Jul 2015 A1
20150194165 Faaborg et al. Jul 2015 A1
20150220199 Wang Aug 2015 A1
20150227204 Gipson et al. Aug 2015 A1
20150296480 Kinsey et al. Oct 2015 A1
20150324049 Kies et al. Nov 2015 A1
20150349619 Degner et al. Dec 2015 A1
20160049265 Bernstein Feb 2016 A1
20160063826 Morrell et al. Mar 2016 A1
20160071384 Hill Mar 2016 A1
20160103544 Filiz et al. Apr 2016 A1
20160162025 Shah Jun 2016 A1
20160163165 Morrell et al. Jun 2016 A1
20160172953 Hamel et al. Jun 2016 A1
20160195929 Martinez et al. Jul 2016 A1
20160196935 Bernstein Jul 2016 A1
20160206921 Szabados et al. Jul 2016 A1
20160211736 Moussette et al. Jul 2016 A1
20160216764 Morrell et al. Jul 2016 A1
20160231815 Moussette et al. Aug 2016 A1
20160233012 Lubinski et al. Aug 2016 A1
20160241119 Keeler Aug 2016 A1
20160259480 Augenbergs et al. Sep 2016 A1
20160306423 Uttermann et al. Oct 2016 A1
20160371942 Smith, IV et al. Dec 2016 A1
20170038905 Bijamov et al. Feb 2017 A1
20170070131 Degner et al. Mar 2017 A1
20170090667 Abdollahian et al. Mar 2017 A1
20170192508 Lim et al. Jul 2017 A1
20170242541 Iuchi et al. Aug 2017 A1
20170255295 Tanemura et al. Sep 2017 A1
20170257844 Miller et al. Sep 2017 A1
20170285747 Chen Oct 2017 A1
20170311282 Miller et al. Oct 2017 A1
20170357325 Yang et al. Dec 2017 A1
20170364158 Wen et al. Dec 2017 A1
20180052550 Zhang et al. Feb 2018 A1
20180060941 Yang et al. Mar 2018 A1
20180075715 Morrell et al. Mar 2018 A1
20180081441 Pedder et al. Mar 2018 A1
20180174409 Hill Jun 2018 A1
20180203513 Rihn Jul 2018 A1
20180302881 Miller et al. Oct 2018 A1
20190159170 Miller et al. May 2019 A1
20190214895 Moussette et al. Jul 2019 A1
Foreign Referenced Citations (109)
Number Date Country
2015100710 Jul 2015 AU
2016100399 May 2016 AU
2355434 Feb 2002 CA
1324030 Nov 2001 CN
1692371 Nov 2005 CN
1817321 Aug 2006 CN
101120290 Feb 2008 CN
101409164 Apr 2009 CN
101763192 Jun 2010 CN
101903848 Dec 2010 CN
101938207 Jan 2011 CN
102025257 Apr 2011 CN
201829004 May 2011 CN
102163076 Aug 2011 CN
102246122 Nov 2011 CN
102315747 Jan 2012 CN
102591512 Jul 2012 CN
102667681 Sep 2012 CN
102713805 Oct 2012 CN
102768593 Nov 2012 CN
102844972 Dec 2012 CN
102915111 Feb 2013 CN
103019569 Apr 2013 CN
103154867 Jun 2013 CN
103181090 Jun 2013 CN
103218104 Jul 2013 CN
103278173 Sep 2013 CN
103416043 Nov 2013 CN
103440076 Dec 2013 CN
103567135 Feb 2014 CN
103970339 Aug 2014 CN
104956244 Sep 2015 CN
105556268 May 2016 CN
19517630 Nov 1996 DE
10330024 Jan 2005 DE
102009038103 Feb 2011 DE
102011115762 Apr 2013 DE
0483955 May 1992 EP
1047258 Oct 2000 EP
1686776 Aug 2006 EP
2060967 May 2009 EP
2073099 Jun 2009 EP
2194444 Jun 2010 EP
2264562 Dec 2010 EP
2315186 Apr 2011 EP
2374430 Oct 2011 EP
2395414 Dec 2011 EP
2461228 Jun 2012 EP
2631746 Aug 2013 EP
2434555 Oct 2013 EP
H05301342 Nov 1993 JP
2002199689 Jul 2002 JP
2002102799 Sep 2002 JP
200362525 Mar 2003 JP
2003527046 Sep 2003 JP
200494389 Mar 2004 JP
2004236202 Aug 2004 JP
3831410 Oct 2006 JP
2007519099 Jul 2007 JP
200818928 Jan 2008 JP
2010536040 Nov 2010 JP
2010272903 Dec 2010 JP
2011523840 Aug 2011 JP
2012135755 Jul 2012 JP
2014002729 Jan 2014 JP
2014509028 Apr 2014 JP
2014235133 Dec 2014 JP
2014239323 Dec 2014 JP
2015228214 Dec 2015 JP
2016095552 May 2016 JP
20050033909 Apr 2005 KR
1020100046602 May 2010 KR
1020110101516 Sep 2011 KR
20130024420 Mar 2013 KR
200518000 Nov 2007 TW
200951944 Dec 2009 TW
201145336 Dec 2011 TW
201218039 May 2012 TW
201425180 Jul 2014 TW
WO 9716932 May 1997 WO
WO 00051190 Aug 2000 WO
WO 01059588 Aug 2001 WO
WO 01089003 Nov 2001 WO
WO 02073587 Sep 2002 WO
WO 03038800 May 2003 WO
WO 03100550 Dec 2003 WO
WO 06057770 Jun 2006 WO
WO 07114631 Oct 2007 WO
WO 08075082 Jun 2008 WO
WO 09038862 Mar 2009 WO
WO 09068986 Jun 2009 WO
WO 09097866 Aug 2009 WO
WO 09122331 Oct 2009 WO
WO 09150287 Dec 2009 WO
WO 10085575 Jul 2010 WO
WO 10087925 Aug 2010 WO
WO 11007263 Jan 2011 WO
WO 12052635 Apr 2012 WO
WO 12129247 Sep 2012 WO
WO 13069148 May 2013 WO
WO 13150667 Oct 2013 WO
WO 13169302 Nov 2013 WO
WO 13173838 Nov 2013 WO
WO 13186846 Dec 2013 WO
WO 13186847 Dec 2013 WO
WO 14018086 Jan 2014 WO
WO 14098077 Jun 2014 WO
WO 13169299 Nov 2014 WO
WO 15023670 Feb 2015 WO
Non-Patent Literature Citations (13)
Entry
Electromagnetic spectrum downloated from http://imagine.gsfc.nasa.gov/science/toolbox/emspectrum1.html on Jun. 6, 2016, pp. 1-4.
Actuator definition downloaded from http://www.thefreedictionary.com/actuator on May 3, 2018, 2 pages.
Hasser et al., “Preliminary Evaluation of a Shape-Memory Alloy Tactile Feedback Display,” Advances in Robotics, Mechantronics, and Haptic Interfaces, ASME, DSC—vol. 49, pp. 73-80, 1993.
Hill et al., “Real-time Estimation of Human Impedance for Haptic Interfaces,” Stanford Telerobotics Laboratory, Department of Mechanical Engineering, Stanford University, Third Joint Eurohaptics Conference and Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems, Salt Lake City, Utah, Mar. 18-20, 2009, pp. 440-445.
Kim et al., “Tactile Rendering of 3D Features on Touch Surfaces,” UIST '13, Oct. 8-11, 2013, St. Andrews, United Kingdom, 8 pages.
Lee et al, “Haptic Pen: Tactile Feedback Stylus for Touch Screens,” Mitsubishi Electric Research Laboratories, http://wwwlmerl.com, 6 pages, Oct. 2004.
U.S. Appl. No. 15/364,822, filed Nov. 30, 2016, Chen.
U.S. Appl. No. 15/251,459, filed Aug. 30, 2016, Miller et al.
U.S. Appl. No. 15/260,047, filed Sep. 8, 2016, Degner.
U.S. Appl. No. 15/306,034, filed Oct. 21, 2016, Bijamov et al.
U.S. Appl. No. 15/641,192, filed Jul. 3, 2017, Miller et al.
Nakamura, “A Torso Haptic Display Based on Shape Memory Alloy Actuators,” Massachusetts Institute of Technology, 2003, pp. 1-123.
U.S. Appl. No. 15/800,630, filed Nov. 1, 2017, Morrell et al.
Related Publications (1)
Number Date Country
20160216766 A1 Jul 2016 US
Continuations (1)
Number Date Country
Parent 14059693 Oct 2013 US
Child 15091501 US