This application is a non-provisional of, and claims priority to, and the benefit of India Provisional Application No. 202041030651 with DAS Code 5E1A, entitled “TOUCHLESS PASSENGER SERVICE UNIT,” filed on Jul. 18, 2020, which is hereby incorporated by reference in its entirety.
The present disclosure relates to passenger service units for aircraft and, in particular, touchless passenger service units.
Aircraft cabins may include passenger service units (PSUs) which include output devices. For example, the PSUs may include output devices such as reading lights, flight attendant call devices, and fans for blowing air towards a passenger or flight attendant. Such output devices are conventionally controlled by a manual button installed on the PSU. However, such buttons may exacerbate the spread of pathogens. For example, if a sick passenger sneezes or coughs into his or her hand and then touches the button, the pathogens remain on the button. If the next passenger touches the same button and then touches his or her face, he or she may become sick with the same pathogen as the original passenger.
Disclosed herein is a passenger service unit for use in an aircraft cabin. The passenger service unit includes an output device configured to output information in the aircraft cabin. The passenger service unit further includes a touchless sensor configured to detect a presence of an object in a vicinity of the touchless sensor, and to output a signal for controlling the output device in response to detecting the presence of the object.
Any of the foregoing embodiments may further include a driver coupled to the touchless sensor and configured to facilitate at least one of a current or a voltage for powering the output device based on the signal.
Any of the foregoing embodiments may further include a controller coupled to the touchless sensor and the driver and configured to: receive a first signal from the touchless sensor corresponding to a first detected presence of the object and receive a second signal from the touchless sensor corresponding to a second detected presence of the object; output a first control signal to the driver in response to receiving the first signal from the touchless sensor, the first control signal configured to cause the driver to provide power to the output device; and output a second control signal to the driver in response to receiving the second signal from the touchless sensor, the second control signal configured to cause the driver to cease providing power to the output device.
In any of the foregoing embodiments, at least one of the first signal or the second signal includes at least one of zero volts or zero amps.
Any of the foregoing embodiments may further include a low-dropout regulator coupled between the touchless sensor and the output device, configured to regulate a power signal provided to the output device.
Any of the foregoing embodiments may further include a power source coupled to the output device, wherein the driver is configured to allow current to flow from the power source through the output device in response to receiving the first signal, and to prevent current from flowing through the output device in response to receiving the second signal.
In any of the foregoing embodiments, the driver includes a static switch.
In any of the foregoing embodiments, the touchless sensor includes at least one of a wireless signal detector or a motion detector sensor.
Any of the foregoing embodiments may further include a housing defining a cutout, wherein the touchless sensor is configured to detect the presence of the object in response to the object being located in the cutout.
In any of the foregoing embodiments, the output device includes at least one of a reading light, an attendant call device, or a fan.
Also disclosed is a system for controlling a passenger service unit. The system includes a remote controller having: an input device configured to receive user input corresponding to a request to activate an output device of the passenger service unit, the output device including at least one of a reading light, an attendant call device, or a fan, and a transmitter configured to transmit a wireless signal in response to the input device receiving the request. The system further includes the passenger service unit having: a receiver configured to receive the wireless signal and to output a control signal in response to receiving the wireless signal, and the output device configured to output light in response to receiving the control signal.
In any of the foregoing embodiments, the passenger service unit further includes a decoder configured to receive the wireless signal from the receiver and to output the control signal in response to receiving the wireless signal.
In any of the foregoing embodiments, the passenger service unit further includes a power supply configured to provide electrical power to the output device.
In any of the foregoing embodiments, the passenger service unit further includes an antenna configured to receive the wireless signal and to transmit the wireless signal to the receiver.
In any of the foregoing embodiments, the output device further includes a driver configured to facilitate a current flow from the power supply through the output device in response to receiving the control signal from the decoder.
Also disclosed is a method for touchless control of a passenger service unit of an aircraft cabin. The method includes detecting, by a touchless sensor, a presence of an object in a vicinity of the touchless sensor. The method further includes outputting, by the touchless sensor, a signal for controlling an output device in response to detecting the presence of the object.
Any of the foregoing embodiments may further include facilitating, by a driver, at least one of a current or a voltage for powering the output device based on the signal.
Any of the foregoing embodiments may further include receiving, by a controller, a first signal from the touchless sensor corresponding to a first detected presence of the object; receiving, by the controller, a second signal from the touchless sensor corresponding to a second detected presence of the object; outputting, by the controller, a first control signal to the driver in response to receiving the first signal from the touchless sensor, the first control signal configured to cause the driver to provide power to the output device; and outputting, by the controller, a second control signal to the driver in response to receiving the second signal from the touchless sensor, the second control signal configured to cause the driver to cease providing power to the output device.
In any of the foregoing embodiments, at least one of the first signal or the second signal includes at least one of zero volts or zero amps.
Any of the foregoing embodiments may further include regulating, by a low-dropout regulator, a power signal provided to the output device.
The foregoing features and elements may be combined in various combinations without exclusivity, unless expressly indicated otherwise. These features and elements as well as the operation thereof will become more apparent in light of the following description and the accompanying drawings. It should be understood, however, the following description and drawings are intended to be exemplary in nature and non-limiting.
The subject matter of the present disclosure is particularly pointed out and distinctly claimed in the concluding portion of the specification. A more complete understanding of the present disclosure, however, may best be obtained by referring to the detailed description and claims when considered in connection with the figures, wherein like numerals denote like elements.
The detailed description of exemplary embodiments herein makes reference to the accompanying drawings, which show exemplary embodiments by way of illustration. While these exemplary embodiments are described in sufficient detail to enable those skilled in the art to practice the exemplary embodiments of the disclosure, it should be understood that other embodiments may be realized and that logical changes and adaptations in design and construction may be made in accordance with this disclosure and the teachings herein. Thus, the detailed description herein is presented for purposes of illustration only and not limitation. The steps recited in any of the method or process descriptions may be executed in any order and are not necessarily limited to the order presented.
Furthermore, any reference to singular includes plural embodiments, and any reference to more than one component or step may include a singular embodiment or step. Also, any reference to attached, fixed, connected or the like may include permanent, removable, temporary, partial, full and/or any other possible attachment option. Additionally, any reference to without contact (or similar phrases) may also include reduced contact or minimal contact. Surface shading lines may be used throughout the figures to denote different parts but not necessarily to denote the same or different materials.
Referring now to
The PSU 100 may further include touchless sensors designed to detect the presence of an object in their vicinity. For example, the PSU 100 may include a first touchless sensor 102 designed to control operation of the reading light 104, a second touchless sensor 106 designed to control operation of the attendant call device 108, and a third touchless sensor 116 designed to control operation of the fan 118. The touchless sensors 102, 106, 116 may include any sensor capable of detecting the presence of an object, such as a human hand or finger, within a vicinity of the sensor. For example, the touchless sensors 102, 106, 116 may include at least one of a wireless signal detector or a motion detector sensor (e.g., one or more of a passive infrared (PIR) sensor, a proximity sensor, a light detector, a camera, or the like).
The touchless sensors 102, 106, 116 may output a signal in response to detecting the presence of the object, and the signal may be received by the corresponding output device to control operation of the output device. For example, in response to a first detection of an object by the touchless sensor 102, the reading light 104 may become illuminated. In response to a second detection of the object by the touchless sensor 102, the reading light 104 may be turned off.
The PSU 100 may include a housing 110 that defines multiple cutouts 112, 114, 120, and the touchless sensors 102, 106, 116 may be oriented in such a manner that they detect the presence of objects within the cutouts 112, 114, 120. For example, the touchless sensor 102 may detect the presence of a human finger in response to the human finger being located within the cutout 112. The illustration of the PSU 100 of
Turning now to
The system 201 may include a power source 200, a driver 202, a controller 204, and a low dropout regulator (LDO) 206.
The power source 200 is designed to output at least one of a voltage or a current for powering the reading light 104. The driver 202 is designed to facilitate current flow through the reading light 104 or a voltage applied to the reading light 104. The LDO 206 is coupled between the reading light 104 and the touchless sensor 102 and is configured to regulate a power signal provided to the reading light 104. The controller 204 is designed to control operation of the reading light 104 based on a signal output by the touchless sensor 102.
In response to a first detection of an object by the touchless sensor 102, the touchless sensor 102 may output a first signal that is received by the controller 204. In response to receiving the first signal, the controller 204 may output a first control signal to the driver 202. The first control signal is designed to cause the driver 202 to facilitate current flow through the reading light 104 in order to power on the reading light 104. The controller 204 may continue outputting the first control signal even if the object is removed from the cutout 112.
In response to a second detection of the object by the touchless sensor 102, the touchless sensor 102 may output a second signal that is received by the controller 204. In response to receiving a second signal, the controller 204 may output a second control signal to the driver 202. In various embodiments, the second control signal may be a logical “0,” or a lack of a signal. The second control signal is designed to cause the driver 202 to reduce the likelihood of current flow through the reading light 104 in order to power down the reading light 104. The controller 204 may continue outputting the second control signal even if the object is removed from the cutout 112.
Referring now to
Referring now to
In block 410, the touchless sensor may detect a second presence of the object. In block 412, the controller may receive second first control signal corresponding to the second active presence. In block 414, the controller may output a second control signal to cause the driver to prevent the power from reaching the output device (turning the output device off).
Referring now to
The remote controller 502 may include an input device 506 designed to receive user input corresponding to a request to control an output device of the PSU 504. For example, the input device 506 may include a button, a knob, a dial, a touchscreen, or the like. The remote controller 502 may further include a transmitter 508 designed to transmit a signal. In response to the input device 506 receiving a request for controlling the PSU 504, the transmitter 508 may transmit the signal. For example, a user may depress the input device 506 a first time to turn on a light of the PSU 504, and made depress the input device 506 a second time to turn off the light of the PSU 504.
The PSU 504 may include an antenna 510, a receiver 512, a decoder 514, an output device with driver 516, and a power supply 518. The antenna 510 may be designed to receive the signal, such as a wireless signal (e.g., infrared, radio frequency, Bluetooth, Zigbee, LoRa, WiFi, near-field communications, etc.), transmitted by the transmitter 508 of the remote control 502. The receiver 512 may be coupled to the antenna 510 and may receive the signal from the antenna 510. The decoder 514 may receive the signal from the receiver 512 and may output a control signal for controlling the output device and driver 516 in response to receiving the signal. The driver of the output device and driver 516 may control power flow to the output device, and the output device may output information (e.g., light, airflow, sound, or the like) to a user of the aircraft cabin 501. The power supply 518 may provide a current or voltage signal for powering the output device.
Referring now to
Referring now to
Benefits and other advantages have been described herein with regard to specific embodiments. Furthermore, the connecting lines shown in the various figures contained herein are intended to represent exemplary functional relationships and/or physical couplings between the various elements. It should be noted that many alternative or additional functional relationships or physical connections may be present in a practical system. However, the benefits, advantages, and any elements that may cause any benefit or advantage to occur or become more pronounced are not to be construed as critical, required, or essential features or elements of the disclosure. The scope of the disclosure is accordingly to be limited by nothing other than the appended claims, in which reference to an element in the singular is not intended to mean “one and only one” unless explicitly so stated, but rather “one or more.” Moreover, where a phrase similar to “at least one of A, B, or C” is used in the claims, it is intended that the phrase be interpreted to mean that A alone may be present in an embodiment, B alone may be present in an embodiment, C alone may be present in an embodiment, or that any combination of the elements A, B and C may be present in a single embodiment; for example, A and B, A and C, B and C, or A and B and C.
Systems, methods and apparatus are provided herein. In the detailed description herein, references to “various embodiments”, “one embodiment”, “an embodiment”, “an example embodiment”, etc., indicate that the embodiment described may include a particular feature, structure, or characteristic, but every embodiment may not necessarily include the particular feature, structure, or characteristic. Moreover, such phrases are not necessarily referring to the same embodiment. Further, when a particular feature, structure, or characteristic is described in connection with an embodiment, it is submitted that it is within the knowledge of one skilled in the art to affect such feature, structure, or characteristic in connection with other embodiments whether or not explicitly described. After reading the description, it will be apparent to one skilled in the relevant art(s) how to implement the disclosure in alternative embodiments.
Furthermore, no element, component, or method step in the present disclosure is intended to be dedicated to the public regardless of whether the element, component, or method step is explicitly recited in the claims. No claim element herein is to be construed under the provisions of 35 U.S.C. 112(f), unless the element is expressly recited using the phrase “means for.” As used herein, the terms “comprises”, “comprising”, or any other variation thereof, are intended to cover a non-exclusive inclusion, such that a process, method, article, or apparatus that comprises a list of elements does not include only those elements but may include other elements not expressly listed or inherent to such process, method, article, or apparatus.
Number | Date | Country | Kind |
---|---|---|---|
202041030648 | Jul 2020 | IN | national |