The present invention relates to an improved ski binding for touring or cross-country skiing and a method of assembling the same.
As is well known by any manufacturer of ski bindings, as well as most users of ski bindings, a ski binding should comprise of as few functional parts as possible to functionally flawless in use when exposed to repetitive stress, snow, ice and water entering and freezing within the binding.
Moreover, less functional parts allows easier assembly and lower production cost of the binding. To further reduce production cost while simultaneously offering a high quality binding to a customer at acceptable sale price, is it advantageously to allow most or all of the assembly of the parts of the binding to be performed in a fully automatic process. The fewer manual operations required, the less expensive the binding becomes.
Currently there exists a very large amount of ski bindings on the market, and a substantial number of these bindings is based on the well-known NNN norm, i.e. for use with ski shoes that has a transversal engagement pin mounted underneath the front of the sole of the ski shoe, the binding engaging the engagement pin at either end of the engagement pin or parts of the engagement pin. Several of these ski bindings is constructed in a way that requires several manual and/or complicated automated operations to able to assemble the different parts of the binding. In particular, in an automated assembly operation it is disadvantageous to allow operations performed from different directions, i.e. some operation in a vertical direction, some in a horizontal direction as well as at an angle relative to these directions. Also, rotating an constructional part or element could complicate or add further complexity or cost of the required equipment. Operations in several directions to assemble parts could therefore include joining certain parts either manual or in different position prior to the in-line part assembly.
Thus, an object of the present invention is to provide a ski binding that comprises construction parts or elements that are easy to assemble; that has a simple, yet reliable release mechanism with improved release-element functionality; that provides an improved shoe fixing member; and offers an easy method to assemble the parts.
The following non-exclusive list over references to prior art is listed to illustrate some of the disadvantages of the prior art that the present intentions aims at solving. U.S. Pat. No. 5,338,053; EP 1,848,516 B1 and WO 04/050197A1 all relates to a ski binding that requires more constructional parts than envisaged and offered by the present invention, and that further requires that the constructional parts is mounted from different directions.
To illustrate prior art release mechanisms having a release button and a shoe fixing element it is referred to EP 1,848,516 B1; U.S. Pat. No. 5,092,6; U.S. Pat. No. 6,957,827; U.S. Pat. No. 4,997,199; U.S. Pat. No. 4,915,405; U.S. Pat. No. 4,616,843 and U.S. Pat. No. 6,412,808. Another reference to prior art relating to a snowboard binding is U.S. Pat. No. 6,290,250. These prior art references either includes an element that transfers the force between a locking button and a locking slider, or an additional locking element that secures the shoe in the binding and wherein such an locking element in turn is operated by the locking slider by activation of the locking element.
U.S. Pat. No. 5,092,6; U.S. Pat. No. 6,957,827; U.S. Pat. No. 6,623,027; U.S. Pat. No. 4,616,843 and WO 04/050197 A1 relates to the aspect regarding a locking slider of a ski binding.
The ski binding according to the present invention is defined by claim 1 and accompanying dependent claims 2-13. The method of assembling the parts of the ski binding is defined by the steps of claim 14 and accompanying dependent claims 15-17.
An aspect of the present invention relates to a touring or cross-country binding comprising:
Further, the present invention relates to a ski binding as disclosed above having alternative features, wherein:
Further the invention relates to a method for assembling functional parts of a touring- or cross country ski binding to provide a binding for releasable engagement with an engagement means of a ski shoe, comprising the steps of:
a) providing a first housing section 7;
b) positioning, by a downwards vertical motion, one end of a spring 8 against an abutment 7.5 of the first housing section 7, whereby the spring extends in longitudinal direction of the first housing section 7;
c) positioning, by downwards vertical motions, the stationary 4 and movable 5 engagement parts on a bottom 7.1 of the first housing section 7, whereby the movable engagement part 5 is arranged in sliding engagement with guides 7.4 of the first housing section and in abutment with the second end of the spring 8;
d) positioning, by a downwards vertical motion, an activation element 6 on the first housing section 7, whereby a downwards pointing button 6.2 of the activation element 6 is arranged in abutment with an opening 5.3 in front of the movable engagement part 5; and
e) connecting by a downwards vertical motion, a second housing section 9 on the first housing section 7 by means of an interlocking snap connection.
The method can further comprise one or more steps:
The invention will no be described in further detail by way of exemplary illustrations herein below. However, it is envisaged that the shape and constructive design of one or more of the parts to be assembled may be modified shape wise without influencing the function and the assembly steps of the binding.
a and 4b are top views of the ski binding sections of
a and 5b are side views of the ski binding sections of
a and 6b are bottom views of the ski binding sections of
Now with reference to
The stationary engagement part 4 includes a base 4.1 and a pair of protruding elements 4.2, which at top have recesses 4.3 to provide the engagement section 2.1, as shown in more detail in
The movable engagement part 5 is a slider in sliding engagement with the stationary engagement part 4 and in sliding engagement with slider guides 7.4 of the first housing section 7. The movable engagement part 5 includes at a rear area thereof a pair of protruding locking elements 5.1, e.g. hook shaped elements, extending from a base 5.2 of the movable engagement part 5. Each locking element 5.1 in locking position for the movable engagement part 5 is positioned sideways in relation to adjacent recess 4.3 on the stationary engagement section 4 to provide in co-operation with said recess 4.3 a means for locking the engagement pin 21, see
Activation element 6 includes a button 6.2 extending downwards to directly engage an forward positioned opening 5.3 in the slider, whereby the slider 5 is slided forward to a releasing position by a downwards pushing operation on the activation element 6 at a position behind its fulcrum pins 6.1. A lower edge 6.4 of each sidewall of the activation element, at a position below the fulcrum pins 6.1, is curved. The curved lower edge 6.4 sits on a neighboring surface of the base 5.2 of the slider shaped movable engagement part 5 to reduce the stress on the fulcrum pins 6.1.
A spring 8 is positioned between an abutment 7.5 at the bottom 7.1 of the first housing section 7 and an abutment 5.4 on the slider shaped movable engagement part 5 to provide spring loading of the movable engagement part 5 and the activation element 6.
As illustrated in FIGS. 3 and 10-16, the stationary engagement part 4 is positioned under the slider shaped movable engagement part 5 and rests on the bottom 7.1 of the first housing section, whereby the movable engagement part 5 at its front area is sliding on top of the bottom 7.1 of the first housing section 7 and at its rear area slides on top of the stationary engagement section 4.
In the alternative illustrated in
The element 6 acts as a release mechanism, and due to the button 6.2 co-operating with opening 5.3 of the movable engagement part 5, and the part 5 is spring-loaded by the spring 8, element 6 is also spring-loaded. It should be noted that the outside of engagement pocket 7.5 constitute one of the guides 7.4 for part 5.
An important aspect of the present invention is that element 6 is arranged to directly exert a force on the movable engagement section 5, that in reality constitutes a ski shoe fastening element.
By activation of the release element 6 by exertion of a release force, e.g. by utilizing the pointed end of a ski pole; on position 6.2, is a substantial stress applied the fulcrum pins 6.1 from the bearing surfaces 7.3 on the side elements 7.2 provided a remedy is provided to reduce such stress. To avoid breakage in the release mechanism, i.e. fulcrum pins 6.1, as a result of substantial vertical release force, represents the provision of the curved bottom edge 6.4 to ride the adjacent surface of the base 5.2 of the slider shaped movable engagement part 5, that the vertically directed stress component exerted on the fulcrum pins is substantially reduced, and the smaller stress component working in the vertical direction on the fulcrum pins, will have an acceptable value. Hence, the stress exerted on the fulcrum pins will be within fully acceptable limits. The risk of malfunction is with that removed. It should also be envisaged that when element 6 via its button 6.2 displaces the movable engagement part 5 in a forwards direction, the curved bottom edge 6.4 by frictional contact with the base 5.2 of the part 5 assist the operation of the button 6.2.
As indicated in the exploded view of
At least one resilient elements 10, 11 is fastenable to the second housing section 9, where at least one resilient element is fastenable in front of or behind the engagement section 2.1 for pivotal engagement of the ski shoe. The front resilient elements 10 is preferably fastenable to the second housing section 9 from underneath the second housing section 9, by utilizing pins on the underside of the element 10 to engage holes in flanges of element 10.
The behind, or rear, resilient element 11 is fastenable to the second housing section from above by snap connection. The resilient elements 10, 11 is present to provide backwards and forwards biasing, respectively, of the rotation of the ski shoe. In addition the resilient element 10, 11 aids to keep snow from entering the inner part of the ski binding.
The elements 12, 13 in
As is understood from viewing
a) providing the first housing section 7;
b) downwards vertical moving one end of a spring 8 against an abutment 7.5 of the first housing section 7, whereby the spring extends in longitudinal direction of the first housing section 7;
c) positioning, by downwards vertical motions, the stationary 4 and movable 5 engagement parts on the bottom 7.1 of the first housing section 7, whereby the movable engagement part 5 is arranged in sliding engagement with guides 7.4 of the first housing section and in abutment with the second end of the spring 8;
d) positioning, by a downwards vertical motion, the activation element 6 on the first housing section 7, whereby the downwards pointing button 6.2 of the activation element 6 is arranged in abutment with the opening 5.3 in front of the movable engagement part 5; and
e) connecting by a downwards vertical motion, the second housing section 9 on the first housing section 7 by means of an interlocking snap connection.
An important aspect of the method disclosed above is the fact that the ski binding can be assembled for one side only, and mainly in the same inserting direction. As such, the ski binding of the present invention can also be assembled by following steps:
a) providing and turning the second housing section 7 upside down;
b) positioning, by a downwards vertical motion, the activation element 6 on the second housing section 9, thereby positioning the fulcrum pins 6.1 of the activation element into the recesses 9.1 of the second housing section, and the downwards (that is, as long as the second housing section is upside down, actually pointing upwards) pointing button 6.2 of the activation element 6 is arranged in abutment with the opening 5.3 in front of the movable engagement part 5;
c) positioning, by downwards vertical motions, the stationary 4 and movable 5 engagement parts on the underside of the second housing section, whereby the pair of protruding elements 4.2 and the at least one locking element 5.1 is accommodated in the opening 9.2 of the second housing section 9;
d) downwards vertical moving one end of a spring 8 against the abutment 5.4 of the movable engagement part 5, whereby the springs in longitudinal direction of the second housing section 9;
e) connecting by a downwards vertical motion, the first housing section 7 on the second housing section 9 by means of an interlocking snap connection, whereby the movable engagement part 5 is arranged in sliding engagement with guides 7.4 of the first housing section and in abutment with the second end of the spring 8.
Step c) of either of the above disclosed methods comprises positioning the stationary engagement part 4 prior to providing the movable engagement part 5, as illustrated in FIGS. 3 and 10-16.
In an alternative, as also explained above with reference to the
As disclosed above, according to the first method the resilient element 10 is inserted from below in front of the engagement section 2.1 in the opening 9.2 of the second housing section 9 prior to performing step e), and the element can have holes adapted for tight fitting on pins on underneath the second housing section 9.
It is envisaged that if the ski binding is assembled manually, then no tools are required to perform the operations. If the operations is automated by use of robots, then no sophisticated tools are required.
Number | Date | Country | Kind |
---|---|---|---|
20101289 | Sep 2010 | NO | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/NO2011/000254 | 9/15/2011 | WO | 00 | 5/17/2013 |