The present invention relates to a method of assembling an improved ski binding for touring or cross-country skiing.
This section provides background information related to the present disclosure which is not necessarily prior art.
As is well known by any manufacturer of ski bindings, as well as most users of ski bindings, a ski binding should comprise of as few functional parts as possible to functionally flawless in use when exposed to repetitive stress, snow, ice and water entering and freezing within the binding.
Moreover, less functional parts allows easier assembly and lower production cost of the binding. To further reduce production cost while simultaneously offering a high quality binding to a customer at acceptable sale price, is it advantageously to allow most or all of the assembly of the parts of the binding to be performed in a fully automatic process. The fewer manual operations required, the less expensive the binding becomes.
Currently there exists a very large amount of ski bindings on the market, and a substantial number of these bindings is based on the well-known NNN norm, i.e. for use with ski shoes that has a transversal engagement pin mounted underneath the front of the sole of the ski shoe, the binding engaging the engagement pin at either end of the engagement pin or parts of the engagement pin. Several of these ski bindings are constructed in a way that requires several manual and/or complicated automated operations to able to assemble the different parts of the binding. In particular, in an automated assembly operation it is disadvantageous to allow operations performed from different directions, i.e. some operation in a vertical direction, some in a horizontal direction as well as at an angle relative to these directions. Also, rotating a constructional part or element could complicate or add further complexity or cost of the required equipment. Operations in several directions to assemble parts could therefore include joining certain parts either manual or in different position prior to the in-line part assembly.
Thus, an object of the present invention is to provide a ski binding that comprises construction parts or elements that are easy to assemble; that has a simple, yet reliable release mechanism with improved release-element functionality; that provides an improved shoe fixing member; and offers an easy method to assemble the parts.
The following non-exclusive list over references to prior art is listed to illustrate some of the disadvantages of the prior art that the present intentions aims at solving. U.S. Pat. No. 5,338,053; EP 1,848,516 B1 and WO 04/050197A1 all relates to a ski binding that requires more constructional parts than envisaged and offered by the present invention, and that further requires that the constructional parts is mounted from different directions.
To illustrate prior art release mechanisms having a release button and a shoe fixing element it is referred to EP 1,848,516 B1; U.S. Pat. No. 5,092,6; U.S. Pat. No. 6,957,827; U.S. Pat. No. 4,997,199; U.S. Pat. No. 4,915,405; U.S. Pat. No. 4,616,843 and U.S. Pat. No. 6,412,808. Another reference to prior art relating to a snowboard binding is U.S. Pat. No. 6,290,250. These prior art references either includes an element that transfers the force between a locking button and a locking slider, or an additional locking element that secures the shoe in the binding and wherein such an locking element in turn is operated by the locking slider by activation of the locking element.
U.S. Pat. No. 5,092,620; U.S. Pat. No. 6,957,827; U.S. Pat. No. 6,623,027; U.S. Pat. No. 4,616,843 and WO 04/050197 A1 relates to the aspect regarding a locking slider of a ski binding.
This section provides a general summary of the disclosure, and is not a comprehensive disclosure of its full scope or all of its features.
The ski binding according to the present invention is defined by claim 1 and accompanying dependent claims 2-13. The method of assembling the parts of the ski binding is defined by the steps of claim 14 and accompanying dependent claims 15-17.
An aspect of the present invention relates to a touring or cross-country binding comprising:
Further, the present invention relates to a ski binding as disclosed above having alternative features, wherein:
Further the invention relates to a method for assembling functional parts of a touring- or cross country ski binding to provide a binding for releasable engagement with an engagement means of a ski shoe, comprising the steps of:
The method can further comprise one or more steps:
Further areas of applicability will become apparent from the description provided herein. The description and specific examples in this summary are intended for purposes of illustration only and are not intended to limit the scope of the present disclosure.
The drawings described herein are for illustrative purposes only of selected embodiments and not all possible implementations, and are not intended to limit the scope of the present disclosure.
Corresponding reference numerals indicate corresponding parts throughout the several views of the drawings.
The invention will now be described in further detail by way of exemplary illustrations herein below. However, it is envisaged that the shape and constructive design of one or more of the parts to be assembled may be modified shape wise without influencing the function and the assembly steps of the binding.
Now with reference to
The stationary engagement part 4 includes a base 4.1 and a pair of protruding elements 4.2, which at top have recesses 4.3 to provide the engagement section 2.1, as shown in more detail in
The movable engagement part 5 is a slider in sliding engagement with the stationary engagement part 4 and in sliding engagement with slider guides 7.4 of the first housing section 7. The movable engagement part 5 includes at a rear area thereof a pair of protruding locking elements 5.1, e.g. hook shaped elements, extending from a base 5.2 of the movable engagement part 5. Each locking element 5.1 in locking position for the movable engagement part 5 is positioned sideways in relation to adjacent recess 4.3 on the stationary engagement section 4 to provide in co-operation with said recess 4.3 a means for locking the engagement pin 21, see
Activation element 6 includes a button 6.2 extending downwards to directly engage a forward positioned opening 5.3 in the slider, whereby the slider 5 is slided forward to a releasing position by a downwards pushing operation on the activation element 6 at a position behind its fulcrum pins 6.1. A lower edge 6.4 of each sidewall of the activation element, at a position below the fulcrum pins 6.1, is curved. The curved lower edge 6.4 sits on a neighboring surface of the base 5.2 of the slider shaped movable engagement part 5 to reduce the stress on the fulcrum pins 6.1.
A spring 8 is positioned between an abutment 7.5 at the bottom 7.1 of the first housing section 7 and an abutment 5.4 on the slider shaped movable engagement part 5 to provide spring loading of the movable engagement part 5 and the activation element 6.
As illustrated in
In the alternative illustrated in
The element 6 acts as a release mechanism, and due to the button 6.2 co-operating with opening 5.3 of the movable engagement part 5, and the part 5 is spring-loaded by the spring 8, element 6 is also spring-loaded. It should be noted that the outside of engagement pocket 7.5 constitute one of the guides 7.4 for part 5.
An important aspect of the present invention is that element 6 is arranged to directly exert a force on the movable engagement section 5, that in reality constitutes a ski shoe fastening element.
By activation of the release element 6 by exertion of a release force, e.g. by utilizing the pointed end of a ski pole; on position 6.2, is a substantial stress applied the fulcrum pins 6.1 from the bearing surfaces 7.3 on the side elements 7.2 provided a remedy is provided to reduce such stress. To avoid breakage in the release mechanism, i.e. fulcrum pins 6.1, as a result of substantial vertical release force, represents the provision of the curved bottom edge 6.4 to ride the adjacent surface of the base 5.2 of the slider shaped movable engagement part 5, that the vertically directed stress component exerted on the fulcrum pins is substantially reduced, and the smaller stress component working in the vertical direction on the fulcrum pins, will have an acceptable value. Hence, the stress exerted on the fulcrum pins will be within fully acceptable limits. The risk of malfunction is with that removed. It should also be envisaged that when element 6 via its button 6.2 displaces the movable engagement part 5 in a forwards direction, the curved bottom edge 6.4 by frictional contact with the base 5.2 of the part 5 assist the operation of the button 6.2.
As indicated in the exploded view of
At least one resilient elements 10, 11 is fastenable to the second housing section 9, where at least one resilient element is fastenable in front of or behind the engagement section 2.1 for pivotal engagement of the ski shoe. The front resilient element 10 is preferably fastenable to the second housing section 9 from underneath the second housing section 9, by utilizing pins on the underside of the element 10 to engage holes in flanges of element 10.
The behind, or rear, resilient element 11 is fastenable to the second housing section from above by snap connection. The resilient elements 10, 11 are present to provide backwards and forwards biasing, respectively, of the rotation of the ski shoe. In addition the resilient elements 10, 11 aid to keep snow from entering the inner part of the ski binding.
The elements 12, 13 in
As is understood from viewing
An important aspect of the method disclosed above is the fact that the ski binding can be assembled for one side only, and mainly in the same inserting direction. As such, the ski binding of the present invention can also be assembled by following steps:
Step c) of either of the above disclosed methods comprises positioning the stationary engagement part 4 prior to providing the movable engagement part 5, as illustrated in
In an alternative, as also explained above with reference to the
As disclosed above, according to the first method the resilient element 10 is inserted from below in front of the engagement section 2.1 in the opening 9.2 of the second housing section 9 prior to performing step e), and the element can have holes adapted for tight fitting on pins on underneath the second housing section 9.
It is envisaged that if the ski binding is assembled manually, then no tools are required to perform the operations. If the operations is automated by use of robots, then no sophisticated tools are required.
The foregoing description of the embodiments has been provided for purposes of illustration and description. It is not intended to be exhaustive or to limit the disclosure. Individual elements or features of a particular embodiment are generally not limited to that particular embodiment, but, where applicable, are interchangeable and can be used in a selected embodiment, even if not specifically shown or described. The same may also be varied in many ways. Such variations are not to be regarded as a departure from the disclosure, and all such modifications are intended to be included within the scope of the disclosure.
Number | Date | Country | Kind |
---|---|---|---|
20101289 | Sep 2010 | NO | national |
This application is a divisional of U.S. patent application Ser. No. 13/822,679 filed on May 17, 2013, which is a 371 U.S. National Stage of International Application No. PCT/NO2011/000254, filed Sep. 15, 2011, which claims priority to Norwegian Patent Application No. 20101289, filed Sep. 15, 2010. The disclosures of the above applications are incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
4616843 | Freisinger et al. | Oct 1986 | A |
4915405 | Rullier et al. | Apr 1990 | A |
4927168 | Provence et al. | May 1990 | A |
4995632 | Girault et al. | Feb 1991 | A |
4997199 | Horn | Mar 1991 | A |
5092620 | Girault et al. | Mar 1992 | A |
5338053 | Hauglin | Aug 1994 | A |
6017050 | Girard | Jan 2000 | A |
6027135 | Hauglin | Feb 2000 | A |
6290250 | Karol | Sep 2001 | B1 |
6412808 | Chevalier et al. | Jul 2002 | B1 |
6623027 | Wheeler | Sep 2003 | B1 |
6957827 | Kogler | Oct 2005 | B2 |
20060197312 | Girard et al. | Sep 2006 | A1 |
20080150256 | Girard et al. | Jun 2008 | A1 |
Number | Date | Country |
---|---|---|
100571825 | Dec 2009 | CN |
102005026725 | Jun 2006 | DE |
0564442 | Oct 1993 | EP |
0564442 | Oct 1993 | EP |
1848516 | Oct 2007 | EP |
1935461 | Jun 2008 | EP |
2 582 226 | Nov 1986 | FR |
2 634 134 | Jan 1990 | FR |
2 741 543 | May 1997 | FR |
305307 | May 1999 | NO |
309364 | Jan 2001 | NO |
WO-9721474 | Jun 1997 | WO |
WO-2004050197 | Jun 2004 | WO |
WO-2006082483 | Aug 2006 | WO |
WO-2011006542 | Jan 2011 | WO |
WO-2011006544 | Jan 2011 | WO |
Entry |
---|
First Office Action of State Intellectual Property Office of People's Republic of China dated Jul. 15, 2014, regarding China Patent Application No. 201180044676. |
Norwegian Search Report for NO20101289, Dated Feb. 22, 2011, 2 pages. |
International Search Report, ISA/EP, Rijswijk, NL (4 pages) and International Preliminary Report on Patentability with annexes, IPEA/EP, Munich (7 pages). |
Search Report for corresponding CN application, Sep. 11, 2014, 2 pages. |
Number | Date | Country | |
---|---|---|---|
20150209651 A1 | Jul 2015 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13822679 | US | |
Child | 14684723 | US |