The present invention relates to superstructures for vehicles, and particularly to supports for structures mounted on a vehicle such as a boat used for recreational sports such as water skiing, wakeboarding, kneeboarding, and the like.
Vehicles may be used for towing or dragging persons or items. Currently, many types of powered boats are used for watersports such as water skiing and wakeboarding. For many years, watersports involving a person being towed behind a boat were principally equipped with a boat whose stern rose from the water's surface less that the height of an average person, though larger boats may have had a higher-positioned stern. Regardless, the mount for the tow rope was located on the stern rail or some other relatively low point. Consequently, the fluid dynamic and aerodynamic properties of these watersports involved a pulling force provided to the skier in a primarily horizontal direction, parallel to the surface of the water.
Wakeboarding is still a relatively new sport. The sport is similar to waterskiing in that a person, the wakeboarder, is towed by a rope behind a powerboat. Instead of riding a relatively narrowly ski, however, a wakeboarder rides an appropriately titled wakeboard. A wakeboard is much wider than a waterski and typically much shorter. Because of the ergonomics of a wakeboard, it is recognized that the wakeboard creates a significant amount of drag that is transmitted from the wakeboarder through the tow rope to the boat.
Often waterskiing and other such tow-sports involve a boat traveling at a relatively high velocity. As is commonly known, a drag force is directly proportional to the square of the velocity of the body. Therefore, the faster the skier is being towed, the much greater the drag force the skier is exerting on the tow rope and, therefore, to the tow mount.
One way in which this drag has been alleviated is through the use of a tower or superstructure developed principally for wakeboarding purposes. From the tower, a mount is located from which the wakeboarder's tow rope is attached. Specifically, a tower is mounted to the deck or sides of the boat so that the tower rises above the boat, and the tow rope mount is located on the top of the tower thereby providing clearance for the tow rope to move laterally in relation to the boat. More importantly, however, the tow rope is now positioned rising from the horizontal so that, when pulling a wakeboarder or the like, the tow rope is providing a lift to the wakeboarder. Such a lift decreases the drag, reduces the work the wakeboarder must exert against the water, and assists in the performance of stunts and acrobatics.
The design of these recreational boats, the towers, and other accessories, is subject to design criteria of each's function, aesthetic, and ergonomics. More specifically, the function includes that the boat and accessories have to fulfill their purpose, have to be able to withstand the rigors of use where the user may be a professional athlete who requires many hours and days of heavy use on the equipment, and has to survive a marine and outdoor environment. For the tower permanently mounted to the hull and structure of the boat, it would be difficult and possibly deleterious to the boat if the tower needed replacement, much more so if it were frequent replacement. In addition, replacement of only a portion of the tower would be similarly difficult if the tower were a single, unitary construction.
As for aesthetic, wakeboarding is like other so-called ‘extreme sports’ in that it is predominantly young, energetic people engaged in a relative new trendsetting sport or pastime. One aspect of the aesthetics is that the boat and accessories reflect this attitude. Beyond this, the concept of industrial design is to provide a design whose form also follows its function.
Ergonomics, which in many ways can be restated as simplicity of use, is also a factor. Typically, the tower is a structure built entirely out of tubular metal such as steel pieces. The towers are not fabricated in their first instance as a single item, instead being a number of steel pieces that are welded at the joints. Often, users attach additional accessories to the tower, such as lights, speakers, or devices for mounting and storing items.
One item which can be stored in a device mounted to the tower is the wakeboard or ski or the like. In order to conserve space within the passenger compartment, it is preferred that any on-board wakeboards refrain from hindering the movement of occupants, and that the wakeboards are stored simply and securely, as well as simply removed from storage. Accordingly, wakeboards are often held on the outside portions of the tower.
Accordingly, there is a need for a new tower and tower support design.
In accordance with one aspect of the present invention, a new improved superstructure for towing is disclosed. The superstructure may be a tower and may include a support bracket. Preferably, the support is for a superstructure mounted to a surface of a vehicle, such as a boat that is used for a towing a person on a surface, such as water, where the superstructure includes a member providing a lift force to the person, and the bracket includes a mounting surface for mounting to the surface of the vehicle, a stanchion face several times the width of the superstructure and for mounting to the superstructure, and a bracket length spanning from the mounting surface to the stanchion face so that the bracket distributes compressive force received along the stanchion face through to the mounting surface. The stanchion face may have an arcuate surface that mates with and mounts to an arcuate portion of the superstructure. The mounting surface and the stanchion face may be set at an angle to provide a proper positioning of the superstructure being supported. The support preferably is removably installed so that it can be removed or replaced without altering the superstructure. To accomplish this, the support is preferably provided with bolts and bolt holes for securing the support to the boat and to the superstructure.
In accordance with a second aspect of the present invention, a support bracket in combination with a boat having a stern, a bow, two midship points, and a tubular superstructure where the superstructure mounts to the boat at the midship points, extends upward and rearward, and mounts to the boat at a position rearward to the midship points with the support bracket is disclosed where the support bracket includes a mounting surface for mounting to the boat at the rearward position, a stanchion face several times the width of the tubular section to which the bracket is mounted, and a support span between the mounting surface and the stanchion face so that the support bracket distributes compressive force received along the stanchion face through to the mounting surface. Preferably, the support bracket has an arcuate stanchion face mating with the tubular superstructure such that force applied to the superstructure is distributed to the support bracket across the stanchion face. The support bracket preferably is removably secured to the boat and to the superstructure. In a preferred embodiment, the support bracket is attached to the boat and to the superstructure with bolts set a distance from the rearward point of the intersection of the stanchion face and the tubular superstructure so that torque force exerted upon the superstructure is not transmitted through the bolts. Preferably, the support bracket includes mounting points for accessories, and preferably the mounting points include at least one laterally oriented bore in the support bracket for allowing an accessory to be secured through the bore. The bore may be an arcuate slot permitting the secure position of an accessory to be adjusted along the length of the arcuate slot.
In accordance with a third aspect of the preferred embodiment, a method of securing a superstructure to a boat where the superstructure extends above the deck of the boat for towing a person behind the boat is disclosed, the method including providing a boat with at least a pair of generally midship securement points for the superstructure, providing a superstructure with at least a pair of superstructure members for securing to the boat, providing each superstructure member securing to the boat with a mount for securing to the boat, providing the boat with at least a pair of securement points aft of the midship points for mounting support brackets, providing a pair of support brackets each with a boat mounting face for mounting to the boat and a superstructure face for mounting to the superstructure members, setting the faces of the support brackets at an angle for mounting properly the superstructure to the boat, positioning the support brackets on the boat, positioning the superstructure on the superstructure faces of the support brackets, and securing the support brackets, boat, and superstructure so as to be generally mounted. The mounts for securing the superstructure members to the boat may be pivots, and the method may further include pivoting the superstructure members into position for securing. Securing the superstructure may include permanently fixing the position of the superstructure members to the boat. The method may include providing the support brackets with holes, and securing the support brackets includes boring holes in the superstructure and the boat for receiving securement devices through the holes in the support brackets, and the method may further include inserting securement devices through the support brackets and into the superstructure and boat. The securement devices may be bolts. The superstructure members may be tubular, and the superstructure faces may be arcuate, and the method may include mating the superstructure members to the superstructure faces.
In a further aspect, a method is disclosed for replacing a previously installed support bracket. The method may include replacing the previously installed support bracket with a substantially identical support bracket in substantially the identical position as the previous support bracket.
In the drawings,
Referring initially to
In constructing the prior art tower T depicted in
Referring now to
The top of the crossbar 28 includes a tow rope mount 36. When the boat 2 is being used for towing a person, preferably a wakeboarder, a tow rope (not shown) is mounted to the tow rope mount 36 to provide both a towing force and a lift force to the wakeboarder.
As a consequence of the geometry of the tower 10 and the intended purpose of providing a lift force to the wakeboarder, a towed wakeboarder exerts a vertical downward force on the crossbar 28, and consequently on the structure 26 and on that to which the structure 26 is joined. Accordingly, as is also shown in the prior art depiction of
Therefore, tower supports in the form of brackets 12 are provided for supporting the structure 26. The support brackets 12 are depicted in further detail in
The support brackets 12 includes a stanchion mount face 44, and a boat mount face 46. Each face is prepared so that, when installed, the proper angle α is provided between the structure 26 and the boat 2 (see
As can be seen in
In addition, the bracket 12 has an arcuate passage 66. The passage 66 is positioned and shaped to minimize its effect upon the load bearing capacity of the tower 10, as can be seen in
While the invention has been described with respect to specific examples including presently preferred modes of carrying out the invention, those skilled in the art will appreciate that there are numerous variations and permutations of the above described systems and techniques that fall within the spirit and scope of the invention as set forth in the appended claims.
This application is related to U.S. Des. patent application No. 29/195,185, filed Dec. 8, 2003, entitled “Support,” and is a continuation of U.S. Utility patent application Ser. No. 10/730,336, filed Dec. 8, 2003 now Pat. No. 6,925,957, entitled “Tower and Support.”
Number | Name | Date | Kind |
---|---|---|---|
3977654 | Etherington et al. | Aug 1976 | A |
4171141 | Hobrecht | Oct 1979 | A |
4515393 | Sauter | May 1985 | A |
4527349 | Emory, Jr. | Jul 1985 | A |
4900058 | Hobrecht | Feb 1990 | A |
5052326 | Wiggen et al. | Oct 1991 | A |
5669325 | Feikema | Sep 1997 | A |
5979350 | Larson et al. | Nov 1999 | A |
6044788 | Larson et al. | Apr 2000 | A |
6192819 | Larson et al. | Feb 2001 | B1 |
D442910 | Metcalf | May 2001 | S |
6374762 | Larson et al. | Apr 2002 | B1 |
D480349 | Carlton | Oct 2003 | S |
D486441 | Metcalf | Feb 2004 | S |
D486774 | Eck | Feb 2004 | S |
D489314 | Metcalf | May 2004 | S |
6792888 | Metcalf | Sep 2004 | B1 |
6910437 | O'Reilly et al. | Jun 2005 | B1 |
Number | Date | Country | |
---|---|---|---|
20050204988 A1 | Sep 2005 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10730336 | Dec 2003 | US |
Child | 11131970 | US |