The invention pertains to the field of climbing tools. More particularly, the invention pertains to tools for climbing, descending and work positioning on ropes.
In the conventional angled hole design, (like in U.S. Pat. No. 5,279,020 “Rope Clutch”) the top pressure point or friction interface does the majority of the friction generation due to a steep incidence angle of engagement, and the second pressure point does very little because the sides of the hole make the ropes incidence angle to the pressure point shallow.
Fall arrest devices, such as the one in U.S. Pat. No. 7,137,481, that lock on the rope and need to be unloaded to be released, often times requiring a rescue operation to bring the climber safely to the ground.
The tower positioner is a climbing tool for work positioning on a rope, usable as an ascender, speed control descender, lanyard rope grab and fall arrest device. The tool is for use with a single rope, a doubled rope or in a two line configuration. The new design is an improvement because the geometry generates increased friction per plate, requiring fewer plates for a given friction requirement.
As an ascender, the tower positioner can be advanced up a rope freely with little resistance, but when a downward weight is applied, the device grips the rope and prevents any movement downward along the rope. The more weight applied, the harder the device grips the rope, up to a calibrated weight holding capacity at which point the device slips. This slip is helpful when the device is subjected to a shock load, like in a fall arrest situation. The peek force of the fall is absorbed or dissipated by the device slipping on the rope. The device decelerates the load until the load is under the weight holding capacity of the device at which point the load is arrested by the device. This is a safety feature and limits the damaging forces exerted on the climbers body, the rope, and the device. After a fall arrest occurs, the device can be safely released to descend the rope, which is unique to this device.
As a speed control descender, the tower positioner's grip on the rope can be released in a progressive way, by incrementally depressing the control handle, to the point where the device begins to slip on the rope, with descent speed being controlled by the extent the control handle of the device is depressed or released.
The tower positioner is a climbing tool for work positioning on a rope, usable as an ascender, speed control descender, lanyard rope grab and fall arrest device. The tool is for use with a single rope, a doubled rope or in a two line configuration.
Referring to
Each of the plates 4, 5, 6 have two offset oblong holes, an upper hole 11 (see
One end of the plate 4, 5, 6 has a through-hole 52 for an axle, and the opposite end has an extended handle 41, 42, 43 respectively, for a user to cause the plate 4, 5, 6 to pivot on the axle. The axle hole 52 is drilled through the plate 4, 5, 6 along the axis of the short side of the oblong profile, and at a distance of 2-3 rope diameters from the center of the rope channel 98.
As shown in
As can be seen in
The amount of pull needed to draw the rope 3 through the plate in the fully engaged position shown in
The upper control plate 4 and middle control plate 5 interact and generate friction with each other as a plane clamp. The upper control plate 4 and the middle control plate 5 pivot relative to each other and shift in a planar way when a load is applied, offsetting the holes relative to each other, causing a pinching or lenticular shrinking of the rope channel 98 that the rope 3 is traveling through. This adds friction in a pinching or clamping fashion. Alone, this is very effective at stopping the rope 3, but release is abrupt, and hard to control.
By adding the lower control plate 6, which acts as a “brake”, release is considerably more gradual, and easy to control. The lower control plate 6 allows the rope 3 to pass freely through the plate 6 in the open position shown in
When holding the climber's weight on the rope 3, the plates 4, 5, 6 share the load. When the upper control plate and middle control plates 4, 5 are incrementally forced toward the open position by pushing down on the top handle 41, which in turn pushes down on the middle control plate 5, the pinching effect and the bending effect of the upper control plate 4 and middle control plate 5 is progressively reduced until, for any given weight, the point of slipping on the rope 3 can be found. At this point upper and middle control plates 4, 5 have released most of their grip, and the lower control plate or “brake” plate 6 is holding most of the load. At this point, the upper control plate 4 and middle control plate 5 come into contact with the lower control plate 6 and start to push it down toward the open position. This reduces the grip of lower control plate 6 and increases the speed of descent down the rope 3. The speed of descent can be controlled by adjusting the extent of the angle of the plates 4-6. This makes release more progressive, and makes modulating the degree of friction easier over a larger range of adjustment.
In this embodiment, the unitary tower positioner device 20 has a unitary body 22 in the form of a C-shaped channel with axle holes 64, 65, 66 to accept axles passing through holes 52 in the plates 4, 5, 6, respectively. At the top and bottom of the body 22 are attachment holes 1, 2 to accept a connector such as a carabineer or the like, for attachment to a climbing harness or as shown in
Optionally, the unitary body 22 can be provided with a fairlead roller 79 mounted by an axle 69 on a roller arm 68 to facilitate advancing the unitary tower positioner device 20 up the rope 3. This can be seen in
As shown in
The axle or pin 24 connecting the first link 7 and the second link 8 forms the axle for the upper control plate 4, the axle or pin 25 which connects the second link 8 and the third link 9 forms the axle for the middle control plate 5, and the axle or pin 26 connecting the third link 9 and the fourth link 10 forms the axle for the lower control plate 6. Top attachment link 72 is connected to the first link 7 through axle or pin 28. Bottom attachment link 71 is connected to the fourth link 19 through axle or pin 29.
In the embodiments described above, the holes 11, 12 through the control plates 4, 5, 6 are formed as closed oblong openings. As a result, the devices 20, 40 described above require that an end of the rope 3 be threaded through the holes 11, 12 in the control plates 4-6. In this embodiment, shown in
As can be seen in
The rope passages 74, 75, 76 are formed of offset upper and lower holes 11, 12 as described above in reference to
The side openings 94, 95, 96 can all be aligned on one side of the plates 84, 85, 86, or they can alternate from side to side, or as shown in the figures, the side opening 94 on the upper control plate 84 can be on one side, and side openings 95, 96 on the middle control plate 85 and lower control plate 86 can be on the opposite side. However the side openings 94-96 are arranged, the rope 3 can be easily threaded through the side openings 94-96 into the rope passages 74-76.
This embodiment can be provided with lock plates 44-46 covering over each control plates 84-86, as shown in the figures. Each of the lock plates 44-46 has oblong holes with a side openings 54-56 on the opposite side from the side openings 94-96 on the control plates 84-86 which it covers. By pivoting the lock plates 44-46 down over its associated control plates 84-86, the rope 3 can be secured in the rope passages 74-76 and prevented from slipping back out the side openings 94-96.
In this embodiment, a roller or curved guide 59 can be provided on the lock plate 46 covering the lower control plate 86, which functions in the same way as the roller 79 in the unitary-body embodiment above.
It will be understood that while
The tower positioner device 200 has a bendable body which is formed by a series of links. In order from top to bottom, these links are a top attach link 72 with the top attach point 82, a first link 7, a second link 8 and a fourth link 10 and a bottom attach link 71 with the bottom attach point 81. The third rigid link 9 as previously described is not present in this embodiment. The links 72, 7, 8, 10, 71 are connected by axels or pins so that adjoining links can bend or pivot relative to each other. The rope 3 can be inserted into the tower positioner device 200 midline on the rope 3 similar to
The axle or pin 24 connecting the first link 7 and the second link 8 forms the axle for the upper control plate 84, the axle or pin 25 which connects the second link 8 and the fourth link 10 forms the axle for the lower control plate 86. Axle or pin 28 connects the first link 7 to the top attachment link 72. Axle or pin 29 connects the fourth link 10 to the bottom attachment link 71.
The upper control plate 84 and lower control plate 86 are formed with side openings 94, 96 which allow side access into the rope passages 74, 76. The rope passages 74, 76 are formed of offset upper and lower holes 11, 12 as described above, and will not be further described in this section.
The side openings 94, 96 can all be aligned on one side of the plates 84, 86, or they can alternate from side to side as shown in the figure, the side opening 94 on the upper control plate 84 can be on one side, and side opening 96 on the lower control plate 86 can be on the opposite side. However the side openings 94, 96 are arranged, the rope 3 can be easily threaded through the side openings 94, 96 into the rope passages 74, 76.
It should be noted that while the second link 8 is shown outwardly adjacent the first link 7 and the fourth link 10 in the figures, alternatively, the first link 7 and the fourth link 10 could be outwardly adjacent the second link 8.
A removable shroud 301 can cover the tower positioner device 300 during use of the tower positioner device 300 as a fall arrest device. The removable shroud 301 prevents the handles of the plates 4-6 of the tower positioner 300 from inadvertently being depressed by the climber's body or failing debris.
Referring to
The tower positioner device 300 has a bendable body which is formed by a series of links. In order from top to bottom, these links are a top attach link 72 with the top attach point 82, a first link 7, a second link 8, a rigid third link 9, a fourth link 10 and a bottom attach link 71 with the bottom attach point 81. The links 72, 7, 8, 9, 10, 71 are connected by axels or pins so that adjoining links can bend or pivot relative to each other. The top attachment point 82 of the top attach link is aligned with the first attachment hole 2 of the shroud 301. The bottom attachment point 81 of the bottom attach link 71 is aligned with the second attachment hole 1 of the shroud 301. As shown, a single carabineer 350 passes through both the top attachment point 82 and the first attachment hole 2, and another single carabineer 350 passes through both the bottom attachment point 81 and the second attachment hole 1, linking the shroud 301 to the tower positioner 300.
The axle or pin 24 connecting the first link 7 and the second link 8 forms the axle for the upper control plate 4, the axle or pin 25 which connects the second link 8 and the third link 9 forms the axle for the middle control plate 5, and the axle or pin 26 connecting the third link 9 and the fourth link 10 forms the axle for the lower control plate 6. Axle or pin 27 connects the first link 7 to the top attach link 82. Axle or pin 28 connects the fourth link 10 to the bottom attach link 71.
Rope 3 is received within the holes of the plates 4-6 for ascending. To descend, the rope 3 is wrapped back around and received within the U-shaped slot 303 of the shroud 301 and contacts the handle 41 of the top control plate 4, such that the rope 3 pulls down on the plates 4-6 forcing the plates 4-6 to the closed position.
While the shroud is shown using control plates 4-6, control plates 84-86 may also be used.
The tower positioner device 400 has a bendable body which is formed by a series of links. In order from top to bottom, these links are a top attach link 72 with the top attach point 82, a first link 7, a second link 8 and a fourth link 10 and a bottom attach link 71 with the bottom attach point 81. The rigid third link 9 as previously described is not present in this embodiment. The links 72, 7, 8, 10, 71 are connected by axels or pins so that adjoining links can bend or pivot relative to each other. The rope 3 can be inserted into the tower positioner device 400 midline on the rope 3 similar to the depiction in
The axle or pin 24 connecting the first link 7 and the second link 8 forms the axle for the upper control plate 84, the axle or pin 25 which connects the second link 8 and the fourth link 10 forms the axle for the lower control plate 86.
The upper control plate 84 and lower control plate 86 are formed with side openings 94, 96 which allow side access into the rope passages 74, 76. The rope passages 74, 76 are formed of offset upper and lower holes 11, 12 as described above, and will not be further described in this section.
The side openings 94, 96 can all be aligned on one side of the plates 84, 86, or they can alternate from side to side as shown in the figure, the side opening 94 on the upper control plate 84 can be on one side, and side opening 96 on the lower control plate 86 can be on the opposite side. However the side openings 94, 96 are arranged, the rope 3 can be easily threaded through the side openings 94, 96 into the rope passages 74, 76.
Lock plates 44, 46 cover over each control plate 84, 86, as shown in the figures. In this embodiment, the lock plates 44-46 preferably includes a magnet 103 that is attracted to a magnet 104 present in the upper control plate 84 and in the lower control plate 86. The magnets 103-104 ensure that the lock plates 44-46 remains over and adjacent the upper and lower control plates 84, 86. Lock plate 44 has oblong holes with a side opening 54 on the opposite side from the side opening 94 on the control plate 84 which it covers. By pivoting the lock plate 44 down over its associated control plate 84, the rope 3 can be secured in the rope passage 74 and prevented from slipping back out the side opening 94. Lock plate 46 covers the lower control plate 86 and includes a roller or curved guide 59, which functions in the same way as the roller 79 in the unitary-body embodiment above.
The tower position device 500 has a bendable body which is formed by a series of links. In order from top to bottom, these links are a top attach link 72 with the top attach point 82, a first link 7, a plurality of second links 8a, 8b, a third link 9, a fourth link 10 and a bottom attach link 71 with the bottom attach point 81. The links 72, 7, 8a, 8b, 9, 10, 71 are connected by axles or pins 501, 502, 503, 504, 505, 506, 507 so that adjoining links can bend or pivot relative to each other.
The axle or pin 501 connects the first link 7 to the top attach link 72. The axle or pin 502 connects the first link 7 and a second link 8a and forms the axle for the upper control plate 4. Axle or pin 503 connects the second link 8a to a first middle control plate 5a. Axle or pin 504 connects the other second link 8b to a second middle control plate 5b. Axle or pin 505 connects the other second link 8b to a third middle control plate 5c. Axle or pin 506 forms the axle connecting the other second link 8b to the third rigid link 9. Axle or pin 506 connects the third link 9 and the fourth link 10 to the lower control plate 6 and axle or pin 507 connects the bottom attach link 71 to the fourth link 10. The additional middle control plates 5a, 5b, 5c provide extra grip and clutch on the rope 3.
While the additional middle control plates were shown being attached to a bendable body, the additional middle control plates could be added to a unitary body as well.
The tower positioner 600 has a bendable body which is formed by a series of links. In this embodiment, the top attach link 72 and the bottom attach link 71 are replaced with a top attach swivel 602 and a bottom attach swivel 605. The top attach swivel 602 includes a top attach point 603. The bottom attach swivel 605 includes a bottom attach point 606. The top attach swivel 602 and bottom attach swivel 605 are pivotable about a vertical axis of the tower positioner 600 and can preferably rotate 360 degrees about the axis.
In order from top to bottom, the tower positioner 600 includes a top attach swivel 602 with a top attach point 603, a first link 7, a second link 8, a third link 9, a fourth link 10 and a bottom attach swivel 605 with a bottom attach point 606. The links 602, 7, 8, 9, 10, 605 are connected by axles or pins 608, 609, 610, 611, 612 so that adjoining links can bend or pivot relative to each other.
The axle or pin 608 connects the first link 7 to the top attach swivel 602. The axle or pin 609 connects the first link 7 and the second link 8 and forms the axle for the upper control plate 4. Axle or pin 610 connects the second link 8 to the third rigid link 9 and is the axle for the middle control plate 5. Axle or pin 611 connects the third rigid link 9 and the fourth link 10 to the lower control plate 6 and axle or pin 612 connects the bottom attach swivel 605 to the fourth link 10. The bottom and top attachment swivels 602, 605 allow the tower positioner 600 to rotate as needed during use by the climber.
The tower positioner 700 of this embodiment has a bendable body which is formed by a series of links. In this embodiment, the top attach link 72 and bottom attach link 71 are replaced with a top attach link 702 and bottom attach link 705. The top attach link 702 is attached to a first link 7 and the bottom attach link 701 is attached to a fourth link 10. The top attach link 702 has a top attach point 701 and the bottom attach link 705 has a bottom attach point 704. The top attach point 701 and the bottom attach point 704 are perpendicular to movement of the clutch plates 84, 86.
In order from top to bottom, the tower positioner 700 includes a top attach link 702 with a top attach point 701, a first link 7, a second link 8, a fourth link 10 and a bottom attach link 705 with a bottom attach point 704. The links 702, 7, 8, 10, 705 are connected by axles or pins 706, 707, 708, 709 so that adjoining links can bend or pivot relative to each other.
The axle or pin 706 connects the first link 7 to the top attach point 702. The axle or pin 707 connects the first link 7 and the second link 8 and forms the axle for the upper control plate 84. Axle or pin 708 connects the second link 8 to the third link 9 and is the axle for the lower control plate 86. Axle or pin 709 connects the bottom attach link 705 to the fourth link 10.
As a rope grab, the tower positioner device 20, 40, 60, 200, 300, 400, 500, 600, 700 can be used on a lanyard, rope or flip line to adjust the lanyard or rope length. With a fairlead pulley, the lanyard or rope 3 can be shortened with one hand by pulling the tail exiting the tower position device 20, 40, 60, 200, 300, 400, 500, 600, 700 up toward the working end the pulley advances the tower positioner device 20, 40, 60, 200, 300, 400, 500, 600, 700 up the line. To lengthen the lanyard or rope, the top handle of a control plate 4, 84, is depressed and rope 3 can be let through the tower positioner device 20, 40, 60, 200, 300, 400, 500, 600, 700. Both operations can be done with one hand.
As a foot ascender, the lower attachment point 1, 71, 605, 705 of the tower positioner device 20, 40, 60, 200, 300, 400, 500, 600, 700 is attached to a foot loop, and a bungee cord is attached to the top attachment point 2, 72, 602, 702. The top attachment point 2, 72, 602, 702 can be attached to a waist harness, or alternatively attached to the climber's pant leg with a clip.
As a knee ascender, the tower positioner device 20, 40, 60, 200, 300, 400, 500, 600, 700 is positioned at around the knee level with a foot loop and lanyard of the correct length and a bungee cord supporting the tower positioner device 20, 40, 60, 200, 300, 400, 500, 600, 700 from the top.
In use with a single rope 3, the tower positioner device 20, 40, 60, 200, 300, 400, 500, 600, 700 is attached to the climber's harness with a carabineer 350, 352 or the like, at the bottom attachment point 1, 71, 605, 705, and a chest harness is attached to the top attachment point 2, 72, 603, 702, with a single rope 3 attached to a high anchor point, and the rope's free end threaded through the tower positioner device 20, 40, 60, 200, 300, 400, 500, 600, 700, the climber can with the help of a foot ascender or the like, can ascend the rope 3 by steeping up on the foot ascender and there by advancing the tower positioner device 20, 40, 60, 200, 300, 400, 500, 600, 700 up the rope 3, then transferring weight to the tower positioner device 20, 40, 60, 200, 300, 400, 500, 600, 700 by sitting back into the harness and advancing the foot ascender up the rope 3 and repeat. In this sit stand method the climber effectively inchworms themselves up the rope 3.
In a dynamic doubled rope system, shown in
By simply pulling the rope 3 exiting the bottom of the tower positioner device 40, the tower positioner device 40 advances up the rope 3 automatically as it is being pulled by the end of the rope 3. This has the advantage of being a two-to-one system, so as a climber you only have to lift half your weight to ascend.
In a two line system, as used in most rope access work, one rope is a “safety” or “rescue” rope for emergency fall arrest, and the other is the working rope for work positioning. Two tower positioner devices 20, 40, 60, 200, 300, 400, 500, 600, 700 can be used, one for work positioning and one for fall arrest and self-recue, in this system there is always a back up system in case one fails. In practice, the climber ascends on one rope and the other tower positioner device 20, 40, 60, 200, 300, 400, 500, 600, 700 follows up on the other, capturing any progress made, if a fall occurs, the tower positioner device 20, 40, 60, 200, 300, 400, 500, 600, 700 catches the climber's fall, and limits the damaging dynamic forces on the climber's body, by decelerating the climber's weight, without damaging the rope, and leaves open the option to safely descend the rope to the ground (self-rescue).
Accordingly, it is to be understood that the embodiments of the invention herein described are merely illustrative of the application of the principles of the invention. Reference herein to details of the illustrated embodiments is not intended to limit the scope of the claims to be filed in a utility patent application claiming benefit of this provisional application, which themselves will recite those features regarded as essential to the invention.
This application claims one or more inventions which were disclosed in Provisional Application No. 62/809,228, filed Feb. 22, 2019, entitled “TOWER POSITIONER”. The benefit under 35 USC § 119(e) of the United States provisional application is hereby claimed, and the aforementioned application is hereby incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
62809228 | Feb 2019 | US |