The outer surfaces of many conventional balls can be difficult to grasp for some people, particularly young children and infants who are still developing motor control, making catching and throwing such balls a challenge. This challenge, and its attendant frustration, is increased for persons engaged in one-handed grasping and throwing. One prior invention which addresses this difficulty is described in U.S. Pat. No. 6,729,984, entitled TOY BALL APPARATUS, filed by David Silverglate, the entire disclosure of which is herein incorporated by reference. The commercial embodiments of U.S. Pat. No. 6,729,984, offered under the brand name OBALL®, have been well-received in the marketplace, delighting parents and children alike.
While U.S. Pat. No. 6,729,984 describes balls that are easy to grasp, the balls have relatively complicated structures, with many component parts. A high part count can increase the costs of manufacturing, as more molds are required, and more parts must be assembled, consuming valuable time.
The present disclosure addresses the above issue by providing a ball that is easy to grasp, but that features a smaller number of components, so that it is more easily manufactured. A toy ball apparatus is disclosed herein that includes a mesh defining an outer surface of the toy ball apparatus. The mesh includes four mesh components that are coupled together to enclose a closed volume, each mesh component including a plurality of loop structures, each loop structure having a curved inner perimeter surface formed to at least partially surround a hole communicating with the closed volume and surrounded at least partially by a polygonal outer perimeter. Each mesh component has cooperative mating surfaces formed along an outer perimeter of the mesh component, the cooperative mating surfaces being formed along at least a portion of the outer perimeter of each of a plurality of the loop structures in the mesh component. The adjacent mesh components are joined together along the cooperative mating surfaces.
This Summary is provided to introduce a selection of concepts in a simplified form that are further described below in the Detailed Description. This Summary is not intended to identify key features or essential features of the claimed subject matter, nor is it intended to be used to limit the scope of the claimed subject matter. Furthermore, the claimed subject matter is not limited to implementations that solve any or all disadvantages noted in any part of this disclosure.
Mesh 12 may be formed in a polyhedron shape such as a truncated icosahedron, which approximates a sphere. Other polyhedral shapes may also be used to approximate a sphere, or other ball shape. It will be appreciated that by using four mesh components, the number of mesh components has been reduced as compared to the ten mesh components which are disclosed in U.S. Pat. No. 6,729,984, which can result in reduced manufacturing costs. As discussed below, the particular shape of the mesh components also simplifies molding, since the mesh components 14 may be molded in a mold without overhang portions that would make removal of the part from the mold difficult, as discussed in more detail below.
Each mesh component 14 includes a plurality of loop structures 15. In the illustrated embodiment, these loop structures 15 are categorized into a plurality of smaller loop structures 16 and a plurality of larger loop structures 18. Each loop structure 15 has a curved inner perimeter surface formed to at least partially surround a hole 92 communicating with the closed volume 20. The hole is sized to accommodate passage of one or more digits of the user into the closed volume, to enable grasping of toy ball apparatus 10 by the loop structures 15.
Further, each loop structure 15 is surrounded at least partially by a loop structure perimeter, which may be polygonal. In the illustrated embodiment, the smaller loop structures 16 are bounded by pentagonal loop structure perimeters formed around all or part of the smaller loop structure 16, while larger loop structures 18 are bounded by hexagonal loop structure perimeters formed around all or part of the lager loop structure. The loop structures 15 of each mesh component 14 are integrally molded together, and as a result all or a portion of the loop structure perimeters of each individual loop structure may be integrally molded with one or more adjacent loop structures of the same mesh component.
It will be further appreciated that each mesh component includes cooperative mating surfaces 19 formed on an outer perimeter of the mesh component. The cooperative mating surfaces 19 are formed along at least a portion of the loop structure perimeters of a plurality of the loop structures 15 in the mesh component, and adjacent mesh components 14 are joined together along the cooperative mating surfaces 19 to form mesh 12. Since the outer perimeter of each mesh component 14 is formed by portions of the loop structure perimeters of each loop structure 15 that bounds the edge of the mesh component 14, it will be appreciated that the cooperative mating surfaces 19 of each mesh component 14 are formed by part of the loop structure perimeters of a plurality of loop structures 15 in the assembly. Thus, the external edges, shown at 16b and 18b in
As discussed above, loop structures 15 may be sized to receive the fingers of a user's hand, such as a child's hand. The inner perimeter surfaces of the loop structures 15, such as inner perimeter surfaces 16a and 18a of loop structures 16 and 18, respectively, are typically curved, and may be continuously curved around their entire perimeter. In some examples, the inner perimeter surfaces may be circular. In other examples, the inner perimeter surfaces may be oval, or formed of complex curves. Some of the inner perimeter surfaces may have straight portions joined by curved portions, rather than corners. In this way, user discomfort from gripping the ball at sharp angular junctions, such as the corner of a square or pentagon, may be avoided. Further, for example, when a small hand inserts fingers into the holes of adjacent loop structures 15 and clenches to grip the ball, the curved inner perimeter surfaces gently guide the fingers toward each other and toward a vertex of the mesh, thereby promoting a secure grip on the toy ball apparatus 10 without discomfort on the fingers of the hand.
The shape and number of the mesh components 14 are designed in a manner that decreases manufacturing costs incurred using a process such as injection molding. Regarding the number of mesh components 14, it will be appreciated that when four mesh components 14 are utilized the production time may be significantly reduced when compared to a toy ball apparatus 10 having ten mesh components. The decreased production time may in turn decrease the toy ball apparatus's manufacturing cost.
Further, the shape of each mesh component 14 features no overhang portions and has a shape that, while curved, is typically constrained to have no more than 90° degrees of internal curvature (270° of external curvature). With such a shape, complicated molding techniques, such as the use of molds with sliders, may be avoided, also helping to control manufacturing costs, and in some cases multiple mesh components may be produced in a single mold cycle with a single mold. Specifically, as illustrated in
The loop structures 15 are arranged to form each mesh component 14 in such a manner that each mesh component 14 includes an outer perimeter having 17 external edges. As one example, these external edges are labeled A1-A17 for mesh component 14a in
It will be appreciated that other geometric configurations for the mesh 12 and mesh components 14 may be utilized in other embodiments. As one example, the mesh components 14 may take the form of other polyhedral segments, and thus the loop structures may be shaped in the form of other polygons or curves, alternatively or in addition to the hexagon and pentagon shaped loop structures. As another example, the mesh components 14 may be formed entirely of loop structures having outer perimeters shaped as pentagons, which are assembled to make a dodecahedron-shaped ball. Other embodiments of the mesh 12 of the toy ball apparatus 10 may be formed as a rhombicosidodecahedron, truncated icosidodecahedron, or snub dodecahedron, as some examples. As another variation, some or all of the loop structures may be filled in with material, so that they do not contain any curved inner perimeter surface. In this way, material may span the entirety of the interior of each loop structure, to create a partially or completely solid surface.
It will be appreciated that when fewer mesh components are utilized in the toy ball apparatus the number of seams or parting lines is also decreased. During the manufacturing process, each seam is mated, and then reworked or finished to produce the final product. Thus, by decreasing the seam count of the toy ball apparatus, the assembly, rework and finishing labor is also reduced, thereby helping to lower manufacturing costs. Further, in embodiments that are not plastically welded, but are bonded with adhesive, the structural integrity of the toy ball apparatus may be increased when the number of seams is decreased, due to the fact that the adhesively bonded seams generally do not have as much structural integrity as the molded mesh components. Further, by reducing part count, it becomes easier to employ an automated process, as opposed to manual labor, to couple the mesh components to form the toy ball apparatus, to further reduce manufacturing costs.
Toy ball apparatus 10 is typically formed of a plastic, such as a thermoplastic, which may have a shore “A” hardness of between approximately 50 and 150. As a result, toy ball apparatus 10 may be resiliently deformable. It will be appreciated that toy ball apparatus 10 may be at least partially deformed into the closed volume 20 that is surrounded by mesh 12. Typically, once a force, or object, causing such deformation is removed from toy ball apparatus 10, the resilient character of mesh 12 results in toy ball apparatus 10 substantially returning to its original shape. Due to mesh 12 being substantially deformable and substantially resilient, toy ball apparatus 10 may bounce when thrown against an object or impediment. Such deformability and resiliency of toy ball apparatus 10 may also make it more comfortable to catch and throw as compared to prior devices. In some embodiments, materials of different hardness and rigidity may be combined in the same toy ball apparatus 10. Further, in some embodiments a more rigid material may be used to manufacture the toy ball apparatus 10, for example, to provide a ball with superior bounce characteristics.
One potential advantage of the above described toy ball apparatus over the toy ball apparatus described in U.S. Pat. No. 6,729,984 is that by reducing the component count by 60% from ten to four, manufacturing costs may be significantly reduced. Another potential advantage is that by using mesh components that do not have overhang regions, manufacturing of these mesh components may be accomplished using molds that do not incorporate complicated and costly sliders. These advantages are simply illustrative, and not exhaustive.
The loop structures 115 include inner perimeters that have a plurality of straight portions 119 joined at radiused corners, the straight portions 119 and radiused corners collectively defining substantially hexagonal and pentagonal inner perimeter surfaces of the loop structures. Some of the loop structures 115 include inner perimeter surfaces that bound a hole that communicates with the closed volume, and other of the loop structures are fitted with a spanning structure 117, which is a plate-shaped structure bounded by an inner perimeter of the loop structure in which it is fitted. Thus, only a subset of the loop structures 115 include holes, while another subset of the loop structures 115 include the solid spanning structure 117. In the embodiment of
It will be appreciated that the configurations and/or approaches described herein are exemplary in nature, and that these specific embodiments or examples are not to be considered in a limiting sense, because numerous variations are possible. The subject matter of the present disclosure includes all novel and nonobvious combinations and subcombinations of the various features, functions, acts, and/or properties disclosed herein, as well as any and all equivalents thereof.
This application claims priority to U.S. Provisional Patent Application No. 61/368,635, filed Jul. 28, 2010, entitled TOY BALL APPARATUS WITH REDUCED PART COUNT, the entirety of which is hereby incorporated by reference for all purposes.
Number | Date | Country | |
---|---|---|---|
61368635 | Jul 2010 | US |