The present invention relates to a new system for construction toy blocks and, in particular, to a system allowing a construction toy block to have a maximum of eight abutment points abutting each engaged stud, upon assembling to its mating blocks.
In the present day market, the current assembling systems, with construction toy blocks mostly commonly seen, fall under the principle of Circle Square Packing in their system of the assembling workings. However, most of their systems do not fully utilize the number of abutments provided under such principle, which defines an “existing” set of four abutting points on each of the circles abutting against each other.
If one were to image the configuration of all the circles in a Circle Square Packing like a chessboard, the packed circles will fall under two groups: the black group circles and the white group circles. Each of the black circles is situated across its neighboring white circles in a lattice, and vice versa. Also, imagine that an area encompassing a lattice of the white group circles is fixed onto a free moving flat board, and a lattice of the corresponding black group circles within the same area is fixed onto another flat board that is attached to the ground.
Referring to
When two of the mating prior-art toy blocks 10 are being assembled (or stacked up one on top of the other), the bottom post 14 inside the box-shaped body 11, and the mating stud 12 come to be engaged to each other, with the mating stud 12 only abutting against three abutment points—that is, the tangents between the edge of the mating stud against:
The number of abutments with the prior-art system is even less than the aforementioned defined set of existing four abutments. Accordingly, the bond inbetween the stud 12 and its three abutments are not as firm as may be desired. As a consequence, the interference fit inbetween the stud 12 at the three abutment points will need to be significant in order to achieve the required firmness of bond under only three abutments. After some use, the engagement bond between the two prior art toy blocks 10 would deteriorate due to friction wear and stress fatigue over time resulting in the prior-art toy blocks 10 becoming loosely engaged upon assembling.
Another shortcoming with the prior-art system is that only the top of the representative prior-art toy block 10 can be engaged with the bottom of its mating block, making the number of combinations with the assembly variety under such system limited.
In addition,
Please refer to
Accordingly, the subject of how to firmly engage the mating toy blocks with each other, to increase the service life, to a stronger engagement bond, and to a better integrity of the whole toy block assembly when being subjected to external force is worth considering by those skilled in the art.
The present invention is a new system showing one practical example on the improvements and fuller utilization of the aforementioned Circle Square Packing configuration for interlocking assemblies.
Further to the aforementioned “existing” set of four mutually abutting points on each circle against its neighboring four circle, with each abutment being ninety degrees apart as defined under the principle of Circle Square Packing, this invention system is adding provisions for an “additional” set of four protrusions on each of the aforementioned white group circles, to enable additional abutting points, ready to abut the circles of the aforementioned black group circles upon engagement. These four abutments of the “additional” set on the black group are also 90° apart from each other.
At the same time, the set of the “additional” abutting points are 45° offset, from the aforementioned “existing” set of four abutting points on the black group circles, thus making a total of eight equally or evenly spaced abutment points, that is, one in every 45° spacing ready to abut the white group circles upon engagement of the lattice on the aforementioned moving board (the white group) against that on the aforementioned ground board (the black group).
One example embodiment of this invention is a new system applicable to construction toy building blocks and, particularly, to a toy building block system that enables a maximum of eight abutment points at the bottom side against each engaged stud (or peg), thereby aiding to the reinforcement of the bond.
In addition, as an option, the bottom post can be so designed to have an end cap serving as a solid disc to rigidly engage with the stud.
Also as an option, the wall thickness at the abutting points on both the stud and the bottom post can be intentionally thinned down locally at the interior along the lines of the four abutting points, to form an undercut fit, making it easier for the stud and the bottom post to mutually squeeze and grasp with each other at their respective end cap area upon engagement, hence further aiding to the abutment bond.
Furthermore, derived as a natural consequence from the aforementioned localized thinning of wall thickness at the bottom post interior, a notched hole opening at the stud side is thus formed, allowing an optional, separately designed axle with positioning keys or the like at its stem, to be inserted for further attachment of other rotational toy components available on the market, such as wheels and the like.
Also as an option, either or both the end caps of the stud and the bottom post can be provided with a center hole, to allow an optional, separately designed securing device or the like for a positive securing lock, in the case of applications requiring that the engaged area is to withstand localized, critical stress concentration under certain construction combination designs, such as when the studs function like a knuckle or as a hinge.
In addition, as a variation of the present invention system, in cases where the presence of openings (holes) on the land at the stud side (top side) might be deemed undesirable under different marketing view points, the bottom post can be so designed to eliminate the aforementioned notched hole opening on the land at the stud side. Consequently, the end cap on the bottom post and on the semi-circle posts need to be eliminated, to enable the making, from the bottom side, of a square shaped inner hole or the like in the bottom post and a triangular shaped inner hole or the like in the semi-circle post, serving as their respective material savers. This will, in effect, make four arch-like sidewalls on each of the bottom post and the two arch-like sidewalls on each of the semi-circle posts. The resulting arched sidewalls will exhibit a bridge-like springing and flexing effect under the compression force coming from the engaged studs, thereby improving the abutment bond without the need of an over-interference fit in order to achieve a desired firmness of bond.
Hence, the objective of the present invention is to provide a toy block under the principle of Circle Square Packing, to have a longer service life, more sturdy overall construction, stronger engagement bond, and better integrity of the whole assembly when being subjected to external forces, while aided with a number of optional features for versatility of assembling.
To achieve the aforementioned objectives, the present invention system when applied to toy blocks, is to take full advantage of the aforementioned set of four existing abutment points defined under the principle of Circle Square Packing, plus adding an additional set of four more abutment points, 45° offset from the existing set of four abutments, thereby making a total of eight equally spaced abutment points abutting against each of the engaged studs.
In Specifically, the present invention provides a toy block made of a plastic material and configured to be assembled (or joined) with a mating block of the same Circle Square Packing configuration. It will have four sidewalls looking like a box comprised of at least one stud, at least one recessed portion, at least one bottom post, a plurality of rib pairs, a plurality of semi-circular posts, a plurality of edge stoppers, and a plurality of corner stoppers.
The studs and the recessed portions are provided at the top side and at the bottom side of the toy block, respectively.
The bottom posts are provided at the bottom side of the toy block, surrounded by the recessed portions.
The semi-circular posts are provided at the bottom side of the toy block and protrude from the inner sidewalls of the toy block towards the recessed portions.
The rib pairs are connected between two of the bottom posts, or between the bottom posts and the semi-circular posts. Each of the rib pairs is either arched or with flat walls at both sides. The arch or the flat walls will exhibit a bridge-like springing and flexing effect when subjected to the force of the abutment against the stud.
One corner stopper is provided at each inner corner in the bottom side of the block, aligned towards the center of their respective, nearest bottom post.
The edge stoppers are provided protruding from the inner of the four box-shaped sidewalls towards the recessed portions.
When one or more of the studs of the mating toy is being inserted into one or more of the recessed portions of the toy block, the sidewall of the stud on the mating toy block being assembled will result in abutting against a total of eight abutment points per stud inside the recessed portions of the toy block, thus firmly engaging under such bond of a maximum of eight abutments per each engaged stud.
The foregoing, as well as additional objectives, features, and advantages of the present invention, will be more readily apparent from the following detailed description, which proceeds with reference to the accompanying drawings.
The toy block 20, or its variation of different sizes, has at the bottom, at least one of:
The recessed portions 23 and the studs 22 are along common axes, with the recessed portions 23 vertically beneath the studs 22. The four sidewalls 21, looking like a box, surround the recessed portions 23. Four of the recessed portions 23 surround one of the bottom posts 24.
The bottom posts 24 are hollow columns.
The semi-circle posts 24A protrude from the sidewalls 21 of the toy block 20. The semi-circle posts 24A are, in fact, the cropped half of the bottom posts according to the principle of Circle Square Packing.
In this representative eight-stud block of the first example embodiment incorporating the invention system, two of the rib pairs 25 are connected between two of the bottom posts 24. Moreover, the remaining eight of the Rib Pairs 25 are connected between the bottom posts 24 and the semi-circular posts 24A.
The rib pairs 25 are of hollow walls having either a flat wall or an arch shaped protrusion on both of the rib exteriors, protruding into the corresponding recessed portions 23 and ready to abut an engaged stud. Each of the arch shaped ribs, in effect, becomes an arched bridge and exhibits a bridge-like springing and flexing effect under the compression force coming from the stud 22 upon engagement, thereby enhancing the bond against the stud 22.
The edge stoppers 231 are positioned in the recessed portions 23, at the inner sides of the box-like sidewalls 21 of the toy block 20, and positioned at the middle of the center distance inbetween two neighboring semi-circle posts, or inbetween that of a semi-circle post and its neighboring corner stoppers 232.
In addition, the corner stoppers 232 are positioned at the four inner corners of the sidewalls 21 and aligned towards the center of the nearest bottom post at a 45° degree angle. The corner stoppers 232 are, in fact, simplified versions of a cropped quarter of a bottom post 24.
Hence, the bottom posts together with their cropped versions form a total of four abutment points 90° apart from each other surrounding each stud upon engagement. This set of four abutting points can be regarded as the already “existing” set, under the principle of Circle Square Packing.
The corner stoppers also serve to counter-act against any possible outward expansion of the edge stoppers 231 when the later engages a stud.
The edge stoppers 231 and the rib pairs 25 together form an “additional” set of four abutment points, also 90° apart from each other, ready to abut each engaged stud. This set of four additional abutments are 45° offset from the aforementioned “existing” set of four abutments, making a total of eight equally spaced abutments ready to abut each engaged stud.
The optional through-hole 22A is intended to allow an optional, separately designed securing screw 221 of
Referring to
The studs 22 of the toy block 20 correspondingly mate with the recessed portions 23′ of the toy block 20′. Upon inserting the studs 22 of the toy block 20 into the recessed portions 23′ of the toy block 20′, the engaged studs 22 of the toy block 20 each comes to abut at a total eight abutment points.
Taking an example on a portion inside the dotted circle 2D of
The abutting points e1 and e6, e2 and e8, e3 and e7, and e4 and e5 are opposite to each other.
Comparing against the example of the prior-art toy block 10, which has only three abutment points for each engaged stud 12, the improved toy block 20 of the first embodiment incorporating the present invention system provides eight abutment points abutting against each engaged stud 22. Thus, the engagement and bond between assembled toy blocks 20 are much firmer than that of the prior-art toy block 10. As such, the block of the present invention will not easily come loose after use, because the degree of interference fit with the block of the present invention system can be minimized, thereby minimizing pre-mature friction wear and stress fatigue.
To be specific, compared to the three abutment points on each engaged stud 12 in the prior-art toy block 10, the average compression force, under the lesser degree of interference fit thus exerted against the eight abutment points on each of the engaged studs 22 in the toy block 20, need not be as great, because a smaller degree of interference fit for the improved block will result in as much bond as may be required. Thus, the bulge 11A shown in
Furthermore, please refer to
In the above embodiment of
DP=PS×√2−DS (1)
Or, DS=PS×√2−DP
Please note that the center of the semi-circular post 24A will be where the stud center line crosses over the external edge of the box-like sidewall 21, and, its nominal radius is the same as that of the bottom post 24 (or half its diameter).
In addition, the center of the four corner stoppers 232 will be at the four external corners of the box-like sidewall 21 respectively. Its radius (thus the length as measured from the external corner of the box-like side wall) is the same as the radius (or half the diameter) of the bottom post 24.
Furthermore, the nominal width of the rib pair 25 measured across the tips of the arches, from one single rib to the far side of the other, can be expressed in the following equation (2):
WR=PS−DS (2)
Also, the nominal protrusion of the edge stoppers 231′ from the inner side of the sidewall can be expressed in the following equation (3):
EP=½WR−ST (3)
Referring to
Referring to
Referring to
The optional Axle 27 is shaped like a hollow pipe that can be divided into steppings of: first portion 271; a second portion 272; and a third portion 273. The four Keys 271A are located on the exterior of the first portion 271. A hole 27A is formed at a hollow space in the third portion 273. A Notched Hole Opening 23A is provided on the top side of the toy block 20, serving as an opening to make the inner hole inside Bottom Post 24. The Notches 23B are a natural consequence of the localized thinning of Bottom Post sidewall, allowing the insertion of portion 271 of the optional keyed Axle 27. The first portion 271 is inserted onto the Notched Hole Opening 23A of the toy block in a tight-fit fashion. The height of the second portion 272 is greater than that of the Stud 22. The second portion 272 has an outside diameter greater than that of the first portion 271, and the third portion 273 has an outside diameter greater than that of the second portion 272. The hole 27A in the third portion 273 may receive other rotary toy components available on the market such as wheels, rotors, propellers, and the like. Therefore, the user will be capable of more versatile assembly combinations using toy blocks 20 of present invention.
Hence, referring to
Referring to
Referring to
Referring to
The optional axle 27 is shaped like a hollow pipe that can be divided into: a first portion 271; a second portion 272; and a third portion 273. The four keys 271 A are located on the exterior of the first portion 271. A hole 27A is formed at a hollow space in the third portion 273. A notched hole opening 23A is provided on the top side of the toy block 20, serving as an opening to make the inner hole inside the bottom post 24. The notches 23B are a natural consequence of the localized thinning of the bottom post sidewall, allowing the insertion of the first portion 271 of the optional keyed axle 27. The first portion 271 is inserted onto the notched hole opening 23A of the toy block in a tight-fit fashion. The height of the second portion 272 is greater than that of the stud 22. The second portion 272 has an outside diameter greater than that of the first portion 271, and the third portion 273 has an outside diameter greater than that of the second portion 272. The hole 27A in the third portion 273 may receive other rotary toy components available on the market such as wheels, rotors, propellers, and the like. Therefore, the user will be capable of more versatile assembly combinations using the toy blocks 20 of the present invention.
Hence, referring to
Please refer to
As a variation, an example eight-stud toy block of this invention can also be designed to have different diameters inbetween the studs and the bottom post. Considering the proportion of the stud diameter against that of the bottom post and taking into consideration the balance of leverage at the bottom plan of the toy block where two mating toy blocks may join with the stud 22 by its height against that of the bottom post 24, it could be desirable to maximize the diameter of the bottom post. Under the principle of Circle Square Packing, if one were to crop a toy block of a size similar to the prior-art array of two rows by four studs each, the stud pitch (“PS” of Equation 1) will be half that of the nominal width of such a toy block. If one were to factor in a minimum spacing (BPS) inbetween the bottom posts and its neighboring ones, serving as a minimum wall thickness for the tool steel of its injection mold, the ratio of the stud 22 versus the bottom post 24 will result in roughly 4.9:6.4 as explained below.
Taking one example of an eight-stud toy block with a nominal width of 16 mm as commonly being adopted on the market, the stud pitch (PS of Equation 1) will equal 8 mm. Assuming a minimum spacing of 1.5 mm inbetween the bottom posts 24 for tool steel integrity, the maximum nominal bottom post diameter (DP) will then become:
=stud pitch (PS)−bottom post spacing (BPS); or =6.5 mm the nominal stud diameter (DS of Equation 1) then becomes: =P=PS×√2−DP; or about 4.812 mm.
If one were to further factor in a 0.10 mm to the bottom post diameter for purpose of an interference fit, with 6.50 mm being used as the “actual” diameter, the “nominal”diameter of the bottom post 24 (DP) will then become 6.40 mm. Accordingly, by recalculation, the stud diameter (DS) in turn becomes about 4.912 mm; and hence, the approximate ratio of 6.4:4.9 is thus derived.
Towards meeting this ratio of 6.4:4.9, the length and width of the relative dimensions on the various parts of the toy block 20 has been recalculated and determined to be viable both in terms of the strength of the plastics on the block and the tool steel integrity.
Towards meeting this ratio of 6.4:4.9, the length and width of the relative dimensions on the various part of the a toy block 20 has been recalculated and determined to be viable both in terms of the strength the plastics on the block, and the tool steel integrity.
Number | Name | Date | Kind |
---|---|---|---|
3005282 | Christiansen | Oct 1961 | A |
3552055 | Matsubayashi et al. | Jan 1971 | A |
3570170 | Kishi | Mar 1971 | A |
D279915 | Arnau Pibet | Jul 1985 | S |
4551110 | Selvage et al. | Nov 1985 | A |
D285100 | Volpe | Aug 1986 | S |
4823532 | Westerburgen | Apr 1989 | A |
4964833 | Suzuki | Oct 1990 | A |
D340749 | Lyman | Oct 1993 | S |
D370035 | Olsen | May 1996 | S |
D378837 | Olsen et al. | Apr 1997 | S |
6050873 | Reisman | Apr 2000 | A |
7416166 | Shaw | Aug 2008 | B1 |
D612435 | Sisamos | Mar 2010 | S |
Number | Date | Country | |
---|---|---|---|
20140227937 A1 | Aug 2014 | US |