1. Field of the Invention
In general, the present invention relates to toy bow and arrow systems, where a toy bow is used to launch a toy arrow projectile into flight.
2. Prior Art Description
Bow and arrow sets that are designed for children's play have existed throughout recorded history. In the modern era, toy bow and arrow sets typically have a plastic molded bow, a string and safety-tipped arrows. To ensure safety, the functional design of a toy bow is also commonly altered. In a real bow, the string has a fixed length. The spring force used to launch an arrow comes from the flexing of the arms of the bow. The problem with this design is its failure mode. If a bow is drawn beyond its limit, then the arms or the string of the bow may break. Depending upon where the breakage occurs, the broken string and/or bow may fly toward the person holding the bow as the stored energy is accidentally released.
To reduce the likelihood of this hazard from occurring, many toy bows are manufactured as static structures. An elastic string is used to create the arrow launching force. If such a bow is overdrawn, there is no significant chance of the bow breaking. Rather, the elastic string will break and will most likely move in a direction away from the person drawing the bow. The failure mode of a string breaking is far less dangerous than the failure mode of the bow breaking. However, the failure mode of a broken string does present some danger depending upon where the elastic string breaks and how much energy is stored in the elastic string at the time it breaks.
Toy bows that use a static bow and an elastic string are exemplified by U.S. Pat. No. 5,247,920 to Harbin, entitled Toy Bow; and U.S. Pat. No. 7,748,369 to Chee, entitled Launching Apparatus and Assembly.
Many toy bows that have elastic strings use elastic strings that are made from a synthetic polymer, such as silicon, TPR or some other synthetic rubber. On the toy, such elastic strings are constantly under tension. As such, if the material of the string creeps or degrades, the elastic string will break. This stops the toy bow from being functional.
Most all plastic degrades in some fashion over time. However, it has been found that one of the fastest ways to degrade the preferred polymers used for the bowstring is to expose the bowstring to UV light. A bowstring that can last for months inside a home may only last for a few days if taken outside and left in sunlight. A toy that lasts for months is acceptable. A toy that last for days is not. Damage caused by exposure to light has therefore caused products to be returned and/or consumer's dissatisfaction with the toy manufacturer.
In co-pending U.S. application Ser. No. 13/909,968, the applicant presents a toy bow where the elastic bowstring is encased and protected from UV light in the ambient atmosphere. However, in shielding the bowstring the toy bow loses some aesthetics. However, the shielding over the bowstring provides an opportunity to provide unique improved aesthetics through the use of internal lighting.
A need therefore exists for a toy bow and arrow design that inhibits degradation in the elastic string caused by exposure to UV light, yet provides enhanced aesthetics using internal lighting that does not contain significant UV wavelengths. This need is met by the present invention as described and claimed below.
The present invention is a toy bow assembly that is used to launch toy projectiles. The toy bow assembly includes a bow structure having a first arm section and a second arm section. Both the first arm section and the second arm section contain at least one translucent area.
Lights are disposed within both the first arm section and the second arm section. The lights internally illuminate the translucent areas of the first arm section and second arm section when activated.
An activation switch is disposed on the bow structure for selectively activating and deactivating the lights.
A first elastic element is anchored to the first arm section. The first elastic element extends through the first arm section into a central area. The first arm section shields the first elastic element from exposure to ambient light. Likewise, a second elastic element is anchored to the second arm section. The second elastic element extends through the second arm section and into the central area. The second arm section shields the second elastic element from exposure to ambient light. This prevents the elastic elements from degrading due to exposure of UV light contained in ambient light.
A toy projectile is provided that has extending hooks. The hooks on the projectile engage the elastic elements. When the projectile is drawn back, the elastic elements stretch and provide the spring energy needed to launch the projectile into flight when it is released.
For a better understanding of the present invention, reference is made to the following description of an exemplary embodiment thereof, considered in conjunction with the accompanying drawings, in which:
Although the present invention toy bow and arrow system can be embodied in many ways, only one exemplary embodiment of the present invention system is illustrated. This embodiment is selected in order to set forth the best mode contemplated for the invention. The illustrated embodiment, however, is merely exemplary and should not be considered a limitation when interpreting the scope of the appended claims.
Referring to
Referring to
The first arm section 28 contains a sheath structure 35 that defines a first internal compartment 37. The first internal compartment 37 has a bottom end 39 that faces toward the open central region 15. Likewise, the second arm section 30 contains a sheath structure 41 that defines a second internal compartment 43. The second internal compartment 43 is has a top end 45 that faces toward the open central region 15. Both sheath structures 35, 41 have forward-facing surfaces 49 that are translucent.
One or more light emitting diodes 51 are mounted inside each of the sheath structures 35, 41. When the light emitting diodes 51 activate, they internally illuminate both the first internal compartment 37 and the second internal compartment 43. This internal illumination can be viewed from an external point through the translucent areas 49 on both sheath structures 35, 41. Although only one or a few light emitting diodes 51 may be used in each of the internal compartments 37, 43, the internal illumination causes the translucent areas 49 to glow brightly wherever they are backlit by the internal illumination.
The light emitting diodes 51 are preferably monochromatic and emit light between the green and red wavelengths of the visible spectrum. Such light contains no significant ultraviolet components. The light produced by the light emitting diodes 51, therefore, produces no significant degradation in the polymers of the elastic elements 18. As such, the light emitting diodes 51 can emit bright light without adversely affecting the lifespan of the elastic elements 18.
The light emitting diodes 51 are powered by batteries 53. The batteries 53 are contained within a battery compartment 55 that is manufactured into the bow structure 12. Although a batter compartment can be positioned within in the first arm section 28 or the second arm section 30, it is preferred that the battery compartment 55 be placed within the structure of the handle 26.
When using the bow and arrow system 10, a person grasps the handle 26 of the bow structure 12. As such, it is preferred that an on/off switch 55 be positioned on the handle 26 in a position that can easily be operated by a person grasping the handle 26 of the bow structure 12. In the preferred embodiment, the on/off switch 55 is a normally “off” switch that turns “on” only when actively pressed. The on/off switch 55 can be integrated into the handle 55 so that the on/off switch is activated merely by firmly grasping the handle 26 of the bow structure 12.
Two post structures 31, 32 are mounted to the bow structure 12 outside the bottom opening 39 of the first sheath structure 35 and the top opening 45 of the bottom sheath structure 41. Referring now to
Each of the loading loops 16 is a loop structure of an elastic element 18 that creates two runs 47, 48. The runs 47, 48 of each elastic element 18 extend through the sheath structures 35, 41 and through the two pivot posts 31, 32. Each elastic element 18 has two ends. Both ends of each elastic loop 18 are affixed to anchored posts 44, 46 within the sheath structure 35, 41. Since the runs 47, 48 of each elastic element 18 extend through the sheath structures 35, 41, it will be understood that the material of the elastic elements 18 is shielded from any external light exposure until the elastic elements 18 are stretched out of the channels 40 in the pivot post structures 31, 32.
The length of the elastic element 18 has a cross section that is smaller than the diameter of the channels 40 in the pivot post structures 31, 32. In this manner, a separate run 47, 48 of the elastomeric element 18 can pass through each of the openings 40, therein keeping the two runs 47, 48 of the loop apart.
As the runs 47, 48 of the elastic element 18 pass out of the pivot post structures 31, 32, the elastic element 18 immediately passes into reinforcement tubes 50 to form the loading loops 16. The diameters of the reinforcement tubes 50 are larger than the channels 40 in the pivot post structures 31, 32. Consequently, the reinforcement tubes 50 cannot pass through the pivot post structures 31, 32. As a result, each length of the elastic element 18 is divided into two runs 47, 48. The first run 47 extends between an anchor post and the reinforcement tube 50 on the far side of the pivot post structure. The second run 48 extends from the reinforcement tube 50 back to the anchor post. The looping of the elastic element 18 between the two runs 47, 48 curves the reinforcement tubes 50 and creates the two loading loops 16.
Additionally, the presence of the reinforcement tubes 50 protects the elastic element 18 inside the loading loops 16 from exposure to external light. Consequently, when the elastic elements 18 are at rest, the entire length of each of the elastic elements 18 is shielded from external ambient light.
Due to the offset of the handle 26, an open central region 15 exists between the two pivot post structures 31, 32. The loading loops 16 each extend into the open central region 15 from opposite sides.
Referring to
As the elastic elements 18 stretch, they store energy. When the arrow projectile 14 is released, the elastic elements 18 retract and the arrow projectile 14 is accelerated toward the open central region 15. At the open central region 15, the loading loops 16 retract against the pivot post structures 31, 32. The momentum of the arrow projectile 14 causes the arrow projectile 14 to continue its forward movement beyond the open central region 15. This launches the arrow projectile 14 into flight as the hook elements 20 disengage the loading loops 16.
When the elastic elements 18 are stretched, they are most vulnerable to breakage. If one of the runs 47, 48 of an elastic element 18 breaks before passing through a pivot post structure 31, 32, then the speed of the contracting broken elastic element 18 is slowed by its passage through the pivot post structure 31, 32. This prevents a broken run from whipping toward a user. Furthermore, if the elastic element 18 were to break after it passes the pivot post structure 31, 32, most of the potential energy serves to move the broken elastic element 18 back toward the pivot post structure 31, 32 and away from the user.
It will be understood that the embodiment of the present invention that is illustrated and described is merely exemplary and that a person skilled in the art can make many variations to that embodiment. For instance, the bow structure can have many different ornamental shapes. The bow structure can also take the form of a crossbow. Likewise, the arrow projectiles can be configured as airplanes, rocket ships or any other flying projectile. All such embodiments are intended to be included within the scope of the present invention as defined by the claims.
This application is a continuation-in-part of co-pending U.S. patent application Ser. No. 13/902,968 filed May 27, 2013, which is a continuation-in-part of U.S. patent application Ser. No. 12/878,985, filed Sep. 9, 2010.
Number | Name | Date | Kind |
---|---|---|---|
4671249 | Troncoso | Jun 1987 | A |
4697228 | Mui et al. | Sep 1987 | A |
5072715 | Barr | Dec 1991 | A |
5247920 | Harbin | Sep 1993 | A |
5279513 | Connelly | Jan 1994 | A |
5415151 | Fusi et al. | May 1995 | A |
7748369 | Chee | Jul 2010 | B2 |
7766721 | Ma | Aug 2010 | B2 |
20060011189 | Simo et al. | Jan 2006 | A1 |
Entry |
---|
https://web.archive.org/web/20100211000220/http://www.doubletakearchery.com/bowplane.htm. |
Number | Date | Country | |
---|---|---|---|
20140000577 A1 | Jan 2014 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13902968 | May 2013 | US |
Child | 14016164 | US | |
Parent | 12878985 | Sep 2010 | US |
Child | 13902968 | US |