The invention relates to a toy component group with a loading arm with an adjustable loading arm setting angle. The invention also relates to a toy with such a component group and a toy vehicle comprising a chassis, a plurality of running wheels, which are attached to the chassis, and an activating element for steering the toy vehicle.
A toy component group of this kind, a toy with such a component group and a toy vehicle of the aforementioned type are known from DE 93 02 435 U1 and U.S. Pat. 1,652,135.
An objective of the present invention is to develop a toy component group of the aforementioned type, so as to improve its suitability for playing with.
Said objective is achieved according to the invention by a toy component group
According to the invention it has been recognized that a link guide of an activating device for adjusting a loading arm setting angle means that it is possible to design the power development of the activating element on the loading arm as a function of the setting angle. This makes it possible for the introduction of power to be adapted to the play use of the toy component group. The force can be introduced via the activating element most strongly in particular at setting angles where the strongest force is required to change the setting angle of the loading arm. This is the case in particular where the greatest torque acts on the loading arm. The connecting link can be designed in particular so that an activating force on the activating element is produced that is practically independent of the setting angle of the loading arm. The arrangement of the connecting link can be such that independently of the loading arm setting angle a distance between the at least one guiding element of the spindle nut and a pivot axle, via which the connecting end of the loading arm is articulated onto the frame, is reduced continually and in particularly progressively.
The spindle nut can comprise exactly two opposite guiding elements, which cooperate with two spaced apart parallel part connecting links of the connecting link. The spindle nut then runs between said two part connecting links
A curved design of the connecting link so that with a given activation force of the activating element a lifting force, which is exerted via the activating element on the loading arm, is greater at small setting angles than at larger setting angles, increases the clearance of the design and thus the options of forming the dependency of an activating force on the setting arm of the loading arm. A rotation of the spindle with small setting angles can then result in a lower lifting angle than with greater setting angles. The design of the connecting link, in particular the curved design of the connecting link can be such that with loading arm setting angles of between 0° (horizontally running loading arm) and 40° the lifting force is greater than above 40°.
A design of the connecting link guide such that in the case of overload on the loading arm the at least one guiding element disengages from the connecting link, can help to avoid damage to the toy component group.
Run-on oblique surfaces for facilitating the insertion of the at least one guiding element, facilitate the return of the at least one guiding element into the connecting link.
With a telescopic loading arm the advantages of the connecting link according to the invention are particularly effective.
The advantages of a toy with a component group according to the invention correspond to those explained above in connection with the toy component group.
A further objective of the invention is to improve the steerability of a toy vehicle.
Said objective is achieved according to the invention by a toy vehicle comprising a steering device, which comprises a steering plate articulated onto all running wheels, said steering plate being movable by the steering activating element relative to the chassis, and axle knuckles supporting the running wheels said axle knuckles being articulated both onto the steering plate and also the chassis.
On the basis of the steering device according to the invention all of the running wheels can be steered by means of a steering activating element. This results in a very maneuverable toy vehicle.
A gear transmission, in which the steering plate has a row of teeth, which cooperates with a gearwheel driven by the steering activating element and mounted on the chassis for moving the steering plate, is structurally simple
A one-piece design, in which the gearwheel is formed in one piece on the steering activating element, is particularly inexpensive.
An arrangement of the steering activating element rotatably about an axle perpendicular to a chassis plane defined by the chassis, enables the intuitive steering of the toy vehicle.
Axle knuckles being attached individually onto the chassis enable the adjustment of the running wheels of the toy vehicle to uneven terrain, which further increases the play value of the toy vehicle.
An exemplary embodiment of the invention is explained in more detail in the following with reference to the drawing.
A toy vehicle 1 has a chassis 2 shown in more detail in
For steering the toy vehicle 1 a steering activating element 5 is used in the form of a rotatable button activated manually and provided with knurling.
For steering the running wheels 3 the toy vehicle has a steering device 6, which can be operated by the steering activating element 5. The steering device 6 has a steering plate 7, which can be moved by means of the steering activating element 5 relative to the chassis 2. For this the steering activating element 5 is mounted rotatably on the chassis 2 about a rotational axis 8 which is perpendicular on a chassis plane defined by the chassis which in turn is parallel to the plane of the drawing of
At the level of the steering plate 7 the steering activating element 5 has a one-piece formed gearwheel 9. The latter meshes with a row of teeth 10, which runs along a longitudinal side of an elongated hole-like through opening 11 in the steering plate 7. The through opening 11 is also a window for the passage of the steering activating element 5 through the steering plate 7. The row of teeth 10 does not run straight, but follows the convex curve of the rim of the through opening 11. The through opening 11 is formed in a cross-arm of the steering plate 7, which extends at the level of the steering activating element 5 from a main plate section of the steering plate 7 running along the travelling direction of the toy vehicle 1.
In the area of the running wheels 3 on the steering plate 7 axle knuckles 12 are attached, which according to their allocation to the running wheels are also given letters like the spray protection covers 4. The axle knuckles 12a to 12d in turn each support one of the wheels 3. The axle knuckles 12a to 12d are in turn articulated onto the chassis 2 about pivot axes 13 also running perpendicular to the chassis plane.
The articulation points 14 of the cross-arms of the steering plate 7 assigned to the respective axle knuckles 12a to 12d are spaced apart from the pivot axes 13, so that a displacement of the steering plate 7 relative to the chassis 2 leads to the rotation of the axle knuckles 12a to 12d about the pivot axes 13.
The axle arms 12a to 12d are attached with radial clearance individually onto the chassis 2. The function of this radial clearance is clarified in a comparison of
The toy vehicle 1 also has a toy component group 17, details of which are shown in
An activating device 21 is used for adjusting a loading arm setting angle α and thus for lifting the free end of the loading arm 18. The loading arm setting angle α can be defined continually by the activating device 21, as can be seen from the sequence of
The activating device 21 has a spindle 22 mounted on the frame 20, which spindle is in drive connection with an angle setting activating element 23 in the form of a crankshaft for rotating about a spindle axis 24. The activating device 21 also includes a spindle nut 25 with two opposite guiding elements 26 in the form of bolt-like guiding attachments. The activating device 21 also has a loading arm-secured connecting link 27, which cooperates with the guiding elements 26 of the spindle nut 25 for the link guiding of the spindle nut 25 relative to the loading arm 18. The connecting link 27 is designed to be curved.
This curvature of the connecting link 27 is such that on setting up the loading arm 18 the distance between the guiding elements 26 and the pivot axis S is reduced progressively. At a given activating force which is exerted manually on the angle setting operating element 23, a lifting force, which the activating device 21 exerts manually on the loading arm 18, at small setting angles, in particular at setting angles of in the region of between 0° and 40°, is greater than at larger setting angles, in particular at setting angles of in the region of between 40° and 55°. The rotation of the spindle 22 results at small setting angles in a smaller lifting angle change than at larger setting angles.
In a not shown alternative design the connecting link 27 can also be designed to be linear. In this case the path of the connecting link has to be ensured in which at smaller setting angles there is a greater distance between the guiding elements 26 and the pivot axis S than at larger setting angles. In the shown embodiment both a basic and also linearly approached possible path of the connecting link 27 as well as the curvature of the connecting link 27 to the pivot axis S support the decrease in the lifting force at greater setting angles.
The link guide with the guiding elements 26 of the connecting link 27 is thus designed such that in the case of an overload acting on the loading arm 18 the guiding elements 26 disengage from the connecting link 27. This is shown in a comparison of
To facilitate the introduction of the guiding elements 26 into the connecting link 27 the connecting link 27 has run-on oblique surfaces 28. If when introducing the guiding elements 26 into the connecting link 27 by means of the spindle nuts 25 and the guiding elements 26 pressure is exerted onto the run-on oblique surfaces 28 of the connecting link 27, the guiding elements 26 force apart the run-on oblique surfaces 28 and thus the two part connecting links of the connecting link 27 assigned to the respective guiding elements 26, until the guiding elements 26 can engage into the connecting link 27.
The toy vehicle 1 has the following play functions: for steering the toy vehicle 1 the steering activating element is operated intuitively like the steering wheel of a vehicle. On rotating the steering activating element 5 to the right the toy vehicle 1 curves to the right and on activating it to the left it curves to the left. By operating the angle setting activating element 23 the setting angle of the loading arm 18 is defined. In the place where the load exerts the greatest torque at the free end of the loading arm, namely in the range of a small setting angle α, due to the design of the connecting link 27 the lifting force, which can be exerted at a given activating force onto the angle setting element 23, is at its greatest. Towards greater setting angles a owing to the lower torque, which the load exerts, a smaller lifting force can be tolerated, so that a rotation of the spindle 22 results in a greater change to the setting angle. In the case of overload on the loading arm 18 the guiding elements 26 disengage from the connecting link 27, before the connecting components are damaged. Owing to the run-on oblique surfaces 28 the guiding elements 26 can be returned more easily into the connecting link 27 to restore the connecting link guide. Additional activating elements can be provided for the telescopic action of the loading arm 18 and for activating a blade which is possibly arranged at the free end of the loading arm 18.
The toy vehicle 1 is made completely of plastic. The components of the toy vehicle 1 are injection molded parts.
Number | Date | Country | Kind |
---|---|---|---|
20 2010 001 555 U | Jan 2010 | DE | national |
Number | Name | Date | Kind |
---|---|---|---|
184892 | O'Daniel | Nov 1876 | A |
332084 | Keech et al. | Dec 1885 | A |
420872 | Fleshman | Feb 1890 | A |
420873 | Fleshman | Feb 1890 | A |
1652135 | Chein | Dec 1927 | A |
2701143 | Taylor et al. | Feb 1955 | A |
3290818 | Mills | Dec 1966 | A |
3653147 | Zbikowski et al. | Apr 1972 | A |
4563162 | Ishimoto | Jan 1986 | A |
4610455 | Furukawa et al. | Sep 1986 | A |
4695267 | Simmel | Sep 1987 | A |
4713981 | Zahn | Dec 1987 | A |
5273480 | Suto | Dec 1993 | A |
5362080 | Bishop et al. | Nov 1994 | A |
5531466 | Hayashi | Jul 1996 | A |
5584743 | Beaulieu | Dec 1996 | A |
5873200 | Henderson | Feb 1999 | A |
6019565 | Gesuale | Feb 2000 | A |
6142426 | Zaro et al. | Nov 2000 | A |
6620023 | Yeung | Sep 2003 | B2 |
20110250822 | Koehl | Oct 2011 | A1 |
Number | Date | Country |
---|---|---|
1975663 | Dec 1967 | DE |
93 02 435 | Apr 1993 | DE |
9302435 | Apr 1993 | DE |
0271647 | Jun 1988 | EP |
1113436 | Mar 1956 | FR |
1580571 | Sep 1969 | FR |
1062777 | Mar 1967 | GB |
S4913849 | Feb 1974 | JP |
2007089787 | Apr 2007 | JP |
Entry |
---|
European search report dated Jan. 20, 2015. In case of the parallel European patent application No. 10188133.2. |
Number | Date | Country | |
---|---|---|---|
20140220858 A1 | Aug 2014 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12893363 | Sep 2010 | US |
Child | 14245251 | US |