This disclosure relates to an assembly of parts that can be interconnected to construct a toy figure.
Construction toys that include interlocking plastic building elements promote creative and imaginative play by end users. Typically, plastic building elements attach to each other or interlock using an array of small cylindrical bumps or “studs” on the top surface of one building element that fit into an array of holes or recesses on the bottom surface of another building element. In general, the size and spacing of the studs and holes are standardized to enable attachment among various types of building elements and accessories that can be included in one or more construction toy kits.
A construction toy kit can include a standard set of pieces for allowing end users to design and build a variety of different models. A construction toy kit also can provide instructions for using certain pieces to build a particular model. In some cases, construction toy kits can be associated with particular themes for building models representing historical, contemporary, futuristic, or fictional structures.
In addition to building elements, construction toy kits often include small plastic toy figures to enhance play. Typically, the toy figures are about 1.5 inches tall and include head, arms, hands, torso, hips, and legs parts. The toy figures may represent characters associated with a particular theme and generally are structured to connect to the building elements and carry accessories such as small plastic tools.
Various implementations are directed to mating parts of a toy figure assembly, which can be interconnected to construct a toy figure. The mating parts of the toy figure assembly are structured for friction fit attachment and may include an upper body part including a neck portion and a trunk portion; a lower body part including a rod portion, a stud portion, a legs portion, and a feet portion; and arm parts having a hand portion, a forearm portion, an elbow portion, an upper arm portion, and a shoulder (or deltoid) portion.
In some general aspects, a toy figure assembly includes an upper body part defining a side bore and at least two interior bearing surfaces; an arm part; and a lower body part attached to the upper body part. The arm part includes a non-shoulder portion, and a shoulder portion adjacent the non-shoulder portion and having an outer diameter greater than an outer diameter of the non-shoulder portion, the shoulder portion having at least two shoulder bearing surfaces and an axial relief slot that extends toward the non-shoulder portion. At least one of the upper body part and the lower body part includes a recess for frictionally engaging a stud of a toy building element. When the arm part is snap fit through the bore of the upper body part, the at least two shoulder bearing surfaces of the shoulder portion abut the at least two interior bearing surfaces of the upper body part, respectively.
Implementations can include one or more of the following features. For example, the at least two shoulder bearing surfaces can be seated between the at least two interior bearing surfaces of the upper body part after the arm part is snap fit through the bore of the upper body part. The upper body part can include a neck portion and a trunk portion, the neck portion projecting from a top surface of the trunk portion and having an inner surface defining a through hole that opens into the trunk portion. A first of the interior bearing surfaces of the upper body part can extend from a neck portion into a trunk portion that defines the side bore, the first of the interior bearing surfaces facing the bore; and a second of the interior bearing surfaces of the upper body part can be a flat inside surface of the trunk portion that defines the side bore, the second of the interior bearing surfaces facing the first of the interior bearing surfaces. The trunk portion can include a front wall, a rear wall, and a side wall connecting the front and rear walls, one of the walls defining the side bore and the flat inside surface.
The toy figure assembly can include a plurality of arm parts, each arm part being identical to each other.
The arm part can include an axial relief slot that splits the shoulder portion and a section of the non-shoulder portion. The upper body part can attach to the arm part by receiving the entire shoulder portion and at least the section of the non-shoulder portion that includes the relief slot into a trunk portion of the upper body part. Each shoulder portion can include two bottom faces perpendicular to the periphery of the shoulder portion, the bottom faces define shoulder bearing surfaces for contacting corresponding interior bearing surfaces defined by interior sidewalls within the upper body part. Each shoulder portion can include two top faces perpendicular to the periphery of the shoulder portion, the top faces define shoulder bearing surfaces for contacting corresponding interior bearing surfaces defined by a flat inside surface of the upper body part.
The non-shoulder portion of each arm part includes a hand portion, a forearm portion, an elbow portion, and an upper arm portion adjacent the shoulder portion. A center-to-center distance between each hand portion can correspond to a center-to-center distance between studs of a building element. Each forearm portion, elbow portion, and upper arm portion of one of the arm parts can have a standard diameter capable of being held by a hand portion of a different one of the arm parts.
In other general aspects, a toy figure assembly includes an upper body part including a neck portion and a trunk portion, the neck portion projecting from a top surface of the trunk portion and having an inner surface defining a through hole that opens into the trunk portion. The trunk portion includes a front wall, a rear wall, a side wall defining a side bore and having a flat inside surface. An inner surface of the front wall and an inner surface of the rear wall each include an upper longitudinal flat, interior sidewalls which abut the upper longitudinal flat, and a lower longitudinal flat. The toy figure assembly also includes a lower body part structured for friction fit attachment to the upper body part, the lower body part including a rod portion, a stud portion, a legs portion, and a feet portion. Each upper longitudinal flat is structured to cooperate with the interior sidewalls that abut the upper longitudinal flat to define a track for engaging the rod portion when received into the trunk portion. Each lower longitudinal flat is structured to cooperate with the flat inside surface of the side wall for engaging the stud portion when received into the trunk portion.
Implementations can include one or more of the following features. For example, a bottom surface of each upper longitudinal flat and bottom surfaces of the interior sidewalls that abut the upper longitudinal flat can provide stops for contacting a top surface of the stud portion when received into the trunk portion.
Each interior sidewall that abuts the upper longitudinal flat can be visible through the side bore. Each upper longitudinal flat can further extend longitudinally along the inner surface of the neck portion.
The track can communicate with the through hole. The interior sidewalls that abut the upper longitudinal flat can define bearing surfaces for contacting arm parts to be received into the trunk portion.
In other general aspects, a toy construction set includes a toy figure assembly having a head part, an upper body part removably attachable to the head part via a non-snap frictional engagement, and a lower body part removably attachable to the upper body part via a non-snap frictional engagement. The lower body part includes a single recess structured for non-snap frictional attachment to a building element via only a single stud on the building element.
Implementations can include one or more of the following features. The toy construction set can also include a building element that defines a coupling stud. When the coupling stud is frictionally received in a recess defined by the lower body part, the toy figure can be attached to the building element via a non-snap frictional engagement, and all of the elements of the toy figure can be removed from the building element and retain non-snap frictional engagement when the toy figure is pulled only by the head part.
A hierarchy of interference forces can be in effect when a toy figure is assembled from the head part, the upper body part, and the lower body part and the lower body part is attached to the single stud of the building element, the hierarchy of interference forces including a greatest interference force between the head part and the upper body part and a weakest interference force between the lower body part and the stud on the building element, and wherein the hierarchy of interference forces allows the toy figure to be removed from the building element as a single unit when the toy figure is pulled only by the head part.
The upper body part can include a neck portion and a trunk portion, the neck portion projecting from a top surface of the trunk portion and having an inner surface defining a through hole that opens into the trunk portion.
The interference force between the lower body part and the stud on the building element can correspond to an interference force between building elements.
The toy construction set can also include arm parts structured for snap fit attachment to the upper body part, wherein connection between the upper body part and the arm parts is tight enough so that each of the arms parts can maintain any angular position and is loose enough so that each of the arm parts can be repositioned without overcoming the interference force between the lower body part and the stud on the building element.
In another general aspect, a toy construction set includes one or more building elements having coupling elements of a first coupling size; one or more accessory building elements having coupling elements of a second coupling size that is distinct from the first coupling size; and one or more toy figure assemblies. Each toy figure assembly includes a plurality of interconnectable body parts including an upper torso body part and a lower legs and feet body part, and at least two of the interconnectable body parts includes a coupling system to which coupling elements of the first coupling size and coupling elements of the second coupling size of the building elements of the set can be frictionally attached.
In other general aspects, a toy figure assembly includes an upper body part; a head part structured for friction fit attachment to the upper body part; and a lower body part structured for friction fit attachment to the upper body part and structured for attachment to a building element via only a single stud on the building element. A hierarchy of interference forces is in effect when a toy figure is assembled from the head part, the upper body part, and the lower body part and the lower body part is attached to the single stud of the building element, the hierarchy of interference forces including a greatest interference force between the head part and the upper body part and a weakest interference force between the lower body part and the stud on the building element, and wherein the hierarchy of interference forces allows the toy figure to be removed from the building element as a single unit when the toy figure is pulled only by the head part.
The foregoing aspects and many of the attendant advantages of various implementations will become more readily appreciated and better understood by reference to the following detailed description and the accompanying drawings.
Various implementations are directed to parts of an assembly that can be interconnected to construct a toy figure. Numerous specific details are set forth; however, the implementations can be practiced without these specific details. Specific structural and functional details disclosed herein are representative and do not necessarily limit the scope of the implementations.
As shown, the assembly of the parts of the toy
As discussed below, each of the upper body part 40 and the lower body part 80 is designed with one or more coupling elements of first and second coupling sizes. In this way, the upper body part 40 and the lower body part 80 can, in addition to being able to be attached to each other and to the head part 20 and arm parts 60 (for the upper body part 40), also be attached to standard building elements (having a first coupling size) of the toy construction kit, accessories (having a second coupling size) of the toy construction kit, or both standard building elements and accessories. This enables the body parts 40, 80 to be used with other pieces of the toy construction kit and promotes play and creativity on the part of the end user.
The trunk portion 42 is a hollow piece that includes a top surface 44, a front wall 45, a left wall 46, a rear wall (opposite the front wall 45), and a right wall (opposite the left wall 46). The bottom surfaces of the front wall 45, the left wall 46, the rear wall, and the right wall define an open bottom end of the trunk portion 42. As shown, the trunk portion 42 can have rounded corners and edges. The surfaces of the front wall 45 and the rear wall each may curve outwardly and have an identical shape. As such, the front wall 45 or the rear wall each can represent the chest or back of the toy
In one or more implementations, the upper body part 40 is designed and/or manufactured to have dimensions that correspond to certain dimensions of a standard building element, stud, and/or accessory included in a toy construction kit. For instance, a standard building element (for example, a 1×1 brick or plate) can have a length of 7.80 mm, a width of 7.80 mm, and a height of 3.20 mm (not including the stud). A standard stud (on the surface of a building element) can have a diameter of 4.88 mm and a height of 1.80 mm. Standard accessories held by toy figures can have a diameter of 3.18 mm. As an example, the size of the neck portion 41 can allow for the attachment of a standard building element, such as a 1×1 element or plate, or any building element that accepts a stud connection. Moreover, the opening 43 can be sized to accept any standard accessory such as a 3.18 mm rod and such accessory can extend through the upper body part 40.
Referring to
Referring to
The trunk portion 42 includes interior sidewalls 49 that project into the interior of the trunk portion 42 and are visible through the bore 47. As shown, the interior sidewalls 49 extend longitudinally (that is, along a longitudinal axis 400) along the inner surfaces of the front wall 45 and the rear wall. In this implementation, two interior sidewalls 49 project from the inner surface of the front wall 45 and two interior sidewalls 49 project from the inner surface of the rear wall.
The inner surface of the rear wall of the trunk portion 42 includes an upper longitudinal flat 50, which extends longitudinally along the inner surface of the rear wall of the trunk portion 42. In one or more implementations, the upper longitudinal flat 50 also extends longitudinally along the inner surface of the neck portion 41. Within the trunk portion 42, the inner surfaces of the interior sidewalls 49 that project from the rear wall of the trunk portion 42 abut the upper longitudinal flat 50 to define a track or channel that communicates with the through hole provided by the inner surface of the neck portion 41. In this example, the front wall 45 and the rear wall are similarly structured. Accordingly, the front wall 45 also includes a corresponding upper longitudinal flat 50 that extends longitudinally along the inner surface of the front wall 45 of the trunk portion 42 and the inner surface of the neck portion 41. Within the trunk portion 42, the inner surfaces of the interior sidewalls 49 that project from the front wall 45 of the trunk portion 42 abut the corresponding upper longitudinal flat 50 to define another track or channel that communicates with the through hole provided by the inner surface of the neck portion 41. Each channel can be formed such that the inner surface of the neck portion 41 is flush with the inner surfaces of the interior sidewalls 49 that project from the front wall 45 and the rear wall of the trunk portion 42 and the inner surface of each upper longitudinal flat 50.
The inner surface of the rear wall of the trunk portion 42 also includes a lower longitudinal flat 51. As shown, the lower longitudinal flat 51 is provided in the inner surface of the rear wall of the trunk portion 42 vertically below the upper longitudinal flat 50. The lower longitudinal flat 51 also is formed deeper into the inner surface of the rear wall of the trunk portion 42 than the upper longitudinal flat 50. In this example, the front wall 45 and the rear wall are similarly structured. Accordingly, a corresponding lower longitudinal flat 51 is provided in the inner surface of the front wall 45 of the trunk portion 42.
In one or more implementations, each lower longitudinal flat 51 provided in the inner surfaces of the front wall 45 and the rear wall is structured and arranged for attaching the upper body part 40 to the lower body part 80 or to a standard coupling stud (having a diameter of 4.88 mm). For instance, the trunk portion 42 can attach to a building element (for example, a brick or a plate) via only a single stud on the building element. Each lower longitudinal flat 51 can cooperate with each flat inside surface 48 provided in the left wall 46 and the right wall to engage the periphery of a standard stud. The bottom surfaces of each of the interior sidewalls 49 and the bottom surface of each upper longitudinal flat 50 can be spaced apart from the bottom surface of the trunk portion 42 for receiving a standard stud and can provide stops that abut the top surface of a standard stud received by the trunk portion 42. Additionally, the trunk portion 42 can also receive an accessory through the opening in the bottom, such accessory being able to extend all the way up through the opening 43 and engage with the upper longitudinal flat 50.
Referring to
In one or more implementations, the hand portion 61 is structured as a C-shaped grip provided at the distal end of each of the arm parts 60. The elbow portion 63 is structured as a curved section between the forearm portion 62 and the upper arm portion 54. The shoulder portion 65 is provided at the proximal end of each of the arm parts 60 and is structured as a snap joint, flange, or collar having a diameter greater than the diameter of the upper arm portion 64. To facilitate attachment to the upper body part 40, each of the arm parts 60 includes an axial relief slot 66 that splits the entire shoulder portion 65 and a section of the upper arm portion 64. The relief slot 66 bifurcates the proximal end of each of the arms parts 60 such that each shoulder portion 65 includes two bottom faces 67 (for example, C-shaped or D-shaped surfaces) perpendicular to the periphery of the shoulder portion 65 and two top faces 68 (for example, C-shaped ledges) perpendicular to the periphery of the shoulder portion 65.
As shown, the two bottom faces 67 and the two top faces 68 of each shoulder portion 65 define or act as bearing surfaces for contacting corresponding bearing surfaces defined or acting within the trunk portion 42 of the upper body part 40. Each flat inside surface 48 provided around each bore 47 in the left wall 46 and in the right wall defines or acts as a bearing surface within the trunk portion 42. In addition, outside surfaces of the interior sidewalls 49 projecting from the front wall and rear wall within the trunk portion 42 define or act as bearing surfaces. In this way, twisting of the arm parts 60 is prevented or greatly hindered when the upper body part 40 and the arm parts 60 are assembled and the bearing surfaces defined by the shoulder portion 65 are in contact with the bearing surfaces defined within the trunk portion 42. Twisting is defined as any rotation of the arm part 60 about an axis that is defined within the plane of the opening of the bore 47, such plane being perpendicular to an arm axis 405. As shown in FIG. 4A, the plane of the opening of the bore 47 is defined by axes 410, 415. Twisting is prevented or hindered because twisting in this manner exerts a force that could detach or pop the arm part 60 from the trunk portion 42.
In general, the arm parts 60 are attachable to and rotatable within the upper body part 40 by a snap fit engagement with a seating (defined by the engagement between the bearing surfaces) about the arm axis 405 to provide articulation to the toy
Referring to
As shown, when the relief slot 66 is oriented in a horizontal position, bearing surfaces defined by two (upper and lower) bottom faces 67 of the shoulder portion 65 (for example, the left arm) contact a bearing surface defined by the outside surface of one of the interior sidewalls 49 projecting from the rear wall of the trunk portion 42. Moreover, the bearing surfaces defined by the same two (upper and lower) bottom faces 67 of the shoulder portion 65 (for example, the left arm) also contact a bearing surface defined by the outside surface of one of the interior sidewalls 49 projecting from the front wall of the trunk portion 42. In addition, bearing surfaces defined by two (upper and lower) top faces 68 of the shoulder portion 65 (for example, the left arm) contact a bearing surface defined by the flat inside surface 48 around the bore 47 of the left wall 46.
When the relief slot 66 is in a vertical position, bearing surfaces defined by two (left and right) bottom faces 67 of the shoulder portion (for example, the right arm) contact bearing surfaces defined by the outside surfaces of two sidewalls 49—one projecting from the rear wall of the trunk portion 42 and one projecting from the front wall of the trunk portion 42. In addition, bearing surfaces defined by two (left and right) top faces 68 of the shoulder portion 65 (for example, the right arm) contact a bearing surface defined by the inside surface 48 around the bore 47 of the right wall.
In one or more implementations, each of the arm parts 60 is designed and/or manufactured to have dimensions that correspond to certain dimensions of a standard building element, stud, and/or accessory included in a construction toy kit. Referring to
As mentioned, each of the arm parts 60 can rotate about the arm axis 405 within the upper body part 40 to provide articulation. When the upper body part 40 and the arm parts 60 are assembled, each of the arm parts 60 can be rotated about the arm axis 405 and posed at any angular position. In general, the connection between the arm parts 60 and the upper body part 40 must be tight enough so that each of the arms parts 60 can maintain any angular position when an accessory is held by the hand portion 61. The connection also must be loose enough so that each of the arm parts 60 can be repositioned without overcoming the interference force holding the toy
In one or more implementations, the rod portion 81 and the stud portion 82 are formed as solid structures to be received by the trunk portion 42 of the lower body part 40 (shown in
In one or more implementations, the lower body part 80 is designed and/or manufactured to have dimensions that correspond to certain dimensions of a standard building element, stud, and/or accessory included in a construction toy kit. Referring to
Referring to
In one or more implementations, the upper body part 40 attaches to the lower body part 80 by receiving the rod portion 81 and the stud portion into the interior of the trunk portion 42. Within the trunk portion 42, each upper longitudinal flat 50 provided in the inner surfaces of the front wall and the rear wall is structured and arranged for engaging the rod portion 81 of the lower body part 80. The upper longitudinal flat 50 in the inner surface of the front wall can cooperate with the inner surfaces of the interior sidewalls 49, which project from the front wall to define a track that engages the rod portion 81. The upper longitudinal flat 50 in the inner surface of the rear wall can cooperate with the inner surfaces of the interior sidewalls 49, which project from the rear wall to define a track that engages the rod portion 81. The bottom surfaces of each of the interior sidewalls 49 and the bottom surface of each upper longitudinal flat 50 can be spaced apart from the bottom surface of the trunk portion 42 for receiving the stud portion 82 of the lower body part 80. As such, the bottom surfaces of each of the interior sidewalls 49 and the bottom surface of each upper longitudinal flat 50 can provide stops that abut the top surface of the stud portion 82 when received into the interior of the trunk portion 42.
Each lower longitudinal flat 51 provided in the inner surfaces of the front wall 45 and the rear wall is structured and arranged for engaging the stud portion 82 of the lower body part 80. Each lower longitudinal flat 51 can cooperate with each flat inside surface 48 provided in the left wall 46 and the right wall to engage the periphery of the stud portion 82 of the lower body part. When assembled, the bottom surface of the upper body part 40 abuts the top surface 84 of the feet portion 83 of the lower body part 80.
When the upper body part 40 is attached to lower body part 80 and the arm parts 60, each flat inside surface 48 in the left wall 46 and in the right wall of the trunk portion 42 provides a bearing surface that contacts the top faces 68 of the shoulder portion 65 (shown in
When the toy
The connection between the upper body part 40 and the arm parts 60 must be tight enough so that each of the arms parts 60 can maintain any angular position yet loose enough so that each of the arm parts 60 can be repositioned without overcoming the interference force between the lower body part 80 and the stud on the building element 90. The connection between the upper body part 40 and the lower body part 80 must be stable enough so that there should be no noticeable wobble that begins to separate upper body part 40 and the lower body part 80 when a back and forth (shoulder to shoulder) force is applied across the top of the head part 20.
While certain features of the implementations have been illustrated and described, many modifications, substitutions, changes and equivalents are possible. It is therefore to be understood that the appended claims are intended to cover all such modifications and changes as fall within the true spirit of the implementations.
Number | Name | Date | Kind |
---|---|---|---|
1868049 | Deichmann | Jul 1932 | A |
2106148 | Kellner | Jan 1938 | A |
2663971 | Ippolito | Dec 1953 | A |
2752726 | Calverley | Jul 1956 | A |
2884739 | Ketcham | May 1959 | A |
D210471 | Ach | Mar 1968 | S |
3768197 | Shimamura | Oct 1973 | A |
3874113 | Beck | Apr 1975 | A |
3946517 | Goldfarb et al. | Mar 1976 | A |
3988855 | Crabtree et al. | Nov 1976 | A |
3995395 | Rahmstorf | Dec 1976 | A |
4028844 | Dideriksen et al. | Jun 1977 | A |
4063381 | Deulofeu | Dec 1977 | A |
D248881 | Goldfarb et al. | Aug 1978 | S |
4103451 | Kawada et al. | Aug 1978 | A |
4136481 | Nicholls | Jan 1979 | A |
D253711 | Christiansen et al. | Dec 1979 | S |
4190982 | Rahmstorf | Mar 1980 | A |
4203248 | Tapdrup | May 1980 | A |
4205482 | Christiansen et al. | Jun 1980 | A |
4519786 | Larws | May 1985 | A |
4643691 | Keiji | Feb 1987 | A |
4988324 | Ryaa et al. | Jan 1991 | A |
5087219 | Price | Feb 1992 | A |
D352078 | Bertrand | Nov 1994 | S |
5380233 | Numoto | Jan 1995 | A |
5518434 | Ziegler | May 1996 | A |
5913706 | Glickman et al. | Jun 1999 | A |
D474614 | Schwartz | May 2003 | S |
6648715 | Wiens et al. | Nov 2003 | B2 |
6893318 | Søviknes et al. | May 2005 | B2 |
D539364 | Sofussen | Mar 2007 | S |
D581994 | Wilk et al. | Dec 2008 | S |
7553209 | Sorensen | Jun 2009 | B1 |
D611108 | Bodin | Mar 2010 | S |
D638084 | Barbis | May 2011 | S |
8210891 | Brumagin et al. | Jul 2012 | B2 |
Number | Date | Country |
---|---|---|
143573 | Jul 2012 | CA |
143574 | Jul 2012 | CA |
7039572 | Jan 1971 | DE |
1099460 | May 2001 | EP |
2318663 | Feb 1977 | FR |
Entry |
---|
“Minifigure”—Brickipedia: https://web.archive.org/web/20090209135214/http://lego.wikia.com/wiki/Minifigure, Feb. 9, 2009. |
The International Search Report and Written Opinion issued by Josef Ullrich of the European Patent Office in Counterpart patent application, PCT/2014/014685 (Publication WO 2014/123911) on Aug. 1, 2014, 12 pages. |
Communication relating to the results of the Partial International Search in Counterpart application, PCT/2014/014685, May 9, 2014, 5 pages. |
“The History and Evolution of the Lego Minifigure,” by Toys 2 Remember, captured on Dec. 18, 2010 at http://web.archive.org/web/20101218060740/http://www.toys2remember.com/2010/11/lego-minifigure-history.html, 8 pages. |
Wikipedia article on “Lego minifigure,” captured on Dec. 9, 2011 at http://web.archive.org/web/20111209210840/http://en.wikipedia.org/wiki/Minifigure, 5 pages. |
Cube Figured by Magnote, captured on Jan. 25, 2012 at http://web.archive.org/web/20120125002644/http://www.magnote.com/gigoblocks/cubefigures/, 3 pages. |
Review—Transformers Kreons published by Philip Reed on Aug. 20, 2011 at http://www.battlegrip.com/?p=31043, 10 pages. |
International Preliminary Report on Patentability, equivalent International Patent Application No. PCT/US2014/014685, mailed Aug. 20, 2015, 12 pages. |
Number | Date | Country | |
---|---|---|---|
20140227936 A1 | Aug 2014 | US |