The present invention relates generally to toy assemblies, and in particular, body assemblies for toy figurines and dolls.
The fabrication of toy figurines and dolls has evolved over time, reflecting shifting trends and consumer preferences, improvements in manufacturing processes, as well as changes in the materials available and used. Toy figurines are commonly assembled with different parts and sections screwed together. For toy figurines manufactured from a plastic material such as acrylonitrile butadiene styrene (ABS), fabrication of the toy figurine often involves solvent bonding/gluing two plastic halves together to form the body or torso of the toy figurine. The use of adhesives or glue to connect the two plastic halves provides the benefit of eliminating exterior assembly details associated with other conventional joining methods (e.g., screw holes).
However, when the plastic material is switched from acrylonitrile butadiene styrene (ABS) to a different material, difficulty or an inability to solvent bond/glue the components together may become an issue. For example, high-density polyethylene (HDPE) is inert to chemicals for solvent bonding and is also too soft to respond to the ultrasonic frequency for ultrasonic welding (the softness of the material absorbs the vibrational energy needed to generate the localized friction heat for melting the material).
Thus, there is a need for a novel toy figurine and related method of fabricating such a toy figurine that does not rely on solvent bonding/gluing the components together, but still provides a body or torso with no visible exterior assembly details.
A toy assembly, for instance a body assembly or torso of a toy figurine, as disclosed herein is formed from two main sections that are heat welded together for a clean aesthetic that hides its assembly details. This general construction eliminates the need for screws or adhesives—components which can affect the overall recyclability of a toy. Furthermore, the toy assembly can be fabricated from a wide range of polyolefin materials, such as high-density polyethylene (HDPE). Thus, the entire toy can be fabricated using a single material, such as a recyclable plastic, to create an easily recyclable and environmentally conscious toy.
In one or more embodiments, the toy assembly comprises a first section and a second section coupled to the first section. The first section includes a plurality of first section members positioned on an inner side of the first section. The second section includes a plurality of second section members positioned on an inner side of the second section. The plurality of second section members are heat welded directly to the plurality of first section members without any additional welding or filler material. Furthermore, the first section and the second section are solely held together by the heat welded first section members and second section members. Preferably, the toy assembly is completely made of a single polyolefin material and does not include an adhesive or screw. In one instance, the toy assembly is made of a high-density polyethylene (HDPE).
In certain embodiments, the first section also includes an indentation positioned along the perimeter of the first section and the second section includes a protrusion positioned along the perimeter of the second section. The protrusion engages the indentation to form an overlap joint that aligns the second section with the first section. Additionally or alternatively, the first section can include a plurality of alignment sockets on the inner side of the first section and the second section can include a plurality of alignment posts on the inner side of the second section. The plurality of alignment posts are received by the plurality of alignment sockets to align the second section with the first section.
In one or more other embodiments, a body assembly for a toy figurine is provided. The body assembly comprises a first section and a second section. The first section includes a plurality of first section bosses and alignment sockets positioned on an inner side of the first section. The second section is coupled to the first section and includes a plurality of second section bosses and alignment posts positioned on an inner side of the second section. The plurality of first section bosses are directly heat welded to the plurality of second section bosses without adding any welding material to the joint (e.g., without a filler material or any other type of additional material). Furthermore, the alignment posts are engaged with the alignment sockets but are not heat welded to the alignment sockets.
In certain embodiments, the plurality of first section bosses are positioned proximate the perimeter of the first section and the plurality of second section bosses are positioned proximate the perimeter of the second section. At least one of the alignment posts and at least one of the alignment sockets are positioned within an upper portion, a middle portion, and a lower portion of the body assembly. In some embodiments, the body assembly further includes a pair of arms movably retained between the first section and second section. A hip connector may also be retained between the first section and second section and a pair of legs are movably coupled to the hip connector. In one instance, the hip connector includes a pair of annular (e.g., donut-shaped) ball joints and each leg is movably coupled to one of the annular (e.g., donut-shaped) ball joints.
In one or more other embodiments, a method of fabricating a toy assembly is provided. The method comprises providing a first section and a second section. The first section has a plurality of first section members positioned on an inner side of the first section and the second section has a plurality of second section members positioned on an inner side of the second section. A top portion of the first section members and the second section members is heated and the first section and the second section are then brought together such that the first section members are heat welded to the second section members and the first section is permanently coupled to the second section without adhesives or screws.
In certain embodiments, the first section includes an indentation positioned along the perimeter of the first section and the second section includes a protrusion positioned along the perimeter of the second section. The step of bringing together the first section and the second section further includes engaging the indentation with the protrusion to align the first section with the second section. Additionally or alternatively, the first section can include a plurality of alignment sockets on the inner side of the first section and the second section can include a plurality of alignment posts on the inner side of the second section. In such embodiments, the step of bringing together the first section and the second section further includes inserting the alignment posts into the alignment sockets to align the first section with the second section.
Other objects, features, and advantages of the present invention will become apparent to those skilled in the art from the following detailed description. It is to be understood, however, that the detailed description and specific examples, while indicating some embodiments of the invention, are given by way of illustration and not limitation. Many changes and modifications within the scope of the invention may be made without departing from the spirit thereof, and the present invention includes all such modifications.
Referring now to the drawings in which like reference numbers represent corresponding parts throughout:
A toy assembly and a related method for fabricating the toy assembly are disclosed.
Referring now to
Further, three alignment sockets 204 are each located within a respective upper portion A, middle portion B, and lower portion C of torso 102 (see
In the exemplary embodiment illustrated, the alignment sockets 204 in upper portion A and middle portion B help retain arms 104. The alignment socket 204 in lower portion C helps retain hip connector 108. A different number of alignment sockets and corresponding alignment posts (e.g., 1, 2, 4 or more pairs of alignment sockets and posts) may be used depending on various factors such as the size of the torso, the amount of alignment necessary when coupling the front section to the back section, and the amount of reinforcement necessary to securely retain the appendages (e.g., arms, legs, hip connector) within the torso. Furthermore, in the exemplary embodiment illustrated, alignment sockets 204 are similarly sized and have the same hollow cylindrical shape as bosses 202. In other embodiments, the bosses and the alignment sockets may be any number of different shapes or sizes.
To further facilitate the alignment between front section 200 and back section 300, the perimeter of the inner side of front section 200 includes an indentation 206. When aligned with protrusion 306 of back section 300 (see
Referring now to
The perimeter of the inner side of back section 300 further includes a protrusion 306 that abuts indentation 206 of front section 200 when front section 200 and back section 300 are assembled together to form torso 102 (see, e.g.,
Referring now to
The boss-to-boss hot air welding process described herein allows multiple bosses to be simultaneously heated in a controlled fashion for fast and easy fabrication of the body assembly. Bosses 202, 302 have an initial length that allows the mating surfaces to be deformed and squeezed out around the bosses as the bosses are joined together. In one exemplary implementation, the bosses include 0.25 mm of extra material length to be melted and deformed. Since bosses 202, 302 are located inside torso 102, any deformed material or mess resulting from the joining of the bosses is hidden and not visible from the outside of the body assembly. Hot air welded bosses 202, 302 eliminate the need for screws and other consumables that may be used in other joining methods. Furthermore, the welded bosses provide a strong and firm connection between front section 200 and back section 300 that allows arms 104 and legs 106 to be stably retained therein. In contrast, using male and female bosses and/or an adhesive to join the bosses together results in a comparatively much weaker bond.
Even though alignment sockets 204 are the same shape as bosses 202 in the exemplary embodiment illustrated, alignment sockets 204 are not hot air welded to alignment posts 304. Instead, alignment posts 304 are inserted and received within alignment sockets 204 as front section 200 and back section 300 are brought together. Additionally, protrusion 306 abuts indentation 206 to facilitate the alignment between front section 200 and back section 300. Hot air welding is similarly not applied along the perimeter of torso 102 because the heat can deform the defined shape and edge of torso 102. Therefore, front section 200 and the back section 300 are solely held together by the heat welded front section bosses 202 and back section bosses 302. That is, only boss-to-boss hot air welds couple the front section 200 to the back section 300.
As shown in
The hot air welded boss-to-boss construction described herein allows body assembly 100 to be fabricated from a wide range of polyolefin materials (e.g., polypropylene, polyethylene, polybutylene). In a preferred embodiment, the whole toy figurine (including the body assembly, head, and appendages) is made of a single recyclable and/or sustainable material such as post-consumer recycled high-density polyethylene (HDPE) or a bio/plant-based plastic. Furthermore, because the toy figurine does not include extraneous materials such as metal screws, adhesives or welding material that can affect the recycling process, the toy figurine can be easily recycled to reduce waste and resource consumption. That is, due to its composition and fabrication, the entire figurine may be recyclable.
In step 504, appendages such as arms, legs, and/or hip connector may be attached to or positioned on the first or second section. In one exemplary implementation, a pair of arms and a hip connector are positioned on the first section.
In step 506, the section members of the first and second sections are simultaneously heated. Hot air/gas is blown onto the mating surfaces of the section members until a viscous melt is formed at the top of the section members.
In step 508, the first section and second section are pressed together such that the mating surfaces of the section members bond with each other. In some embodiments, the alignment posts of the second section are also inserted into the alignment sockets of the first section and/or the indentation of the first section engages with the protrusion of the second section. The section members form a permanent bond as they cool and solidify, resulting in the first and second sections being securely coupled to each other to form a body assembly. The attached appendages are also thereby held in position between the first and second sections.
In step 510, a head and/or additional appendages are then coupled to the body assembly to create the toy figurine.
Although the disclosed inventions are illustrated and described herein as embodied in one or more specific examples, it is nevertheless not intended to be limited to the details shown, since various modifications and structural changes may be made therein without departing from the scope of the inventions and within the scope and range of equivalents of the claims. For example, the method for fabricating the body assembly can also be applied to other body parts and appendages of a toy figurine, as well as other polyolefin-based toy assemblies. For instance, a leg may be similarly fabricated without the use of screws or adhesives by heat welding internal bosses of a first leg section and a second leg section together. Additionally, in some embodiments, the weldable members of the front section and back section may have a different geometry from the tubular bosses described herein. Such weldable members may be used in conjunction with or in the place of the bosses. For example, various combinations of ribs and boxes, bosses and ribs, alignment ribs only, and a perimeter lap joint alone may be used.
Moreover, it is to be understood that terms such as “front,” “back,” “side,” “length,” “exterior,” “inner,” “outer” and the like as may be used herein, merely describe points or portions of reference and do not limit the present invention to any particular orientation or configuration. Further, the term “exemplary” may be used herein to describe an example or illustration. Any embodiment described herein as exemplary is not to be construed as a preferred or advantageous embodiment, but rather as one example or illustration of a possible embodiment of the invention. Finally, various features from one of the embodiments may be incorporated into another of the embodiments.
Number | Name | Date | Kind |
---|---|---|---|
1509604 | Myers | Sep 1924 | A |
1690778 | Ford | Nov 1928 | A |
3059377 | Brown | Oct 1962 | A |
3579902 | Osborne | May 1971 | A |
3783554 | Shapero | Jan 1974 | A |
3816957 | Nakajima | Jun 1974 | A |
4205785 | Stanley | Jun 1980 | A |
4334385 | Melin | Jun 1982 | A |
4571209 | Manning | Feb 1986 | A |
4595378 | Sweet | Jun 1986 | A |
4657519 | Kobayashi | Apr 1987 | A |
4714446 | Lee | Dec 1987 | A |
4775352 | Curran | Oct 1988 | A |
4919987 | Manner | Apr 1990 | A |
4997500 | Arnett | Mar 1991 | A |
5480341 | Plakos | Jan 1996 | A |
5547413 | Murray | Aug 1996 | A |
6537131 | Larian | Mar 2003 | B1 |
6568986 | Kobayashi | May 2003 | B2 |
6582272 | Nelson | Jun 2003 | B1 |
6641895 | Adams | Nov 2003 | B1 |
6790117 | Ruiz Gonzalez | Sep 2004 | B2 |
7913968 | Sullivan | Mar 2011 | B2 |
8308524 | deFelice et al. | Nov 2012 | B2 |
8333634 | Norman | Dec 2012 | B2 |
9174138 | Norman | Nov 2015 | B2 |
9636600 | Rudisill | May 2017 | B2 |
20010046828 | Morris | Nov 2001 | A1 |
20040253901 | Donahue | Dec 2004 | A1 |
20060234599 | Mo | Oct 2006 | A1 |
20070264901 | Sisamos | Nov 2007 | A1 |
20070264902 | Ellman | Nov 2007 | A1 |
20090318053 | Tager | Dec 2009 | A1 |
20100041300 | Bevirt | Feb 2010 | A1 |
20100041301 | Phillips | Feb 2010 | A1 |
20100210171 | Chan | Aug 2010 | A1 |
20100210173 | Maggiore | Aug 2010 | A1 |
20100216367 | Kasahara | Aug 2010 | A1 |
20110114031 | Mann | May 2011 | A1 |
20120329361 | Buckley | Dec 2012 | A1 |
20140094084 | Lambrakis | Apr 2014 | A1 |
Entry |
---|
Office Action for Chinese Patent Application No. 202220429982.6, dated Aug. 1, 2022, 2 pages. |
Number | Date | Country | |
---|---|---|---|
20220274030 A1 | Sep 2022 | US |