1. Technical Field
The present invention relates to radio control toy models. More particularly, it relates to a radio control toy model with a transforming tire capability.
2. Description of Related Art
There are several conventional ways to increase the “grip” of a tire. For example, increasing height of treads, suspension adjustments, use of different rubber materials, use of larger-scale wheels, etc. However, since the shape and outer diameter of a tire are fixed, acceptable terrains or running surfaces for vehicles with normal round tires are limited. Vehicles with conventional round tires of any size can suffer from slipping uneven roads, grass or sands, due to lack of grip. In addition, these vehicles can become stuck altogether if the tires cannot overcome the road surface or terrain.
In accordance with one implementation of the present principles, the round tire can be specially designed to be divided into several sections. Each divided tire section independently pivots on its own fixed fulcrum point. Thus, the outer diameter of tire can become larger after all tire pieces or sections start transforming and spread out. These and other aspects are achieved in accordance with an implementation of the invention where the toy model includes a chassis, at least one motor, a gear mechanism connected to the at least one motor, and at least two transforming tires connected to the gear mechanism. Each transforming tire includes at least two tire sections configured to pivot outward beyond an outer circumference of the tire when a load on the tire exceeds a predetermined threshold.
In accordance with one implementation, the tire transforming mechanism includes a tire link connecting each tire section to the transmission link, a pivot point about which each tire section pivots, and a torsion spring around each of said pivot points and configured to bias each tire section inward. The torsion spring provides the predetermined load threshold for tire transforming.
Other aspects and features of the present principles will become apparent from the following detailed description considered in conjunction with the accompanying drawings. It is to be understood, however, that the drawings are designed solely for purposes of illustration and not as a definition of the limits of the present principles, for which reference should be made to the appended claims. It should be further understood that the drawings are not necessarily drawn to scale and that, unless otherwise indicated, they are merely intended to conceptually illustrate the structures and procedures described herein.
In the drawings wherein like reference numerals denote similar components throughout the views:
In accordance with one implementation show in
Referring to
As shown in
The rotation of driving motors 16 is transmitted to transmission link 34 through axle/end gear 54. When the axle/end gear 54 turns to move forward, and the load applied to the wheel is lower than a predetermined threshold, the force of central torsion springs 70 exceeds the rotary force. As a result, transmission link 34 does not travel and stays in a position shown in
Referring to
In other words, the load to wheels is less (i.e., lower coefficient of friction) when the vehicle runs on flat surfaces, so the vehicle runs normally with the original round-shaped tires. When an excess load is applied to wheels when vehicle runs on rough terrains (i.e., coefficient of friction increases), the normal round tire will transform into a different shape like a wheel wearing saw blades or extended claws (as shown, for example, in
When axle/end gear 54 turns to move forward, and also an excess load is applied to the wheel, the rotary force exceeds the force of torsion springs 70. In response, the transmission link 34 travels to a position which is shown in
When there are not any obstacles or when the load to wheel is reduced, the tire automatically transforms back to the original round-shape as shown in
In one implementation, there is included a lock mechanism installed at both the starting point and the end of a sector shaped gap 56 inside the wheel.
Thus, when the wheel is locked at starting point of the sector shaped gap, rotary motion of axle gear and wheel cannot be twisted. The tire cannot be transformed and stays in the original round-shape even if excess load is applied to the wheels, so vehicle normally runs with the round-shape tires. When it is locked at the end of sector shaped gap, rotary motion between axle/end gear and wheel will be maximized continuously. Vehicle can run with transformed tires even if load is not applied to the wheels.
In an automatic mode (i.e., a state of operation when the Lock Button is not being pressed) is shown in
When lock button is pressed in as shown in
When Lock Button 48 is pressed into the position 42A as shown in
When lock button 48 is pressed into the position 42B as shown in
Once the lock button 48 is pressed in, it stays in the same position due to the cam mechanism. The push spring 38 operates in conjunction with the lock button 48, such that when lock button 48 is pressed again, it is released and goes back to the original position. Either lock (at 42A or 42B position) or unlock is alternatively selectable.
In order for this mechanism to be efficient, a driven axle is required, so AWD (all-wheel drive) vehicles are preferable. However, transformation at either front or rear wheels (2WD vehicles) can occur with the transforming mechanism of the present invention. A vehicle with 2-motor differential drive is explained above as an exemplary embodiment. However, it is to be understood that this mechanism can be applied to vehicles that have a conventional front steering system. Also, the described example shows a tire with 3 divided sections, however the number of tire sections can vary without departing from the scope of this disclosure, with the provision that the present tire transforming mechanism can be applied to a tire having at least two sections (i.e., more than one section).
While there have been shown, described and pointed out fundamental novel features of the present principles, it will be understood that various omissions, substitutions and changes in the form and details of the methods described and devices illustrated, and in their operation, may be made by those skilled in the art without departing from the spirit of the same. For example, it is expressly intended that all combinations of those elements and/or method steps which perform substantially the same function in substantially the same way to achieve the same results are within the scope of the present principles. Moreover, it should be recognized that structures and/or elements and/or method steps shown and/or described in connection with any disclosed form or implementation of the present principles may be incorporated in any other disclosed, described or suggested form or implementation as a general matter of design choice. It is the intention, therefore, to be limited only as indicated by the scope of the claims appended hereto.
The present application claims priority from U.S. Provisional Patent Application Ser. No. 61/228,283 filed on Jul. 24, 2009, the entire contents of which is incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
61228283 | Jul 2009 | US |