The disclosure relates generally to a toy projectile system, and, more particularly, to a toy projectile system that includes toy projectiles and a toy projectile apparatus that has multiple improvised projectile (IP) detection features to prevent the insertion or loading of inappropriate objects and to prevent operation of the launch apparatus unless the toy projectile of the system is inserted at the improvised projectile checking housing assembly.
Toys and other devices that discharge objects have been designed in the past with various housing and internal elements. These devices are designed to discharge specifically design projectiles to eliminate or greatly reduce bodily injury and property damage. To insure that users not succeed in inserting objects that are dangerous and/or destructive better safety features are needed.
Various launching devices are known and are disclosed in several existing patents to prevent inappropriate object use and for safety features disabling such launching apparatus from operation where an improvised projectile may have been inserted therein. U.S. Pat. No. 4,212,285 to Cagan, et al. for “Dart gun and dart therefor” issued Jul. 15, 1980 discloses a one-piece dart shaft complementary to the dart barrel with a uniform non-circular cross section so that the propelling element makes a substantially air tight seal with the dart barrel, with a barrier for positively preventing physical contact between an air displacing piston and the dart. The piston provided with a central conical element facing the dart barrel where the rearward end of such an object will be engaged by the central conical element on the piston and deflected laterally, thereby wedging such an object within the dart gun so that it cannot be mechanically propelled by physical contact with the piston.
U.S. Pat. No. 5,156,137 to Clayton for “Projectile launcher” issued Oct. 20, 1992 concerns a projectile launching device where a spring, housed inside the barrel, rests against the release member of the lever assembly such that when a projectile is inserted into the barrel it compresses the spring against the release member and pivots the lever assembly to force the hook into the barrel and into engagement with the projectile tab as being locked together. U.S. Pat. No. 5,186,156 to Clayton for “Air operated toy gun” issued Feb. 16, 1993 discloses a movable air nozzle for successive engagement with a plurality of projectile launching barrels having rearward ends reduced diameter sections facilitate generally snug airtight fit to prevent the projectile shaft rearward end from exiting the rearward opening of the barrel, without a projectile receiving opening for allowing an appropriate size projectile at an opening for checking and preventing another projectile from the projectile receiving opening.
U.S. Pat. No. 5,165,383 to Ebert, et al. for “Gun with Pivoting Barrel, Projectile Loader, and Trigger Interlock,” issued Nov. 24, 1992 purports to disclose as a safety feature a BB gun with a barrel that pivots from the front. When latched the barrel is aligned and may be fired, when unlatched the barrel pivots and cannot be fired. U.S. Pat. No. 5,205,271 to Casas-Salva for “Air Rifles of the Hinged Barrel Type,” issued Apr. 27, 1993 purports to disclose an air rifle with a pivoting barrel for cocking a piston/spring and a spring biased catch for holding the barrel in alignment for firing. U.S. Pat. No. 5,529,050 to D'Andrade for “Safety Nozzle For Projectile Shooting Air Gun” issued Jun. 25, 1996 purports to disclose a safety mechanism having a nozzle, a spring biased valve element, and a hollow launch tube where the valve element is located in the path of airflow from an inlet to a hollow chamber inside the launch tube, where the projectile predetermined shape pushes against plural peripheral posts rearward which opens the air passageway around a cross-shaped valve element, thus problematic in that the nozzle and the valve element is that the air pressure generated by a launch spring must bear against and flow around the valve element before reaching the projectile to cause discharge. This airflow route causes a pressure drop, a loss of energy that is not desirable or efficient. U.S. Pat. No. 5,575,270 to Casas-Salva for “Air Guns,” issued Nov. 19, 1996 purports to disclose another air gun having a pivoting barrel, two spaced apart arms on the stock, and a tongue on the barrel so that when the barrel is brought into alignment the tongue fits between the arms to ensure proper location.
U.S. Pat. No. 9,097,484 to Poirier for “Toy launch apparatus with safety latches” issued Aug. 4, 2015 provides improvements for predetermined projectiles with apparatus includes multiple safety features to prevent inappropriate objects inserted into the apparatus from enabling the apparatus to operate. Therein latches are mounted which lock a shuttle to a housing assembly with the shuttle out of engagement with an abutment surface unless a properly sized projectile is inserted. U.S. Pat. No. 9,500,432 to Chia for “Hinged arm safety mechanism for foam dart launcher” issued Nov. 22, 2016 discloses a launching section with a safety arm and movable trigger, such that a non-standard dart having a length less than a minimum threshold may not engage the safety arm such that the body of safety arm may inhibit launching.
These patents and devices are of some interest, however, the prior art neither discloses toy launcher apparatus and method with enhanced play value and locking features in checking for improvised projectile, nor projectile barrel assembly structure having a projectile receiving opening at the improvised projectile checking housing assembly for correspondingly structured and appropriately sized projectiles with a corresponding feature present at the projectile receiving opening of the improvised projectile checking housing assembly and preventing another projectile from the projectile receiving opening.
Various projectile toys exist on the market, such as darts, discs, arrows, and balls. Conventionally such projectile toys are foam structures made from extruded foamed materials, such as polyurethanes and polyethylenes. Such toy projectiles are be designed to be discharged with sufficient force for desired flight characteristics, while maintaining safe impact force when hitting a target to avoid injury to the users. The softness required for safety standards can run contrary to the needs for providing desired flight characteristics, such as distance, accuracy, and precision.
In embodiments, a toy projectile system can include a toy projectile comprising a body having first and second ends and a nub extending outwardly from the second end, the nub being sized to interact with an improvised projectile checking housing assembly of a toy projectile launching apparatus; and the toy projectile launch apparatus with improvised projectile checking and locking features. The toy projectile launch apparatus can include a projectile retaining element; a projectile barrel assembly extending rearward the projectile retaining element with the improvised projectile checking housing assembly of the projectile barrel assembly movable between checking and non-checking positions, the projectile barrel assembly comprising a step structure having a projectile receiving opening at the improvised projectile checking housing assembly thereof for allowing the toy projectile the nub present at the projectile receiving opening and preventing another projectile from the projectile receiving opening; an elongated structure in the improvised projectile checking housing assembly to check the nub; an improvised projectile button positioned at the end of the elongated structure; and an improvised projectile checking spring mounted to the improvised projectile button with the end of the elongated structure, the improvised projectile button of the elongated structure movable between checking and non-checking positions and preventing movement thereof unless the toy projectile having the nub is present at the projectile receiving opening of the improvised projectile checking housing assembly.
In embodiments, a toy projectile system can include a toy projectile comprising a body having first and second ends and a nub extending outwardly from the second end, the nub being sized to interact with an improvised projectile checking housing assembly of a toy projectile launching apparatus; and the toy projectile launch apparatus with improvised projectile checking and locking features. The toy projectile launch apparatus can include a projectile retaining element having a front side and a backside on the toy launch apparatus for receiving projectiles therein at the backside of the projectile retaining element; a projectile propelling mechanism forward the projectile retaining element for propelling the received projectiles from the front side of the projectile retaining element; an improvised projectile checking lock gauge supported with the toy launch apparatus rearward the projectile retaining element where said gauge is disposed to translate alongside the projectiles received at the backside of the projectile retaining element for checking the outer diameter of received projectiles; and a catch at said gauge preventing advancing of the projectile forward in the projectile retaining element.
In embodiments, a toy projectile system can include a toy projectile having a stepped and nub and a toy projectile launch apparatus having a projectile receiving opening and improvised projectile checking housing assembly that can identify the toy projectile as compatible for the blasters.
In embodiments, the toy projectile system includes a toy projectile having a nub extending from an end thereof having a reduced diameter relative to the body of the projectile such that the nub is sized to interact with an improvised projectile checking housing assembly of a toy projectile launch apparatus.
Improvised projectile checking housing assemblies in accordance with embodiments of the disclosure generally include an opening through which only a properly sized nub can extend when the projectile is loaded into the apparatus. When loaded, a properly sized nub engages a features, such as a spring loaded button or level to shift the improvised projectile checking housing assembly into a checking position, thereby allowing the apparatus to launch. Without detecting of a nub when a projectile is loaded, the improvised projectile checking housing would not shift to the checking positions and the apparatus would remain locked against launching. Such a projectile which is not designed for use with the system of the disclosure is also referred to herein as an improper projectile.
The apparatus can include in embodiments, a projectile retaining element with a projectile barrel assembly extending rearward of the projectile retaining element. The projectile barrel assembly can include an improvised projectile checking housing assembly that is movable between checking and non-checking positions. When a projectile is inserted into the launch apparatus, it is received in the projectile barrel assembly and if the projectile is proper for use with the system, as projectiles described herein having the nub, it is received such that the nub is received within a projectile receiving opening. The improvised projectile checking housing assembly can include an elongated structure that checks for the presence of a proper projectile by detecting the nub. In particular, the elongated structure can have an improvised projectile button positioned at the end with in improvised projectile checking spring mounted thereto. When a proper projectile having the nub is inserted into the improvised projectile checking housing assembly, the improvised projectile button is shifted to a checking position. If an improper projectile is inserted and the improvised projectile button is not shifted to the checking position, the apparatus will be prevented from launching.
In embodiments, the apparatus can include a projectile retaining element having a front side and a backside on the toy launch apparatus for receiving projectiles therein at the backside of the projectile retaining element. The apparatus can include an improvised projectile checking lock gauge supported with the toy launch apparatus rearward the projectile retaining element where said gauge is disposed to translate alongside the projectiles received at the backside of the projectile retaining element for checking the outer diameter of received projectiles. The projectile launch apparatus can further include a projectile propelling mechanism forward the projectile retaining element for propelling the received projectiles from the front side of the projectile retaining element; a follower housing configured to reciprocate adjacent and rearward the backside of the projectile retaining element and towards the front side thereof; a linkage in the toy launch apparatus for moving the follower housing; a pusher coupled to the follower housing for advancing projectiles received at the backside of the projectile retaining element; and a catch at said gauge preventing advancing of the projectile forward in the projectile retaining element.
Further details on suitable toy projectiles and toy projectile launcher apparatuses for use in the system and methods of using the system are described in detail below.
Toy Projectile Launch Apparatus
Referring now to
The step structure 40 of the projectile barrel assembly creates a projectile receiving opening 42 at the interface of the projectile retaining element 19 and the improvised projectile checking housing assembly 20. The projectile receiving opening 42 allowing an appropriate size projectile with a corresponding step 40 present with the rearward nub 35 at the projectile receiving opening 42 of the improvised projectile checking housing assembly 20 thus preventing another projectile from the projectile receiving opening 42. An improvised projectile button 26 is positioned at the end of the elongated structure 24 at IP checking housing collar 27 for checking the rearward nub 35 discussed further below.
An improvised projectile checking spring 28 is mounted to the improvised projectile button 26 with the end of the elongated structure 24, having the improvised projectile button 26 positioned for checking at the projectile receiving opening 42 with reference to
For example, the projectile 30 can include a stepped end 33 and a nub 35, such that when the stepped end and nub are present at a projectile receiving opening with any corresponding step, e.g., allowing rearward stepped structure fins 33 portions as discussed for appropriate projectiles at the projectile receiving opening, such that detection checks are triggered. In the alternate embodiment of
As seen in
The trigger 18 assembly provides movement of the improvised projectile checking housing with the improvised projectile button 26 from the elongated structure 24 proximal end with the improvised projectile checking spring 28 towards the projectile receiving opening 42 of the improvised projectile checking housing assembly 20. The locking key 44 structure is positioned rearward from the projectile receiving opening 42 to the improvised projectile checking housing assembly 20, intermediate the proximal and distal ends of the elongated structure 24, and opposing the first and second catch latch apertures 23A/23B of the first and second sidewalls 22A/22B for preventing further movement of the improvised projectile checking housing unless the appropriate size projectile is present at the projectile receiving opening 42 of the improvised projectile checking housing assembly 20. Alternatively stated, with the detection of a proper projectile, the trigger assembly 18 is able to move the projectile into the launching structure because the locking key 44 slides over the first and second side walls 22A/22B. However, with an improper projectile, a locking structure 44 is biased towards/into the aperture 23A/23B to therefore engage the housing assembly 20, thus preventing further movement of the housing assembly 20 in a direction towards the launching structure.
In the forgoing, the above described embodiments disclosed front loaded toy projectile launchers include motorized and non-motorized toy projectile apparatus embodiments providing checking for improvised projectile at the launch apparatus with motor driven projectile propelling flywheels as well as alternate pneumatic air piston cylinder embodiments having IP detection systems. As detailed herein so long as the nub portion 35 has an effective diameter with features such as a rearward nub portion 35 to fit within and engage with launch apparatus 10 operation using improvised projectile checking housing assembly 20 for correspondingly structured and appropriately sized projectiles. Such features include requiring the corresponding stepped end 33 and nub portion 35 present at a projectile receiving opening 42 locking or other interfacing structure of an IP detection system.
Various toy projectile launchers can be used with the systems herein having a stepped and nub portion 35 and a toy projectile launch apparatus having a projectile receiving opening and improvised projectile checking housing assembly that can identify the toy projectile as compatible for the launchers. Details of the checking operation are discussed below for an embodiment of the system and illustrated in time steps, identifying the time step status in checking and non-checking positions, i.e. detection of the nub portion 35 as beginning initial removal of system slack discussed below.
As discussed below, a rear loaded launcher having such IP detection system is described. Likewise in the absence of an appropriately dimensioned numb structure on projectile, there is no structure to unlock as trigger 18, 118 advances thereby preventing engagement. In embodiments, a toy projectile launcher having an IP detection system may identify a step between a second end of the projectile and the nub portion. The step can be defined by a difference in diameter between at the second end or fin end and the nub portion. In embodiments, the difference between the diameter at the second end or fin end and the diameter of the nub can be about 0.5 mm to about 3 mm, about 1 mm to about 2 mm, about 1 mm to about 3 mm, or about 0.7 mm to about 1.6 mm.
Referring now to
As shown in
As shown the projectile retaining element or drum 114 has a front side and a backside on the toy launch apparatus for receiving projectiles 30, 32, 34, 36, 38 at the backside thereof. In
A linkage 117 is provided operable with the trigger 118 of the apparatus 110 for moving the follower housing 120. A pusher 122 is coupled to the follower housing 120 for advancing the received projectile 30. The cam surfaces 125 pathway is cooperatively positioned as discussed at the pusher 122 in relation to the catch backside of cam surface 126 with the IP lock gauge 144 having translated alongside the projectile 30. To confirm the outer diameter of an authorized and verified projectile 30, cam surfaces 125 allow the discussed Unlock Pathway through which cam surface 126 passes in the case of correct alignment, allowing the pathway of the pusher 122 to pass the catch of cam surface 126 of the IP lock gauge 144 thus advancing the projectile 30 forward in the dart chamber 119 of drum 114. The described IP lock gauge 144 is able to unlock or unlock the pusher 122 respectively based on alignment or misalignment thereof.
Referring now to
Referring now to
Referring now to
Referring now to
Referring now to
Referring now to
The toy launch apparatus and methods with multiple improvised projectile checking and locking features, further include the appropriate size projectile positioned at the projectile barrel assembly adjacent the projectile receiving opening at the improvised projectile checking housing assembly thereof; and the improvised projectile checking housing assembly allows the appropriate size projectile with the corresponding step present at the projectile receiving opening of the improvised projectile checking housing assembly and preventing another projectile from the projectile receiving opening. A projectile retaining element having a front side and a backside on the toy launch apparatus for receiving projectiles therein at the backside of the projectile retaining element; a projectile propelling mechanism forward the projectile retaining element for propelling the received projectiles from the front side of the projectile retaining element; an improvised projectile checking lock gauge supported with the toy launch apparatus rearward the projectile retaining element where the gauge is disposed to translate alongside the projectiles received at the backside of the projectile retaining element for checking the outer diameter of received projectiles; a follower housing configured to reciprocate adjacent and rearward the backside of the projectile retaining element and towards the front side thereof; a linkage in the toy launch apparatus for moving the follower housing; a pusher coupled to the follower housing for advancing projectiles received at the backside of the projectile retaining element; and a catch at the gauge preventing advancing of the projectile forward in the projectile retaining element.
The pathway at the pusher cooperatively positioned in relation to the catch at the gauge where the gauge having translated alongside the projectile to confirm the outer diameter of a verified projectile allows the pathway of the pusher to pass the catch of the gauge and advance the projectile forward in the projectile retaining element; and at least one latch at the pusher positioned to lock in relation to the catch of the gauge with the gauge improperly translated rearward the projectile retaining element in the absence of a verified projectile preventing the pathway of the pusher to pass the catch of the gauge and preventing advancing of the projectile forward in the projectile retaining element.
The cam surface translates the gauge with the follower housing configured to reciprocate with the linkage moving the follower housing where the catch at the gauge locks the pusher in relation to alignment having the pathway at the pusher cooperatively positioned in relation to the catch at the gauge with the gauge having translated. A cam surface to translate the gauge with the follower housing configured to reciprocate with the linkage moving the follower housing; a pathway at the pusher cooperatively positioned in relation to the catch at the gauge where the gauge having translated alongside the projectile to confirm the outer diameter of a verified projectile allows the pathway of the pusher to pass the catch of the gauge and advance the projectile forward in the projectile retaining element; and at least one latch at the pusher positioned to lock in relation to the catch of the gauge with the gauge improperly translated rearward the projectile retaining element in the absence of a verified projectile preventing the pathway of the pusher to pass the catch of the gauge and preventing advancing of the projectile forward in the projectile retaining element.
Toy Projectile
Referring to
In accordance with embodiments, the body 204 that is made from an expanded beaded polyolefin materials. However, it is also contemplated herein that other non-beaded foam materials could be used.
Referring to
Expanded beaded materials can be shaped into the desired projectile configuration using known methods, including molding methods. The projectile can be a dart, an arrow, a ball, a disc, or any other known projectile configuration. In accordance with embodiments, the expanded beaded material can be an expanded beaded polyolefin, and/or expanded beaded thermoplastic polyolefins. For example, the expanded beaded material can be an expanded beaded polypropylene, expanded beaded polyethylene, expanded beaded polystyrenes, expanded beaded thermoplastic polyurethane, expanded beaded polylactic acid, and combinations thereof. In embodiments, the beaded material to be expanded can be solid or hollow or a combination of solid and hollow beads can be used. In embodiments, the body 204 includes expanded beads expanded an average amount of their original size by about 25× to 45×, about 30× to about 35×, about 35× to about 45×, or about 20× to about 30×. Other suitable average expansion amounts include about 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, or 45 times their original size. Other suitable expansion amounts can be determined as known in the art for a given specific expanded material.
In various embodiments, the body 204 can be provided as a solid structure of expanded beaded material. It has been advantageously found that due to the reduction in overall mass provided by the expanded beaded material, solid structures can be provided as opposed to conventional hollow structures. However, it is also contemplated herein that the body can be a hollow structure formed from an expanded beaded material. In embodiments in which the body includes or is a hollow expanded beaded material, it has been found that it can be advantageous to select a thickness of the wall of the hollow body to be at least 2 bead width thick to ensure sufficient structural rigidity and adhesion between beads during the molding process to avoid breakage during use and particularly repeated use.
It is also contemplated as shown in
In embodiments in which the body 204 includes a core inserted into and surrounded by a hollow portion, the density or mass of the body is to be understood herein as the combined density or mass of the solid core 218 and the hollow portion 220—that is the entire body structure whether provided as separate or unitary pieces.
The body 204 can have a variety of shapes. The shape of the body 204 can be tailored for the desired use. For example, toy projectiles can be shaped for insertion into a particular launch apparatus and/or play pattern.
As compared to conventional extruded materials used for toy projectile formation, formation of the projectiles in accordance with embodiments using expansion of beads of material in mold cavity can allow a variety of the shapes and features to be included on the projectiles that can be produced, particularly when producing a unitary structure. Additional elements such as fin structures and other potentially flight enhancing structures can be incorporated into a mold used for making the projectile from the expanded material. Expansion of the beads within the mold can allow for formation of additional body structures while maintaining adherence to the main body structure to prevent these additional structures from being broken, torn, separated from the body, or otherwise damaged during use. In various embodiments, the mold can have a polished interior surface, which can translate to a smooth surface finish on the molded product. In various embodiments, the smoothness achieved through molding can be sufficient. In other embodiments, surface coatings as are known in the art can be added if desired.
In various embodiments, projectile 200 can have a mass including the body and the tip of about 0.5 g to about 3 g, about 1.3 g to about 1.4 g, about 1 g to about 1.5 g, or about 1 g to about 2 g. Other suitable masses include about 0.5, 0.6, 0.7, 0.8, 0.9, 1, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2, 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9, and 30 g.
In various embodiments, the body 104 made from an expanded beaded material can have a density of about 20 kg/m3 to about 30 kg/m3, about 26 kg/m3 to about 28 kg/m3, about 22 kg/m3 to about 30 kg/m3, or about 24 kg/m3 to about 29 kg/m3. Other suitable densities include about 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, and 30 kg/m2. In embodiments, the density is 27.7 kg/m3. The reduced density of the toy projectile 100 can allow, in various embodiments, the projectile 100 to be launched at higher rates of speed while maintaining safe use as a toy, as evaluated by ASTM F963-16 (2016). The standard incorporates a maximum value of the kinetic energy density requirement, which is calculated by the following equation:
Reduction of the mass of the toy projectile aids in overall reduction of the KED, which in turn allows the projectiles to travel at higher velocity while maintaining acceptable KED for toy safety. In various embodiments, high velocity can correlate to increased flight distances.
It has been found, however, that simply reducing the overall mass of the projectile, while allowing increased velocity within a given range of KED does not necessarily result in a projectile with desired flight characteristics, such as stability of flight path, accuracy of striking an intended target, and repeatability of accuracy (precision). In fact, based on a reduction of mass alone, one might expect reduced flight properties, as the projectile may be more susceptible to external forces during flight and/or instability upon exiting a launcher.
Referring to
It has been advantageously found that desired flight characteristics such as accuracy and/or precision, can be achieved in various embodiments by balancing a density of the body against the density of the tip 202 and having an increase mass in the tip. In embodiments, the ratio of the tip 202 density to the body 204 density can be about 25:1 to about 50:1. In embodiments, the ratio of the tip density to the body density can be about 30:1 to about 40:1, about 25:1 to 30:1, about 35:1 to 38:1 or about 35:1 to about 40:1. In embodiments, the ratio is about 37:1.
In embodiments, the density of the body 204 can have an increased density at the second end 203 as compared to the first end 201. In embodiments, the body 204 can have a gradient density increasing from the first end 201 to the second end 202. Differences and/or gradients of density can be provided by any variety of means, including but not limited to during a molding process or by addition of structures or other materials at or near the second end 202 after molding.
As further seen in
In various embodiments, the tip 202 is formed of a flexible material that allows the tip to expand significantly upon impact, thereby providing a large impact area over which the force of impact is distributed. In embodiments, the tip is formed from a rubbery material having a Shore A hardness of about 20 to about 50, about 30 to about 40, about 25 to about 35, or about 35 to about 50. Other suitable Shore A hardness values include about 20, 25, 30, 35, 40, 45, and 50. In embodiments, the tip is made from a thermoplastic rubber (TPR).
In various embodiments, the tip 202 can have an impact area of about 250 m2 to about 400 m2, about 275 m2 to about 325 m2, about 290 m2 to about 310 m2. Other suitable values include about 250, 260, 270, 280, 290, 300, 310, 320, 330, 340, 350, 360, 370, 380, 390, and 400 m2.
Referring to again to
The toy projectile can have any suitable size. For example, the toy projectile can have an overall length of about 50 mm to about 100 mm, about 60 mm to about 80 mm, or about 75 mm to about 80 mm. Other suitable lengths include about 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, 72, 74, 76, 78, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, or 100 mm. For example, the toy projectile can have an overall length of about 61 mm. For example, the toy projectile can have an overall length of about 62 mm. For example, the toy projectile can have a length of about 69 mm.
In embodiments, the toy projectile can have a body that has a length as defined between the first and second ends of about 40 mm to about 65 mm, about 45 mm to about 55 mm, about 50 mm to about 60 mm. Other suitable body lengths include about 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, or 65 mm.
In embodiments, the body can have a cylindrical shape. In embodiments, the body can include a reduced diameter portion 205 at the first end 201 for over which the tip 202 can be disposed and attached to the body. Reference herein to a diameter of the body is made to the general and overall diameter of the body, which can be measured at a central portion of the body. The reduced diameter portion has a diameter reduced with respect to the overall diameter of the body. For example, the overall diameter (or diameter at a central portion of the body) can be about 10 mm. For example, the overall diameter can be the diameter of the body measured at a point at which the diameter is at its maximum. In embodiments, as illustrated in
For example, the body can have a diameter of about 10 mm to about 20 mm, about 14 mm to about 18 mm, about 15 mm to about 17 mm, or about 16 mm. Other suitable diameters may include about 10, 10.5, 11, 11.5, 12, 12.5, 13, 13.5, 14, 14.5, 15, 15.5, 16, 16.5, 17, 17.5, 18, 18.5, 19, 19.5, or 20 mm. The diameter can be measured as a maximum diameter of the body. In embodiments, the diameter of the body can remain substantially constant between at least a central portion of the body and the fin region when accounting for the circumferential dimension defined by the outer surfaces of the fins.
The body can include a nub portion extending from the second end. The nub portion can have a length extending between a first nub end and a second nub end. The first nub end can be continuous with the second end of the body. In embodiments, the body can have a boat tail structure at the second end that tapers and terminates in the nub portion having a reduced diameter as compared to the diameter of the body upstream of the boat tail structure. In such embodiments, the nub portion may not be considered as having a defined second nub end, but rather is provided as a continuous extension of the body. Also in such embodiments, the body having the boat tail structure can have a second end which is the terminal end of the projectile and thus is positioned at the end of the nub portion. The body, thus, has a reduced diameter portion, which defines the nub portion, as a tapered reduction from a point adjacent to the second end to the second end. As described in the paragraph above, the body can also have in such embodiments a reduced diameter portion at the first end for accommodating the tip. The diameter of the body in such boat tail embodiments is considered as measured at a position of the body in which the diameter is at a maximum, not including any extensions from the body such as fins, and the diameter of the nub is considered to be the diameter at the second end.
In embodiments, the body can have a substantially cylindrical shape with fins disposed at the second end and a nub portion 208 extending from the second end. The fins can be spaced uniformly around the circumference of the body and the portion of the body disposed in the space between fins can be tapered inwardly along a length of the fins towards the nub portion. That is, the portion of the body in the spacing can taper from a first diameter corresponding to the diameter of the body upstream of the fins to a second, reduced diameter corresponding to a diameter of the nub portion 208. Such taper can give the projectile the appearance of a boat tail structure at the second end, which terminates at the nub portion, and with the fins extending outwardly from the boat tail structure upstream of the nub portion. Without intending to be bound by theory, it is believed that the combination of the boat tail structure with the fins can result in improved flight characteristics, including but not limited to flight distance and flight stability.
The nub portion, for example, can be sized to interact with a housing structure of a toy projectile launch apparatus to ensure an appropriately sized projectile is being used with the given apparatus. Referring to
In embodiments, the nub portion terminates at a second end and has a flat or substantially flat surface at the second end. For example, a substantially flat surface may have some rounding or doming or mold markings from the manufacturing process such as minor indentations or dimples, but otherwise visually appears to be generally planar. For example, the terminal surface can be free of gaps, openings, apertures, notches, or the like.
In embodiments, for a toy projectile such as shown in
In embodiments, the ratio of the length of the body to the length of the nub can be about 12:1 to about 20:1, about 15:1 to about 18:1, about 17:1 to about 18:1, or about 15:1 to about 17:1. Other suitable ratios include, about 12:1, 13:1, 14:1, 15:1, 16:1, 17:1, 18:1, 19:1, and 20:1. For example, the ratio can be about 17.25:1. In an embodiment, the toy projectile can have a total length of about 60 mm to about 70 mm and the nub can have a length of about 3 mm to about 5 mm.
In embodiments, a length of the nub portion 108 may be irrelevant and longer lengths, for example of 10 mm or more, may be suitably used with toy projectile launchers having a IP detection system as detailed below so long as the nub portion 108 has a suitable diameter (or effective diameter) to fit within and engage with a locking or other interfacing structure of an IP detection system.
In embodiments for use with a toy projectile launcher such as shown in
In embodiments, a toy projectile launcher having an IP detection system may identify a step between a second end of the projectile and the nub portion. The step can be defined by a difference in diameter between at the second end or fin end and the nub portion. In embodiments, the difference between the diameter at the second end or fin end and the diameter of the nub can be about 0.5 mm to about 3 mm, about 1 mm to about 2 mm, about 1 mm to about 3 mm, or about 0.7 mm to about 1.6 mm. Other suitable differences in diameter include about 0.5, 0.6, 0.7, 0.8, 0.9, 1, 1.1, 1.2, 1.3, 1.4, 1.5, 1.5875, 1.6, 1.7, 1.8, 1.9, 2, 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9, 3.
In embodiments, a toy projectile in accordance with the disclosure can have a ratio of the diameter of the body (at a maximum width of the body) to the diameter of the nub portion of about 10:1 to about 1.25:1, about 5:1 to about 2.5:1, about 3:1 to about 2:1, about 10:1 to about 5:1. Other suitable amounts include about 10:1, 9.5:1, 9:1, 8.5:1, 8:1, 7.5:1, 7:1, 6.5:1, 6:1, 5.5:1, 5:1, 4.75:1. 4.5:1, 4.25:1, 4:1, 3.75:1, 3.5:1, 3.25:1, 3:1, 2.75:1, 2.5:1, 2.25:1, 2:1, 1.75:1, 1.5:1, or 1.25:1.
In embodiments, the body can include rearward fins. Any suitable number of fins can be included on the body. For example, the projectile can include 6 fins spaces to surround the circumference of the body. Other fin numbers are contemplated. The fins can be disposed at the second end and can terminate in a fin end from which the nub projection then extends to define a step between the fin end and the nub projection. The fins can also have various cross sectional shapes and can be for example rounded or faceted in various embodiments. Advantageously, using a molded expanded material, the fins can be made as a unitary piece with the body. In embodiments, however, it is also contemplated that the fins are attached to the body using and known methods, including heat sealing, adhesives, tapes, etc. Referring to
In embodiments, the projectile 200 can include a stepped end and a nub 208, such that when the stepped end and nub are present at a projectile receiving opening with a corresponding step for allowing rearward stepped structure and nub portion of appropriate projectiles at the projectile receiving opening, such that detection checks are triggered. As used herein “nub” and “nub portion” refer to the same feature.
In embodiments, a toy projectile system can include a toy projectile having a stepped and nub and a toy projectile launch apparatus having a projectile receiving opening and improvised projectile checking housing assembly that can identify the toy projectile as compatible for the blasters.
Aspects
Aspect 1. A projectile, comprising:
Aspect 2. A projectile, comprising:
Aspect 3. A projectile, comprising:
Aspect 4. The projectile any one of the preceding aspects, wherein the expanded beaded material is one or more of expanded beaded polyethylene, expanded beaded polypropylene, expanded beaded polystyrene, expanded beaded thermoplastic polyurethane, and expanded beaded polylactic acid.
Aspect 5. The projectile of any one of the preceding aspects, wherein the body further comprises one or more fins disposed at or adjacent to the second end of the body.
Aspect 6. The projectile of aspect 5, wherein the body comprises 4 fins.
Aspect 7. The projectile of aspect 5, wherein the body comprises 6 fins.
Aspect 8. The projectile of any one of the preceding aspects, wherein the body further comprises a nub extending outwardly from the second end, wherein the nub has a diameter that is less than a diameter of the body at a second end.
Aspect 9. The projectile of aspect 8, wherein the nub extends about 4 mm from the second end.
Aspect 10. The projectile of aspect 8 or 9, wherein a step is disposed between the second end and the nub.
Aspect 11. The projectile of aspect 10, comprising a taper wall connecting the step and the nub.
Aspect 12. The projectile of aspect 11, wherein the taper is about 100°.
Aspect 13. The projectile of aspect 12, comprising a non-tapered wall connecting the step and the nub.
Aspect 14. The projectile of any one of the preceding aspects, wherein the body is solid.
Aspect 15. The projectile of any one of aspects 1 to 13, wherein the body comprises a hollow portion and a solid core disposed in the hollow portion, wherein the solid core is formed from the expanded beaded material.
Aspect 16. The projectile of any one of aspects 1 to 13, wherein the body comprises a hollow portion extending into the body from the second end to the first end, the hollow portion extending less than an entirety of the length of the body.
Aspect 17. A toy projectile, comprising:
Aspect 18. The toy projectile of aspect 17, wherein a ratio of the body length to the nub portion length is about 12:1 to about 20:1.
Aspect 19. A toy projectile, comprising
Aspect 20. The toy projectile of aspect 19, wherein a ratio of the maximum body diameter to the nub diameter is about 10:1 to about 1.25:1.
Aspect 21. The toy projectile of aspect 3, wherein a difference between the maximum body diameter and the nub diameter is about 0.5 mm to about 3 mm.
Aspect 22. A toy projectile, comprising:
Aspect 23. The toy projectile of aspect 22, wherein a ratio of the first diameter to the second diameter is about 10:1 to about 1.25:1.
Aspect 24. The toy projectile of aspect 22, wherein a difference between the first diameter and the second diameter is about 0.5 mm to about 3 mm.
Aspect 25. The toy projectile of any one of the preceding aspects, comprising 6 fins spaced to surround a circumference of the body.
Aspect 26. The toy projectile of any one of the preceding aspects, wherein the nub portion has a thickness defined between the fin end and an oppositely disposed end of the nub portion of about 1 to 5 mm.
Aspect 27. The toy projectile of any one of the preceding aspects, wherein the nub portion comprises a circumferential wall joining a first nub end at the second end and an oppositely disposed second nub end, wherein the circumferential wall tapers inwardly from the first nub end to the second nub end.
Aspect 28. The toy projectile of aspect 22, wherein the circumferential wall has a taper of about 100°.
Aspect 29. The toy projectile of any one of the preceding aspects, wherein the nub portion comprises a circumferential wall joining a first nub end at the second end and an oppositely disposed second nub end, wherein the circumferential wall is a straight non-tapered wall.
Aspect 30. The toy projectile of any one of the preceding aspects, wherein the body has a length defined between the first and the second end of about 50 mm to about 100 mm.
Aspect 31. The toy projectile of any one of the preceding aspects, wherein the body has a reduced diameter portion at the first end and the tip is sized to fit over the reduced diameter portion.
Aspect 32. The toy projectile of any one of the preceding aspects, wherein the body is formed from an expanded beaded material.
Aspect 33. The toy projectile of aspect 16, wherein the expanded beaded material is one or more of expanded beaded polyethylene, expanded beaded polypropylene, expanded beaded polystyrene, expanded beaded thermoplastic polyurethane, and expanded beaded polylactic acid.
Aspect 34. The toy projectile of any one of the preceding aspects, wherein the length of the body is about 60 mm to about 70 mm, and the length of the nub portion is about 3 mm to about 5 mm.
Aspect 35. A toy launch apparatus with multiple improvised projectile checking and locking features, comprising:
Aspect 36. The toy launch apparatus of aspect 35, comprising:
Aspect 37. The toy launch apparatus of aspect 36, comprising:
Aspect 38. The toy launch apparatus of aspect 35, further comprising:
Aspect 39. The toy launch apparatus of aspect 35, wherein: the elongated structure in the improvised projectile checking housing assembly further comprises an pneumatic air piston cylinder having an improvised projectile safety valve seat.
Aspect 40. The toy launch apparatus of aspect 39, wherein: the improvised projectile button further comprises a safety valve contact positioned at the end of the elongated structure, with the improvised projectile checking spring mounted to the safety valve contact with the end of the piston cylinder, the safety valve contact of the elongated structure movable between checking and non-checking positions and preventing movement thereof unless the appropriate size projectile is present at the projectile receiving opening of the improvised projectile checking housing assembly.
Aspect 41. The toy launch apparatus of aspect 35, wherein: the appropriate size projectile comprises a rearward step structure sized to correspond with step structure of the projectile barrel assembly.
Aspect 42. The toy launch apparatus of aspect 41, wherein: the appropriate size projectile is positioned at the projectile barrel assembly adjacent the projectile receiving opening at the improvised projectile checking housing assembly thereof.
Aspect 43. The toy launch apparatus of aspect 42, wherein: the improvised projectile checking housing assembly allows the appropriate size projectile with the corresponding step present at the projectile receiving opening of the improvised projectile checking housing assembly.
Aspect 44. The toy launch apparatus of aspect 41, wherein: the appropriate size projectile comprises a plurality of fins for positioning at the projectile barrel assembly adjacent the projectile receiving opening.
Aspect 45. The toy launch apparatus of aspect 41, wherein: the appropriate size projectile comprises a rearward nub for positioning in the opening at the improvised projectile checking housing assembly.
Aspect 46. A method for making a toy launch apparatus with multiple improvised projectile checking and locking features, comprising the steps of:
Aspect 47. The method of aspect 46, comprising the steps of: positioning an improvised projectile button with the end of the elongated structure; and mounting an improvised projectile checking spring to the improvised projectile button with the end of the elongated structure, the improvised projectile button of the elongated structure movable between checking and non-checking positions and preventing movement thereof unless the appropriate size projectile is present at the projectile receiving opening of the improvised projectile checking housing assembly.
Aspect 48. The method of aspect 46, comprising the steps of: providing a first sidewall to the improvised projectile checking housing having a first catch latch aperture rearward from the projectile receiving opening to the improvised projectile checking housing assembly.
Aspect 49. The method of aspect 48, comprising the steps of:
Aspect 50. The method of aspect 46, comprising the steps of:
Aspect 51. A toy launch apparatus with multiple improvised projectile checking and locking features, comprising:
Aspect 52. The toy launch apparatus of aspect 51, comprising: a pathway at the pusher cooperatively positioned in relation to the catch at said gauge where said gauge having translated alongside the projectile to confirm the outer diameter of a verified projectile allows the pathway of the pusher to pass the catch of said gauge and advance the projectile forward in the projectile retaining element; and
Aspect 53. The toy launch apparatus of aspect 51, comprising: a cam surface to translate said gauge with said follower housing configured to reciprocate with the linkage moving the follower housing where the catch at said gauge locks the pusher in relation to alignment having the pathway at the pusher cooperatively positioned in relation to the catch at said gauge with said gauge having translated.
Aspect 54. The toy launch apparatus of aspect 51, comprising:
Aspect 55. A toy projectile system, comprising:
Aspect 56. A toy projectile system, comprising:
Aspect 57. The system of aspect 56, wherein the projectile launch apparatus further comprises a follower housing configured to reciprocate adjacent and rearward the backside of the projectile retaining element and towards the front side thereof; a linkage in the toy launch apparatus for moving the follower housing; and a pusher coupled to the follower housing for advancing projectiles received at the backside of the projectile retaining element.
Aspect 58. The system of any one of aspects 55 to 57, wherein the nub portion has a diameter smaller than a diameter of the body at the second end, such that a step is defined between the second end and the nub portion.
Aspect 59. The system of any one of aspects 55-58, wherein the body has a boat tail structure at the second end, the boat tail structure tapering into the nub portion, and a plurality of fins surrounding a circumference of the body at the boat tail structure and extending outwardly such that a step is defined between the plurality of fins and the nub portion.
Aspect 60. The system of any one of aspects 55-59, wherein the toy projectile further comprises a plurality of fins attached to or integrally formed with the body at the second end, wherein the body including the fins has a generally cylindrical shaped with a first diameter, each fin being separated from adjacent fins by a space, wherein a portion of the body disposed in the space is tapered inwardly along a length of the fin towards the second end.
Aspect 61. The system of aspect 60, comprising 6 fins spaced to surround a circumference of the body and disposed upstream of the nub portion.
Aspect 62. The system of aspect 60 or 61, wherein an outer circumference of the toy projectile is defined by the outer surface of the one or more fins and a diameter of the outer circumference is substantially the same as the maximum body diameter
Aspect 63. The system of any one of aspects 55-62, wherein the nub portion has a length defined between the second end and an oppositely disposed end of the nub portion of about 1 to 5 mm.
Aspect 64. The system of any one of aspects 55-63, wherein the nub portion comprises a circumferential wall joining a first nub end at the second end and an oppositely disposed second nub end, wherein the circumferential wall tapers inwardly from the first nub end to the second nub end.
Aspect 65. The system of aspect 64, wherein the circumferential wall has a taper of about 100°.
Aspect 66. The system of any one of aspects 55-65, wherein the nub portion comprises a circumferential wall joining a first nub end at the second end and an oppositely disposed second nub end, wherein the circumferential wall is a straight non-tapered wall.
Aspect 67. The system of any one of aspects 55-66, wherein the body has a length defined between the first and the second end of about 50 mm to about 100 mm.
Aspect 68. The system of any one of aspects 55-67, wherein the body has a reduced diameter portion at the first end and the tip is sized to fit over the reduced diameter portion.
Aspect 69. The system of any one of aspects 55-68, wherein the body is formed from an expanded beaded material.
Aspect 70. The system of aspect 69, wherein the expanded beaded material is one or more of expanded beaded polyethylene, expanded beaded polypropylene, expanded beaded polystyrene, expanded beaded thermoplastic polyurethane, and expanded beaded polylactic acid.
Aspect 71. The system of any one of aspects 55-70, wherein the toy projectile has a ratio of the body length to the nub length of about 12:1 to about 20:1.
Aspect 72. The system of any one of aspects 55-71, wherein the toy projectile has a body length of about 60 mm to about 70 mm, and the length of the nub is about 3 mm to about 5 mm.
Aspect 73. The toy projectile system of any one of aspects 55-72, wherein a difference between a maximum body diameter of the toy projectile and a diameter of the nub is about 0.5 mm to about 3 mm.
It is noted that throughout the disclosure, words such as “forward,” “rearward,” “upper,” “lower,” “top,” “bottom,” “front,” “rear,” “above,” and “below,” as well as like terms, refer to portions of the projectile as they are viewed in the drawings relative to other portions or in relationship to the positions of the projectile as it will be typically used, loaded into and launched from a launching apparatus.
While particular embodiments of the present invention have been shown and described in detail, it will be obvious to those skilled in the art that changes and modifications may be made without departing the from the invention in its broader aspects. Therefore, the aim is to cover all such changes and modifications as fall within the true spirit and scope of the invention. The matters set forth in the foregoing description and accompanying drawings are offered by way of illustration only and not as limitations. The actual scope of the invention is to be defined by the subsequent claims when viewed in their proper perspective based on the prior art.
This application claims the benefit of priority of U.S. Provisional Application No. 62/824,003 filed Mar. 26, 2019, U.S. Provisional Patent Application Nos. 62/824,000 filed on Mar. 26, 2019, U.S. Provisional Application No. 62/865,702 filed Jun. 24, 2019, and U.S. Provisional Application No. 62/901,777 filed Sep. 17, 2019, the respective disclosures of which are incorporated herein by reference in their entireties.
Number | Name | Date | Kind |
---|---|---|---|
1441975 | Edelin | Jan 1923 | A |
1488995 | McCollom | Apr 1924 | A |
2499029 | McElroy | Feb 1950 | A |
2737942 | Horowitz et al. | Mar 1956 | A |
2828965 | Schwitzki | Apr 1958 | A |
3054536 | Sagarin | Sep 1962 | A |
3059928 | Flanagan | Oct 1962 | A |
3420133 | Proll | Jan 1969 | A |
3990426 | Stokes | Nov 1976 | A |
4170215 | Kettlestrings | Oct 1979 | A |
4212285 | Cagan et al. | Jul 1980 | A |
4248202 | Jaworski et al. | Feb 1981 | A |
4659320 | Rich et al. | Apr 1987 | A |
4841945 | Braden | Jun 1989 | A |
4890404 | Ferri | Jan 1990 | A |
5156137 | Clayton | Oct 1992 | A |
5165383 | Ebert et al. | Nov 1992 | A |
5186156 | Clayton | Feb 1993 | A |
5205271 | Casas Salva | Apr 1993 | A |
5471967 | Matsuzaki et al. | Dec 1995 | A |
5529050 | D'Andrade | Jun 1996 | A |
5575270 | Casas-Salva | Nov 1996 | A |
6488019 | Kotsiopoulos | Dec 2002 | B2 |
6523535 | Rehkemper | Feb 2003 | B2 |
6595880 | Becker | Jul 2003 | B2 |
7051727 | Wu | May 2006 | B2 |
7228802 | Montefusco | Jun 2007 | B2 |
7849627 | Wygant | Dec 2010 | B2 |
8082909 | Sopinsky et al. | Dec 2011 | B2 |
8127753 | Brooks et al. | Mar 2012 | B1 |
8397705 | DeHaan et al. | Mar 2013 | B2 |
8567378 | Nugent | Oct 2013 | B2 |
8695579 | Huebl | Apr 2014 | B2 |
8875688 | Nugent | Nov 2014 | B2 |
8955503 | Corsiglia | Feb 2015 | B2 |
8967130 | Victor et al. | Mar 2015 | B2 |
9027541 | Huebl | May 2015 | B2 |
9097484 | Poirier | Aug 2015 | B2 |
9194646 | Victor et al. | Nov 2015 | B2 |
9389042 | Clayton | Jul 2016 | B1 |
9459081 | Chia | Oct 2016 | B2 |
9500432 | Chia | Nov 2016 | B2 |
9958230 | Nugent et al. | May 2018 | B1 |
10408583 | Isenmann | Sep 2019 | B2 |
10408584 | Isenmann | Sep 2019 | B2 |
10551156 | Chia | Feb 2020 | B2 |
20020166551 | Lee | Nov 2002 | A1 |
20060046877 | Gajda, Jr. | Mar 2006 | A1 |
20090050127 | Wygant | Feb 2009 | A1 |
20090095272 | Zimmerman | Apr 2009 | A1 |
20100206281 | Kanitz et al. | Aug 2010 | A1 |
20110174768 | Yarro | Jul 2011 | A1 |
20130112184 | Corsiglia et al. | May 2013 | A1 |
20130239938 | Nugent | Sep 2013 | A1 |
20130312722 | Price | Nov 2013 | A1 |
20140352677 | Chia | Dec 2014 | A1 |
20150308782 | Chia | Oct 2015 | A1 |
20180051966 | Isenmann | Feb 2018 | A1 |
20180292189 | Isenmann | Oct 2018 | A1 |
Entry |
---|
European Patent Application No. 20165549.5, Extended European Search Report, dated Aug. 25, 2020. |
Extended European Search Report, European Patent Application No. 20165546.1, dated Aug. 21, 2020. |
International Application No. PCT/US2020/024401, International Search Report and Written Opinion, dated Jul. 27, 2020. |
International Application No. PCT/US2020/024415, International Search Report and Written Opinion, dated Jul. 21, 2020. |
International Application No. PCT/US2020/024422, International Search Report and Written Opinion, dated Jul. 27, 2020. |
Number | Date | Country | |
---|---|---|---|
62901777 | Sep 2019 | US | |
62865702 | Jun 2019 | US | |
62824003 | Mar 2019 | US | |
62824000 | Mar 2019 | US |