1. Field of the Invention
The present invention relates to a toy top.
2. Description of Related Art
A battle game using toy tops has been known in which toy tops are brought into collision with each other, and a player wins the game when an opponent toy top is knocked out or a pop-out member disposed on the body of an opponent toy top is popped out by the resultant impact force (for example, see JP H09-38337A and Japanese Utility Model No. 3109118).
The toy top disclosed in JP H09-38337A or Japanese Utility Model No. 3109118 includes a pop-out member that is engaged with the toy top (toy top main body) via an elastic member. The toy top is configured such that when the engagement is broken by the impact force of a collision with another toy top, the pop-out member pops up by a biasing force of the elastic member.
In the toy tops as disclosed in JP H09-38337A or Japanese Utility Model No. 3109118, the result of the game depends on the performance determined by the weight and the outer peripheral shape thereof. For this reason, in recent years, there have been some toy tops with variable performance, which is achieved by an interchangeable part that enables modification.
However, a problem with such toy tops is that, since the performance is determined by the interchangeable part, the interchangeable part must be changed in order to change the performance.
The present invention has been made in view of the problem, and an object thereof is to provide a toy top with a performance that changes over time.
In order to realize the above object, according to one aspect of the present invention, there is provided a toy top including:
a body; and
a shaft unit,
wherein the shaft unit includes a spinning shaft which includes projections that extend downward at a lower end of the spinning shaft.
Since the lower end of the spinning shaft of the shaft unit is composed of the projections that extend downward, the toy top spins on any one of the thin projections, and the individual projections become more likely to wear, fall down, break, etc. through friction, an impact, etc. during landing before a spin starts, or during the spin.
The toy top performs an unstable or irregular spin when some of the projections are lost. In this way, the performance of the toy top is changed over time without any modification. In a match between toy tops, this can make the result more unpredictable and thus make the match very amusing.
Preferably, the projections are arranged along concentric circles that are centered on an axis of the shaft unit.
Since the projections are arranged along the concentric circles which are centered on the axis of the shaft unit, when some projections fall down or are lost, an unstable or irregular spin is readily caused.
Preferably, the projections arranged along the concentric circles are configured such that an inner projection has a greater downward extension.
Since the projections arranged along the concentric circles are configured such that an inner projection has a greater downward extension, the toy top first spins on the projections along a small concentric circle, and when they fall down or are lost, the toy top then spins on the projections along a larger concentric circle. In this way, the spinning manner of the toy top is varied through usage. Therefore, the amusement from the toy top is improved.
Further, a match between toy tops is typically played on a dished board. In such cases, when the inner projections are lost and the outer projections are in contact with the board surface, a toy top moves actively and rapidly as it spins. Therefore, it becomes possible to enjoy a more intense game.
Preferably, at least one of the projections has a triangular cross section in a view from below.
Preferably, at least one of the projections has a polygonal cross section in a view from below.
In these configurations, each of the projections has corners. This makes the projections wear more easily and thus varies the manner of spinning. This brings more amusement. Furthermore, the manner of spinning is varied through falling down, breaking, etc.
Preferably, at least one of the projections has a circular cross section in a view from below.
Preferably, at least one of the projections has an oval cross section in a view from below.
With these configurations, the individual projections are less likely to wear, and the manner of spinning is varied mainly through falling down, breaking, etc. Further, mixing projections likely to wear and projections unlikely to wear makes a mixture of projections with a long life and projections with a short life. This makes a change in the manner of spinning more unpredictable, and brings more amusement.
Preferably, the projections are made of resin.
The projections made of resin are more likely to wear, falling down, break, etc., and the manner of spinning is changed in shorter cycles. This brings more amusement.
The present invention will become more fully understood from the detailed description given hereinbelow and the appended drawings which are given by way of illustration only, and thus are not intended as a definition of the limits of the present invention, and wherein:
Hereinafter, embodiments of the present invention will be described with reference to the drawings. Though various technical limitations which are preferable to perform the present invention are included in the after-mentioned embodiment, the scope of the invention is not limited to the following embodiment and the illustrated examples.
The toy top 1 of the embodiment is of a type that can be used in a so-called “top battle game”. Specifically, the toy top 1 can be used in a battle game in which a player wins the game when an opponent toy top 1 is disassembled as illustrated in the right part of
As illustrated in
The shaft unit 10 includes a spinning shaft 11 in the lower part, a flange 12 in the middle part and a cylinder 13 in the upper part. The spinning shaft 11, flange 12 and cylinder 13 are made of synthetic resin. However, the material is not limited to synthetic resin, and at least one or all of them may be made of metal. The spinning shaft 11 is desirably made of a material such as soft synthetic resin or soft metal that is more likely to bend, fall down, break, wear, etc. than other components.
The lower part of the flange 12 narrows stepwise from the flange 12 toward the outer periphery of the spinning shaft 11 and is formed in an approximately inverted conical shape as a whole.
As illustrated in
As illustrated in
On the inner concentric circle, eight projections 111 are arranged at regular intervals, which have an isosceles triangle shape in the bottom view. Each of the projections 111 has an acute vertex that faces the center of the concentric circles.
On the outer concentric circle, fifteen projections 112 are arranged at regular intervals, which have a rectangular wedge shape in the bottom view. Each of the projections 112 has a rectangular wedge shape that narrows toward the center of the concentric circles.
The downward extension of the eight projections 111 arranged along the inner concentric circle is greater than that of the fifteen projections 112 arranged along the outer concentric circle. Accordingly, when the toy top 10 spins in a non-tilted position, the lower ends of the inner projections 111 are mainly in contact with the ground surface.
The above-described numbers of the projections are merely an example and may be suitably changed. Further, the arrangement of the projections is also merely a preferred example and may be suitably changed.
The shaft unit 10 includes a cylindrical movable member 18 that is disposed inside the cylinder 13 and surrounds the upper outer periphery of the cylindrical pillar 16. In the lower end of the outer peripheral face of the movable member 18, two protrusions 19 are formed which are mutually opposed in the front-rear direction across the axis of the spinning shaft 11 and protrude outward in their respective radial directions. As illustrated in
On the upper face of the movable member 18, two ridges 21 are formed which are mutually opposed in the right-left direction across the axis of the spinning shaft 11 and extend in their respective radial directions.
In the embodiment, the performance changing ring 30 is constituted by a flywheel. The performance changing ring 30 has a plate shape. On the bottom face of the performance changing ring 30, an annular step 31 is formed which can house the flange 12 of the shaft unit 10 from the lower side. Further, on the upper face of the performance changing ring 30, two protrusions 32 are formed which are mutually opposed in the right-left direction across the axis of the spinning shaft 11 and protrude upward. On the lower parts of the protrusions 32, recesses 33 are respectively formed which can house the protrusions 15 of the shaft unit 10 from the lower side. Further, on the upper face of the performance changing ring 30, tongues 34 are formed which extend upward along the outer side of the respective protrusions 32. The tongues 34 protrude higher than the protrusions 32. Alternatively, the performance changing ring 30 may be constituted by a member that includes a protrusion on the outer peripheral face for facilitating an attack on an opponent toy top 1 or a member that includes a recess on the outer peripheral face for averting an attack from the opponent toy top 1. Such a member may be provided instead of or integrally with a flywheel.
The body 40 has a disk shape. As illustrated in
In the outer periphery of the body 40, an uneven pattern 40a is formed. Further, at the center of the base 400, a round hole 41 is formed. The upper opening of the round hole 41 is closed by means of the transparent cover 401. In the bottom face of the body 40, a circular recess 42 is formed which can house the protrusions 32 of the performance changing ring 30 from the lower side. The circular recess 42 is defined by an inner peripheral wall 43a, and two hooks (first hooks) 44 are disposed on the lower end of the inner peripheral face of the inner peripheral wall 43a, which are mutually opposed in the front-rear direction across the axis of the spinning shaft and protrude inward in their respective radial directions. Further, on the lower end face of the inner peripheral wall 43a, grooves 45 are formed which extend radially at predetermined intervals in two locations mutually opposed in the right-left direction across the axis of the spinning shaft 11.
Further, the circular recess 42 of the body 40 is also defined by a roof wall 43b, and arc slits 46 are formed in the roof wall 43b, into which the tongues 34 of the performance changing ring 30 can be inserted from the lower side. The arc slits 46 have such a length that allows the tongues 34 to move an adequate distance.
Next, an example of the assembling method of the toy top 1 will be described.
First, the shaft unit 10 is fitted in the performance changing ring 30 from the lower side such that the protrusions 15 of the shaft unit 10 mate with the recesses 33 of the performance changing ring 30. Subsequently, the assembly is brought toward the body 40 from the lower side. In this step, the tongues 34 of the performance changing ring 30 of the assembly are set to predetermined ends of the arc slits 46 of the body 40 (
Next, an example of how to play the toy top 1 will be described.
In this example, a player spins a toy top 1 to battle with an opponent toy top 1.
In such cases, a launcher 50 as illustrated in
The toy top 1 thus launched is led to a predetermined field where it spins. When the toy top 1 collides with an opponent toy top 1, the impact or friction of the collision produces a reaction force that acts in the body 40 in the direction opposite to the spinning direction of the shaft unit 10 and the performance changing ring 30 as illustrated in
Then, the ridges 21 of the shaft unit 10 engage with the grooves 45 of the body 40 one after another and are successively held in the respective positions. When the ridges 21 reach the position as illustrated in
In the toy top 1, the lower end of the spinning shaft 11 of the shaft unit 10 is constituted by the projections 111, 112, and the spinning shaft 11 is made of a soft material that is more likely to bend, fall down, break, wear, etc. than the other components.
Accordingly, the individual projections 111, 112 wear, fall down, break, etc. through the friction of a spin, the impact of landing from the launcher 50 and the like. Then they are eventually lost or lose contact with the ground. Further, while the toy top 1 is spinning, the individual projections 111, 112 sometimes wear, fall down, break, etc.
When some of the projections 111, 112 are lost, the toy top 1 spins with only the remaining projections 111, 112 in contact with the ground, which can give instability or irregularity to the spin. In this way, the performance of the toy top 1 can be changed over time through repetitive usages thereof. In a match between toy tops 1, this can make the result unpredictable and thus the match becomes very amusing.
While embodiments of the present invention are described, the present invention is not limited to the embodiments, and various changes may be made without departing from the spirit of the present invention.
For example, in one above-described embodiment, the ridges 21 and the grooves 45 are formed respectively in the shaft unit 10 and the body 40 for producing a rotational resistance between the shaft unit 10 and the body 40. Instead, they may be protrusions and recesses with different shapes. Further, the numbers of them are not limited to those in the above-described embodiment. Alternatively, the rotational resistance may be produced by a rubber or the like formed in the opposed faces of the shaft unit 10 and the body 40. In this case, the shaft unit 10 and the body 40 gradually turn relative to each other in the direction of releasing the coupling by the action of an external impact force or the like.
The above-described embodiments illustrate an example in which the toy top 1 spins in the clockwise direction in the plan view. However, it should be understood well that the present invention is also applicable to a toy top 1 that spins in the anticlockwise direction in the plan view. In this case, in order to produce the toy top 1 that has a structure assembled by turning the body 40 relative to the shaft unit 10 and the performance changing ring 30 in the anticlockwise direction in the plan view, it is only required to change the body 40 while it is possible to use the same shaft unit 10 and the performance changing ring 30.
The above-described embodiments illustrate an example in which a battle is fought between toy tops 1, 1 that spin in the clockwise direction in the plan view. Instead, a battle may be fought between toy tops 1, 1 that spin in the anticlockwise direction in the plan view.
Furthermore, it is also possible that a battle is fought between a toy top 1 that spins in the clockwise direction in the plan view and another toy top 1 that spins in the anticlockwise direction in the plan view.
In this case, a collision and a friction between the toy tops 1, 1 turn the body 40 relative to the shaft unit 10 in the direction from the coupling releasable state to the coupling enabled state. In other words, the body 40 and the shaft unit 10 are turned in the fastening direction thereof. Accordingly, the toy tops 1 are less likely to be disassembled by a collision and a friction. In this case, a battle may be fought with a rule in which a player wins when an opponent toy top 1 is knocked out for example. It is needless to say that a battle may be played among three or more toy tops 1.
The above-described embodiment illustrates an example in which the structure of the spinning shaft 11 as illustrated in
For example, it goes without saying that the structure of the spinning shaft 11 as illustrated in
The above-described embodiments illustrate an example in which the projections 111, 112 of the spinning shaft 11 have a triangular or rectangular shape in the bottom view. However, they may have a different shape such as polygonal shapes with more corners, a circular shape or an oval shape.
This U.S. patent application claims priority to Japanese patent application No. 2016-008042 filed on Jan. 19, 2016, the entire contents of which are incorporated by reference herein.
Number | Date | Country | Kind |
---|---|---|---|
2016-008042 | Jan 2016 | JP | national |