Toy top

Information

  • Patent Grant
  • 6746300
  • Patent Number
    6,746,300
  • Date Filed
    Saturday, May 3, 2003
    21 years ago
  • Date Issued
    Tuesday, June 8, 2004
    20 years ago
Abstract
A toy top includes a toy body having a main spring power device therein, the main spring power device being rotatively linked with a revolving shaft provided on a center of a bottom surface of the toy body. The main spring power device includes latch means for maintaining a winding-up position when a main spring is wound up and a button for releasing the latch means so as to release a revolving force of the main spring. The toy body is provided with a press mechanism for pressing the button according to a rise or a reduction in a centrifugal force during the revolution of the toy body.
Description




BACKGROUND OF THE INVENTION




1. Field of the Invention




The present invention relates to a toy top in which a revolving speed is changed during revolution thereof.




2. Description of the Related Art




Conventionally, toy tops have been popular in children's playgrounds, and children often play a game in which they strike their toy tops against those of their companions so as to beat the companions' toy tops or drive out the toy tops of their companions from a game space or game board by means of their own toy tops. However, since such a simple game in which a toy top is revolved to be struck against companions' toy tops is merely decided by a player's force and skill, this game is not much fun. Therefore, toy tops having highly competitive characteristics are provided by adding such mechanisms that parts can be replaced and revolving characteristics change during the revolution of the toy top.




In these toy tops, a toy top having a mechanism in which revolving characteristics change during revolution is known (for example, see Japanese Patent Application Laid-Open Publication No. 2002-962).




However, since the above technique utilizes a wireless technique and requires a controller as well as a toy top, there arises a problem that it is fairly expensive and thus few children would get such a toy top.




SUMMARY OF THE INVENTION




The present invention has been made in order to solve the above problem.




Accordingly, it is an object of the present invention to provide a toy top which is capable of quickening a revolving speed at an initial revolving period, an end revolving period or an intermediate revolving period by means of a simple structure.




In accordance with the present invention, a toy top is provided. The toy top includes a toy body and a revolving shaft provided on a center of a bottom surface of the toy body so as to be rotatable. The toy top further includes a main spring power device arranged inside the toy body, the main spring power device being linked with the revolving shaft. Such construction permits the revolving shaft to be revolved by the force of the main spring, so that the revolving speed can be quickened during the revolution of the toy top.




In a preferred embodiment of the present invention, the main spring power device includes latch means for maintaining a winding-up position when a main spring is wound up and a button for releasing the latch means so as to release a revolving force of the main spring; and the toy body includes a press mechanism for pressing the button according to a change of a centrifugal force during revolution of the toy body. When the toy top revolves and the generated centrifugal force changes, the press mechanism operates to press the button of the main spring power device so that the latch means of the main spring power device is released, thereby releasing the wound-up main spring and transmitting its driving force to the revolving shaft. For this reason, the revolving force of the toy top increases, and the toy top abruptly starts to revolve more quickly. In such a manner, the revolving speed can be quickened during the revolution of the toy top by the simple structure without a controller, so that a player can enjoy a more fascinating game using the toy top, which game is not provided by a conventional toy top.




In a preferred embodiment of the present invention, the button protrudes to an outside of the main spring power device; and the press mechanism includes a press member for pressing the button by utilizing the centrifugal force generated due to the revolution of the toy body, the press member being arranged in a position which surrounds the main spring power device. The press member is kept separating from the button before the toy body revolves, and the button is pressed by the centrifugal force during the revolution of toy top. Therefore, before the toy top is initially revolved by the shooter or the like, it is not necessary to perform a special operation such as pulling out a certain part of the toy top against the spring, and thus, it is easy to operate the toy top.




In a preferred embodiment of the present invention, the press member is arranged so as to be movable in a direction where the press member presses or separates from the button, and is urged by a spring in a direction where the press member separates from the button, to thereby press the button against a force of the spring due to a rise of the centrifugal force during the revolution of the toy body. When the toy top revolves and the generated centrifugal force rises, the press mechanism operates so that the press member presses the button of the main spring power device and the latch means of the main spring power device is released, thereby releasing the wound-up main spring and transmitting its driving force to the revolving shaft. For this reason, the revolving force of the toy top increases, and the toy top abruptly starts to revolve more quickly. In such a manner, the revolving speed can be quickened during the revolution of the toy top with the simple structure without a controller, so that a player can enjoy a more fascinating game using the toy top, which game is not provided by a conventional toy top.




In a preferred embodiment of the present invention, the press member is arranged so as to be movable in a direction where the press member presses or separates from the button, and is urged by a first spring in the direction where the press member presses the button; and the press mechanism further includes a holding member which is arranged so as to be movable between a position where the holding member is engaged with the press member and a position where the holding member is disengaged from the press member, and which is urged by a second spring so as to be engaged with the press member in a state that the press member separates from the button, and which is moved to the position where the holding member is disengaged from the press member against the force of the second spring due to the centrifugal force during the revolution of the toy body, whereby the press member disengages from the holding member and presses the button with the force of the first spring due to a reduction in the centrifugal force during the revolution of the toy body. Though the engagement between the holding member and the press member is released due to the centrifugal force, the centrifugal force at the initial revolution of the toy top is so strong that the press member does not press the button. However, when the centrifugal force is reduced, the press member presses the button by the force of the spring. As a result, the revolving speed rises at the final period of the revolution of the toy top, and thus a unique toy top can be provided.




In a preferred embodiment of the present invention, the revolving shaft includes a ring portion formed to have a larger size than the toy body. In this embodiment, the main spring of the toy body is wound up, and when the toy top is revolved by a suitable shooter or the like, simultaneously the main spring may be released. Although the toy top revolves about the revolving shaft, simultaneously the revolving shaft itself revolves due to the release of the main spring. However, since the ring portion having a larger size than the toy body is mounted to the revolving shaft, the revolving shaft cannot revolve immediately at high speed due to the flywheel effect of the ring portion. The revolution of the revolving shaft is quickened gradually. Moreover, since the inertial force is exerted on the revolving shaft, the revolution of the toy top is in no hurry to stop. For this reason, revolving characteristics can be such that when the revolving shaft revolves, the revolving speed of the toy body also rises, but a degree of the rise is slow, and the revolving force of the toy top increases gradually and the revolution is long-lasting due to the inertia. Therefore, the revolving speed rises at the intermediate period of the revolution, and thus a unique toy top can be provided.




In addition, when the toy top as well as another toy top are revolved and are struck against each other on the game board, since the ring portion of the toy top has a larger size than the toy body, the competitor's toy top strikes against the ring portion, thereby strengthening the force with which the competitor's toy top is flicked away or knocked over. Moreover, since the ring portion is larger than the toy body, the flywheel effect on the toy body is enhanced.











BRIEF DESCRIPTION OF THE DRAWINGS




Other objects and many of the attendant advantages of the present invention will be readily appreciated as the same becomes better understood by reference to the following detailed description when considered in connection with the accompanying drawings; wherein:





FIG. 1

is a perspective view showing an embodiment of a toy top of the present invention;





FIG. 2

is an exploded perspective view of essential part of the toy top;





FIGS. 3A and 3B

are elevational sectional views showing states before and after an operation of press members, respectively;





FIGS. 4A and 4B

are plan views showing states during a winding operation of a main spring power device and an unwinding operation thereof, respectively;





FIGS. 5A and 5B

are plan views showing states before and after an operation of a latch release button, respectively;





FIGS. 6A and 6B

are plan views showing states before and after an operation of the press members, respectively;





FIG. 7

is a perspective view showing a main section of the toy top, wherein a revolving operation of a revolving shaft is carried out with a winding tool;





FIG. 8

is a perspective view showing another embodiment of the toy top of the present invention;





FIGS. 9A and 9B

are plan views showing states before and after an operation of the latch release button;





FIGS. 10A

,


10


B and


10


C are plan views showing states before, during and after an operation of the press members;





FIG. 11

is a perspective view showing still another embodiment of the toy top of the present invention;





FIG. 12

is an exploded perspective view of a main section of the toy top; and





FIGS. 13A and 13B

are explanatory diagrams showing a manner of fixing a rotating body.











DETAILED DESCRIPTION OF THE INVENTION




Embodiments of the present invention will be explained below with reference to the drawings.




Referring first to

FIGS. 1

to


7


, a toy top according to an embodiment of the present invention is illustrated. The toy top of this embodiment includes a toy body A which is composed of a lower body member


1


arranged at a bottom thereof, an intermediate body member


2


arranged on the lower body member


1


, and an upper body member


3


arranged on the intermediate body member


2


. The intermediate body member


2


is a weight made of metal. A revolving shaft


4


is provided on a center of the lower body member


1


. The upper body member


3


and the lower body member


1


are made of synthetic resin.




A basic structure of the toy body A of the toy top having the above multi-layer structure is publicly known, and its assembly and disassembly are carried out in a publicly known manner. The toy top may have a three or more layer structure using three or more body members. Complicated revolving characteristics can be obtained by replacing respective body members.




A cylindrical weight


5


made of metal is fixed to the revolving shaft


4


which protrudes from a center of a bottom surface of the lower body member


1


. The revolving shaft


4


is rotatively linked with a main spring power device


6


arranged in the center of the toy body A. The main spring power device


6


is provided with the revolving shaft


4


on a center of a device body


6




a


rotatively as shown in

FIGS. 4A and 4B

, and is provided with an input gear


8


and an output gear


9


which are engaged with a shaft gear


7


on a base portion of the revolving shaft


4


. Further, a first intermediate gear


10


, which is movable so that a shaft


10




a


approaches to or separates from the center of the device body


6




a


, is arranged to mesh with the input gear


8


. The first intermediate gear


10


is movable so as to be capable of being engaged with and disengaged from a drive gear


11


separately provided coaxially with the revolving shaft


4


. The drive gear


11


includes a large diameter gear


11




a


and a small diameter gear


11




b


which are integrally formed. Moreover, a claw (not shown) protrudes from a center of the drive gear


11


, and the claw is engaged with an end portion on a central side of a main spring


19


(see

FIG. 3

) arranged in the device body


6




a


. The other end of the main spring


19


is fixed to the device body


6




a


. When the input gear


8


revolves clockwise as shown in

FIG. 4A

, the first intermediate gear


10


moves so as to be engaged with the small diameter gear


11




b


of the drive gear


11


provided coaxially with the revolving shaft


4


. On the contrary, when the input gear


8


revolves counterclockwise, the first intermediate gear


10


moves so as to be disengaged from the small diameter gear


11




b


of the drive gear


11


as shown in FIG.


4


B.




The output gear


9


is engageably linked with the large diameter gear


11




a


of the drive gear


11


via a second intermediate gear


18


. The second intermediate gear


18


is movable so as to be capable of being engaged with and disengaged from a small diameter gear


9




a


formed integrally with the output gear


9


according to a revolving direction of the drive gear


11


. The second intermediate gear


18


includes a shaft


18




a


, a large diameter gear


18




b


and a small diameter gear


18




c


which are formed integrally. The second intermediate gear


18


is so arranged that the small diameter gear


18




c


thereof meshes with the large diameter gear


11




a


of the drive gear


11


and the large diameter gear


18




b


of the second intermediate gear


18


is adapted to be disengageably engaged with the small diameter gear


9




a


of the output gear


9


. When the drive gear


11


revolves counterclockwise as shown in

FIG. 4B

, the second intermediate gear


18


moves so that the large diameter gear


18




b


thereof is engaged with the small diameter gear


9




a


of output gear


9


. On the contrary, when the drive gear


11


revolves clockwise, the second intermediate gear


18


moves so that the large diameter gear


18




b


thereof is disengaged from the small diameter gear


9




a


of the output gear


9


as shown in FIG.


4


A.




As shown in

FIGS. 5A and 6A

, the main spring power device


6


is provided with latch means


12


which latches a ratchet


7




a


formed on a rear side of the shaft gear


7


of the revolving shaft


4


, and a latch release button


13


for releasing the latch. Namely, the latch means


12


is composed of a latch ring


14


having an oval shape arranged around the ratchets


7




a


, and a spring


15


which urges the latch ring


14


in a certain direction. A pawl


16


which can be latched on the ratchets


7




a


is formed on an inner side of one end of the latch ring


14


. When the ratchets


7




a


revolve in a winding direction of the main spring, the pawl


16


is not latched on the ratchet


7




a


, and when the ratchets


7




a


revolve in the opposite direction, the pawl


16


is latched on the ratchet


7




a


. The spring


15


urges the latch ring


14


so that the pawl


16


engages with the ratchet


7




a


. The latch release button


13


is provided protrusively on an outer side of the other end of the latch ring


14


, and a distal end thereof protrudes to an outside of the main spring power device


6


.




According to the above structure, as shown in

FIGS. 5A and 6A

, when the pawl


16


of the latch ring


14


is latched on the ratchet


7




a


by the spring


15


, a winding-up position at the time of winding up the main spring


19


is maintained, and when the latch release button


13


is pressed as shown in

FIGS. 5B and 6B

, the latch ring


14


moves so as to release the latch between the pawl


16


and the ratchet


7




a


and a revolving force of the main spring


19


is released.




A press mechanism for pressing the button


13


in the case where a centrifugal force during revolution of the toy top is not less than a certain value is provided on the lower body member


1


of the toy body A. Namely, the lower body member


1


is constituted of a lower element


1




a


and an upper element


1




b


so that the upper and lower elements


1




b


and


1




a


are capable of being separated from and combined with each other as shown in

FIGS. 2

,


3


A and


3


B. A circular hole


17


(see FIG.


2


) is formed on a center of the lower element


1




a


of the lower body member


1


. Moreover, the main spring power device


6


is fixed by fasteners


31


which are rotatively and slidably provided in opposed sliding recesses


30


on the upper surface of the lower element


1




a


of the lower body member


1


. As shown in

FIGS. 6A and 6B

, an inside of the lower body member


1


is provide with a pair of opposed press members


22


which are each constituted of a U-shaped element


20


and an approximately semicircular crook


21


protruding from an end of a back surface of the U-shaped elements


20


. The press members


22


are each provided at a distal end of the crook


21


with an engagement portion


21




a


and are arranged so that the engagement portion


21




a


of one of the press members


22


faces the button


13


. Compression springs


23


are mounted to the insides of the U-shaped elements


20


, respectively. One of the paired press members


22


is actually used for latch release. The other one is provided for balance and for convenience of mounting of the main spring power device


6


(the position of the latch release button may face either direction). Moreover, the press members


22


are movable in a diameter direction of the circular hole


17


, and the press members


22


are each normally urged by the spring


23


so that the engagement portion


21




a


at the distal end of the crook


21


is in a position where it separates from the center of the circular hole


17


. As a result, one of the engagement portions


21




a


is arranged so as to be movable in a direction where it presses or separates from the button


13


, and as show in

FIGS. 3A

,


5


A and


6


A, the engagement portion


21




a


is normally urged in the direction where it separates from the button


13


, so as to be capable of pressing the button


13


against the force of the spring


23


by means of a centrifugal force during the revolution of the toy body A.




The weight


5


on the revolving shaft


4


is formed on opposite sides thereof with engagement grooves


24


extending in a vertical direction as shown in

FIG. 7. A

pair of legs


26


formed at a distal end of a winding tool


25


are engaged with the engagement grooves


24


so that the revolving shaft


4


can be revolved by revolving the winding tool


25


. When the revolving shaft


4


revolves, as shown in

FIG. 4A

, the input gear


8


and the output gear


9


of the main spring power device


6


which are engaged with the shaft gear


7


also revolve. When the input gear


8


revolves, the first intermediate gear


10


moves so as to be engaged with the small diameter gear


11




b


of the drive gear


11


, so that the drive gear


11


is revolved, whereby the main spring


19


linked with the drive gear


11


is wound up. However, since the large diameter gear


18




b


of the second intermediate gear


18


is disengaged from the small diameter gear


9




a


formed on the output gear


9


due to this revolving direction of the drive gear


11


, the output gear


9


idles. When the ratchets


7




a


revolve in the main spring winding-up direction, the pawl


16


of the latch means


12


is not latched on the ratchet


7




a


, so that the revolving shaft


4


can revolve. However, even when the winding tool


25


is removed after the main spring


19


is wound up, the pawl


16


is latched on the ratchet


7




a


by the spring


15


, so that the revolving shaft


4


does not revolve and the state in which the main spring


19


is wound up is maintained.




When the toy top is revolved by a shooter (not shown), a centrifugal force is exerted upon the toy top. The engagement portion


21




a


of the press member


22


is normally urged in the direction where it separates from the button


13


, but when the centrifugal force rises after starting of the revolution, as shown in

FIGS. 3B

,


5


B and


6


B, since this strong centrifugal force moves the press member


22


of the press mechanism against the force of spring


23


in the U-shaped element


20


, an inner side surface of the engagement portion


21




a


at the distal end of the crook


21


presses the latch release button


13


of the main spring power device


6


. As a result, the pawl


16


of the latch means


12


is unlatched from the ratchet


7




a


formed on the shaft gear


7


of the revolving shaft


4


, and thus, as shown in

FIG. 4B

a driving force of the main spring


19


is transmitted to the revolving shaft


4


via the drive gear


11


, the second intermediate gear


18


, the output gear


9


and the shaft gear


7


. For this reason, the revolving shaft


4


revolves roundly. The toy top itself revolves, but since a revolving force of the revolving shaft


4


is applied to the revolving toy top, the revolving speed of the toy top abruptly rises during the revolution (at an initial stage of the revolution) so that the toy top abruptly revolves quickly. The application of this revolving force continues until the main spring


19


is completely unwound. When the driving force of the main spring


19


is transmitted to the revolving shaft


4


via the drive gear


11


, the second intermediate gear


18


, the output gear


9


and the shaft gear


7


, the first intermediate gear


10


on an input side is disengaged from the drive gear


11


as shown in

FIG. 4B

, and thus the input gear


8


idles.




According to the toy top having the above structure, when two players revolve the respective toy tops on a concave surface of a game board with a recessed center by means of suitable shooters or the like, the toy tops revolve about the respective revolving shafts


4


, and the toy bodies A strike against each other. At this time, there is a strong possibility that a player having a toy top with a stronger revolving force will win the game. It is important that the revolving force has increased before the toy tops strike against each other, but the operation of the press member


22


is determined mainly by the revolution of the toy top and the forces of the springs


23


and


15


. In general, since the spring forces of the individual springs have minute deviations, the toy tops do not obtain an increased revolving force simultaneously, and thus the game is not decided by a player's force and skill. When a player uses a toy top in which the revolving force increases at the initial revolving of the toy top, an outcome of the game is decided in favor of such a player in the case of striking of the toy tops occurring early in revolution, and this cannot be decided by a player's force and skill. Therefore, the game using the toy top which is more fascinating than a conventional game can be played.




Referring now to

FIGS. 8

to


10


C, another embodiment of the present invention is illustrated. In this embodiment, when the centrifugal force during the revolution of the toy top is lowered, the revolution of the toy top is quickened. The toy top of this embodiment has the structure similar to that in

FIGS. 2

,


4


A,


4


B,


5


A and


5


B.




In this embodiment, the lower body member


1


of the toy body A is provided with the press mechanism for pressing the button


13


in the case where the centrifugal force during the revolution of the toy top is lowered. Namely, as shown in

FIGS. 9A

,


9


B,


10


A,


10


B and


10


C, a pair of press members


32


and a pair of holding members


33


are arranged on straight lines crossing perpendicularly to each other at the center of the circular hole


17


formed on the lower element


1




a


of the lower body member


1


so as to be opposed to each other.




The press members


32


are each formed to have a box shape and are each provided with a spring


34




a


therein. One end of the spring


34




a


is engaged with an upright element


35


on a peripheral edge of the lower element


1




a


of the lower body member


1


, thereby arranging the press members


32


movable in the direction in which one of the press members


32


presses or separates from the button


13


. The press members


32


are urged by the respective springs


34




a


in the directions where one of the press members


32


presses the button


13


. Both sides of ends of the press members


32


near the circular hole


17


protrude laterally outward. Moreover, outside portions of the press members


32


protrude to an outside of the toy body A so that the press members


32


can be moved by pulling the outside portions thereof outward.




A branch engagement leg


33




a


is formed on each of the holding members


33


, and the branch engagement leg


33




a


is arranged so as to be movable to a position in which it is engaged with the press members


32


(a position closer to the center of the circular hole


17


) and a position in which it is disengaged from the press members


32


(a position separated from the center of the circular hole


17


). The holding members


33


are normally urged by respective springs


34




b


so that the press members


32


are engaged with the branch engagement legs


33




a


of the holding members


33


in a state that one of the press members


32


is separated from the button


13


, and the holding members


33


are moved to the positions where the engagement state is released against the force of the springs


34




b


by the centrifugal force during the revolution of the toy body A.




In order to revolve the revolving shaft


4


, the main spring


19


may be wound up by the winding tool


25


in the manner shown in FIG.


7


.




As shown in

FIG. 10A

, the outside portions of the press members


32


are pulled outward against the springs


34




a


so as to be separated from the latch release button


13


. At this time, the holding members


33


are moved to the positions where the engagement legs


33




a


thereof are engaged with the press members


32


by the springs


34




b


. When the toy top is revolved by the shooter (not shown), the centrifugal force is exerted upon the toy top. As a result, as shown in

FIGS. 9B and 10B

, the holding members


33


move away from the center of the circular hole


17


against the force of the respective springs


34




b


, so that the engagement between the holding members


33


and the press members


32


is released. For this reason, the press members


32


can be moved by the force of the respective springs


34




a


in the direction where one of the press members


32


presses the latch release button


13


. However, since the centrifugal force is exerted also on the press members


32


, the press members


32


cannot be moved by the force of the springs


34


while the centrifugal force is strong. However, when the revolving speed of the toy body A reduces and thus the centrifugal force is lowered so that the force of the springs


34




a


becomes relatively stronger, the press members


32


are moved by the spring force, and as shown in

FIGS. 4B

,


9


B and


10


C, one of the press members


32


presses the latch release button


13


. As a result, the pawl


16


of the latch means


12


is separated from the ratchet


7




a


of the revolving shaft


4


, so that the driving force of the main spring


19


is transmitted to the revolving shaft


4


via the drive gear


11


, the second intermediate gear


18


, the output gear


9


and the shaft gear


7


as shown in FIG.


4


B. For this reason, the revolving shaft


4


revolves roundly. Although the toy top itself revolves, the revolving force of the revolving shaft


4


is applied to the revolving toy top, so that the revolving speed of the toy top again rises during the revolution (at a final stage of the revolution) and the toy top abruptly starts to revolve quickly. The revolving force continues to act until the main spring


19


is unwound completely. When the driving force of the main spring


19


is transmitted to the revolving shaft


4


via the drive gear


11


, the second intermediate gear


18


, the output gear


9


and the shaft gear


7


, the first intermediate gear


10


on the input side separates from the drive gear


11


, and thus the input gear


8


idles.




According to the toy top having the above structure, when two players each revolve the toy tops on the concave surface of the game board with a recessed center by means of suitable shooters or the like, the toy tops revolve about the respective revolving shafts


4


, and the toy bodies A strike against each other. In this instance, as described above, there is a strong possibility that a player having a toy top with a stronger revolving force will win the game, but an outcome of the game is not decided by a player's force and skill. When a player uses a toy top in which the revolving force increases at the final revolution period of the toy top, an outcome of the game is decided in favor of such a player in the case of striking of the toy tops occurring late in revolution, and this cannot be decided by a player's force and skill. Therefore, the game using the toy top which is more fascinating than a conventional game can be played.




Referring to

FIGS. 11

to


13


B, still another embodiment of the present invention is illustrated, wherein the revolving speed of the toy top is quickened at an intermediate period of the revolution thereof. The toy top of this embodiment also has the main spring power device


6


shown in

FIGS. 4A and 4B

. In this case, the latch release means shown in

FIGS. 5A and 5B

is unnecessary.




The revolving shaft


4


which protrudes from the bottom center of the lower body member


1


is rotatively linked with the main spring power device


6


. A rotating body


36


is fixed to the revolving shaft


4


.




Namely, as shown in

FIG. 12

, a branch engagement element


37


is formed on an end of the revolving shaft


4


. Fixing flanges


38


are formed on a distal end of the engagement element


37


. The rotating body


36


is detachably mounted on the engagement element


37


. The rotating body


36


has a ring portion


39


formed to have a size larger than the toy body A so that the rotating body


36


gradually raises the revolving speed of the revolving shaft


4


. Namely, the rotating body


36


is composed of a center portion, the ring portion


39


and blade portions


40


which connect the center portion and the ring portion


39


. The center portion is formed with a pair of through holes


41


through which the branch engagement element


37


can be inserted and a pair of supporting elements


42


so as to opposed to each other with respect to a revolving center. An upper surface of the ring portion


39


is formed with protrusions


43


at predetermined intervals.




When the rotating body


36


is mounted to the toy body A, the engagement element


37


at the lower end of the revolving shaft


4


is inserted through the through holes


41


of the rotating body


36


, and a side surface of the engagement element


37


is supported between inner surfaces of the supporting elements


42


. Further, as shown in

FIGS. 13A and 13B

, a retaining ring


44


is inserted between rear surfaces of the fixing flanges


38


of the inserted engagement element


37


and a lower surface of the center of the rotating body


36


so that the rotating body


36


is fixed to the revolving shaft


4


.




In the above structure, when a finger is inserted between the blade portions


40


of the rotating body


36


to revolve the rotating body


36


, the revolving shaft


4


revolves so that the main spring (not shown) can be wound up. When the finger is removed from the rotating body


36


, the main spring is released so that the revolving shaft


4


revolves reversely. The revolving direction of the revolving shaft


4


is the same as the revolving direction of the toy body A.




When the toy top having the above structure is used, the main spring of the toy body A is wound up as described above, and when a player revolves the toy top on the game board with the recessed center using a suitable shooter or the like, approximately simultaneously the player may release the main spring. Although the toy top revolves about the revolving shaft


4


, simultaneously the revolving shaft


4


itself also revolves due to releasing of the main spring. However, since the rotating body


36


is mounted to the revolving shaft


4


which is revolved by the main spring, the revolving shaft


4


cannot revolve at high speed immediately due to a flywheel effect of the rotating body


36


. The revolution of the revolving shaft


4


gradually rises. Moreover, since an inertia force is exerted, the revolution is in no hurry to stop but long-lasting. For this reason, when the revolving shaft


4


revolves, the revolving speed of the toy body A also rises, but a degree of the rise is slow, so that revolving characteristics such that the revolving force of the toy top increases gradually and the revolution of the toy top is in no hurry to stop due to inertia can be obtained.




When the toy top having the above structure as well as another toy top are revolved and struck against each other on the game board, since the ring portion


39


of the toy top having the above structure has a larger size than the toy body A, the competitor's toy top strikes against the protrusions


43


of the ring portion


39


, so that the effect being that the chances of the toy top having the above structure beating the competitor's toy top become very good.




It is possible to set the time at which the revolving speed of the revolving shaft


4


peaks by adjusting a weight of the rotating body


36


, a size of the ring portion


39


and/or the like.




In addition, although the revolving direction of the toy body A using the shooter is the same as the revolving direction of the revolving shaft


4


using the main spring in the above example, they may be revolved in opposite directions.




As can be seen from the foregoing, according to the present invention, the main spring power device is arranged inside the toy body and linked with the revolving shaft of the toy body so that the revolving shaft can be revolved by the force of the main spring, resulting in the revolving speed being quickened during the revolution of the toy top.




While preferred embodiments of the invention have been described with a certain degree of particularity with reference to the drawings, obvious modifications and variations are possible in light of the above teachings. It is therefor to be understood that within the scope of the appended claims, the invention may be practiced otherwise than as specifically described.



Claims
  • 1. A toy top comprising:a toy body; a revolving shaft provided on a center of a bottom surface of said toy body so as to be rotatable; and a main spring power device arranged inside said toy body, said main spring power device being linked with said revolving shaft, wherein said main spring power device includes a latch unit for maintaining a winding-up position when a main spring is wound up and a button for releasing said latch unit so as to release a revolving force of said main spring; and said toy body includes a press mechanism for pressing said button according to a change of a centrifugal force during revolution of said toy body.
  • 2. The toy top according to claim 1, wherein said button protrudes to an outside of said main spring power device; andsaid press mechanism includes a press member for pressing said button by utilizing the centrifugal force generated due to the revolution of said toy body, said press member being arranged in a position which surrounds said main spring power device.
  • 3. The toy top according to claim 2, wherein said press member is arranged so as to be movable in a direction where said press member presses or separates from said button, and is urged by a spring in a direction where said press member separates from said button, to thereby press said button against a force of said spring due to a rise of the centrifugal force during the revolution of said toy body.
  • 4. The toy top according to claim 2, wherein said press member is arranged so as to be movable in a direction where said press member presses or separates from said button, and is urged by a first spring in the direction where said press member presses said button; andsaid press mechanism further includes a holding member which is arranged so as to be movable between a position where said holding member is engaged with said press member and a position where said holding member is disengaged from said press member, and which is urged by a second spring so as to be engaged with said press member in a state that said press member separates from said button, and which is moved to the position where said holding member is disengaged from said press member against the force of said second spring due to the centrifugal force during the revolution of said toy body, whereby said press member disengages from said holding member and presses said button with the force of said first spring due to a reduction in the centrifugal force during the revolution of said toy body.
  • 5. The toy top according to claim 1, wherein said revolving shaft includes a ring portion formed to have a larger size than said toy body.
Priority Claims (1)
Number Date Country Kind
2002-375454 Dec 2002 JP
US Referenced Citations (9)
Number Name Date Kind
1025299 Pearsall et al. May 1912 A
1509436 Marx Sep 1924 A
1559232 Esper Oct 1925 A
1603034 Esper Oct 1926 A
2435445 Kerezi Feb 1948 A
4233774 Sahar Nov 1980 A
5827107 Bears et al. Oct 1998 A
6083076 Saint-Victor Jul 2000 A
6607420 Chung Aug 2003 B2
Foreign Referenced Citations (2)
Number Date Country
2371496 Jul 2002 GB
9-38337 Feb 1997 JP