TOY TRACK SET AND RELAY SEGMENTS

Abstract
A relay for a toy is disclosed herein, the relay having: a first relay segment having an upper portion rotatably secured to a lower portion for movement between a first position and a second position with respect to the lower portion; a trigger coupled to the first relay segment, the trigger being configured for movement from a first position to a second position; a mechanism for retaining the upper portion in the second position after it has been rotated to the second position from the first position, the upper portion being spring biased towards the first position, wherein the mechanism releases the upper portion to allow for rotation movement of the upper portion to the first position from the second position, when the trigger is moved from the first position to the second position; a projectile launcher for launching a projectile into air after the release mechanism releases the upper portion and the upper portion is rotated to the first position from the second position; and a second relay segment, the second relay segment having a release mechanism for launching a portion of the second relay segment in the air as well as launching an object from the relay when the second relay segment is impacted by the projectile.
Description
BACKGROUND

Toy vehicle track sets have been popular for many years and generally include one or more track sections arranged to form a path around which one or more toy vehicles can travel. Toy vehicles which may be used on such track sets may be either self-powered vehicles or may receive power from an external source. In order to increase play value of the track sets, various track amusement features have been added to the track sets. For example, track features, such as stunt devices or elements, including loops, jumps, collision intersections, etc., have been included in such track sets to increase the play value of the track sets.


However, with many track sets, the vehicles run on a closed loop track moving through the same track features lap after lap. Although such track sets may have one or more stunt devices, a vehicle in the track set may perform the same stunt over and over as it travels along the track. Thus, even in track sets with more than one stunt device, the motion of the vehicle generally remains consistent for each vehicle as it travels along a specific section of the track. This repetitive nature of vehicle travel may result in loss of interest in the track set over a short period of time.


Some track sets have incorporated switching mechanisms to enable a user to direct a vehicle to a select travel path. However, generally such systems require manual manipulation of the track and/or manual actuation of a switch to reroute one or more vehicles traveling on the track. Play possibilities may be limited as travel along the select paths may again become repetitive over a short period of time.


Accordingly, it is desirable to provide toy track set with interchangeable elements to provide numerous configurations.


SUMMARY OF THE INVENTION

In one embodiment, a relay for a toy is provided, the relay having: a first relay segment having an upper portion rotatably secured to a lower portion for movement between a first position and a second position with respect to the lower portion; a trigger coupled to the first relay segment, the trigger being configured for movement from a first position to a second position; a mechanism for retaining the upper portion in the second position after it has been rotated to the second position from the first position, the upper portion being spring biased towards the first position, wherein the mechanism releases the upper portion to allow for rotation movement of the upper portion to the first position from the second position, when the trigger is moved from the first position to the second position; a projectile launcher for launching a projectile into air after the release mechanism releases the upper portion and the upper portion is rotated to the first position from the second position; and a second relay segment, the second relay segment having a release mechanism for launching a portion of the second relay segment in the air as well as launching an object from the relay when the second relay segment is impacted by the projectile.


In another exemplary embodiment, an interchangeable toy track set is provided, the interchangeable toy track set having a plurality of interchangeable relays segments each of which may be coupled to each other to create a plurality of variations for the toy track set; and wherein at least one of the plurality of interchangeable relays has: a first relay segment having an upper portion rotatably secured to a lower portion for movement between a first position and a second position with respect to the lower portion; a trigger coupled to the first relay segment, the trigger being configured for movement from a first position to a second position; a mechanism for retaining the upper portion in the second position after it has been rotated to the second position from the first position, the upper portion being spring biased towards the first position, wherein the mechanism releases the upper portion to allow for rotation movement of the upper portion to the first position from the second position, when the trigger is moved from the first position to the second position; a projectile launcher for launching a projectile into air after the release mechanism releases the upper portion and the upper portion is rotated to the first position from the second position; and a second relay segment, the second relay segment having a release mechanism for launching a portion of the second relay segment in the air as well as launching an object from the relay when the second relay segment is impacted by the projectile.


In still another exemplary embodiment, a method for actuating a relay of a toy track set, the method including the steps of: rotating an upper body of a first relay segment to a first position from a second position, the upper body being spring biased towards the first position; retaining the upper body in the second position by a mechanism; rotating a projectile launcher rotationally secured to the upper body portion to a second position from a first position, the projectile launcher being spring biased towards the first position; retaining the projectile launcher in the second position by the mechanism; actuating a trigger coupled to the first relay segment, the trigger being configured for movement from a first position to a second position, the trigger being coupled to the mechanism wherein movement of the trigger to the second position releases the upper body to allow for rotation movement of the upper body to the first position from the second position and the mechanism releases the projectile launcher to allow to allow for rotational movement of the projectile launcher to the first position from the second position and wherein the projectile launcher launches a projectile into air after the mechanism releases the projectile launcher; and impacting a second relay segment with the projectile wherein the second relay segment launches a portion of the second relay segment into air and an object is launched away from the second relay segment.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 shows an example toy vehicle track set including a plurality of relay segments in accordance with an exemplary embodiment of the present invention;



FIGS. 1
a and 1b further illustrate segments of an exemplary toy vehicle track set;



FIG. 1
c shows an internal view of an example relay segment;



FIGS. 2-11 show example relay segments;



FIG. 12 shows another example toy vehicle track set including a plurality of relay segments;



FIGS. 13-17 illustrate still other relay segments in accordance with exemplary embodiments of the present invention;



FIG. 18 shows still another example toy vehicle track set including a plurality of relay segments;



FIGS. 19 and 20 illustrate still other relay segments in accordance with exemplary embodiments of the present invention;



FIG. 21 illustrated still another toy vehicle track set in accordance with another exemplary embodiment of the present invention;



FIGS. 22-23 illustrate yet another exemplary relay segment;



FIGS. 24-33D illustrate still other alternative exemplary embodiments of the present invention; and



FIGS. 34-50 illustrate still other alternative exemplary embodiments of the present invention.





DETAILED DESCRIPTION

This application is also related to U.S. patent application Ser. No. 12/581,762 filed on Oct. 19, 2009, the contents each of which are incorporated herein by reference thereto.


In accordance with exemplary embodiments of the present invention a customizable track set is provided. In one embodiment, the track set includes a plurality of interchangeable relay segments each of which may be coupled to each other to create a customized expandable track set. The relay segments may include one or more stunt elements and may be selectively positioned at the beginning, middle, or end of the track set. Each relay segment may be configured to enable a toy vehicle to traverse an obstacle and/or perform a stunt and launch the toy vehicle down a track towards another relay segment, which then may initiate a second vehicle to be released and traverse still another obstacle and/or perform still another stunt.


An example track set 100 having three relay segments 110, 112, and 114 is shown in FIG. 1. As discussed in more detail below, each relay segment may be selectively positioned in the beginning, middle or end of the track. A user may customize the track by positioning the relay sections in desired portions of the track. In one embodiment, a plurality of relay segments may be sequentially coupled together with a plurality of track segments to generate a series of relay events. The series of events, which may include various stunt elements, can be rearranged in a plurality of sequences and/or parallel paths to provide numerous play patterns. In this way, a user can experience diverse track play and excitement time and time again.


In this first example, each relay segment 110, 112, and 114 may include an incoming vehicle trigger which may directly or indirectly causes the launching of another outgoing vehicle. The outgoing vehicle from one segment may become the incoming vehicle of a next segment. One or more launchers may be provided to accelerate toy vehicles along the track. As such, the launchers may be configured to engage and urge a toy vehicle to travel along the track. It should be appreciated that although launchers are described herein, vehicles may be manually propelled along the track without the use of a launcher without departing from the scope of the disclosure.


Although any suitable launcher may be used, in the illustrated embodiments, various automatically and manually-triggered release launcher elements are illustrated. A vehicle may be positioned in launch position such that a launch element may slidingly engage the vehicle to propel the vehicle along the track. The launch element may be biased to a launch position, such as by springs, elastic bands or any other suitable biasing mechanism such that release of an activator releases its stored potential energy.


In one example, the relay segments may include triggers, such as conical shaped triggers (shown in FIG. 1 at 120) or angled trigger shapes that are not necessarily conical (shown in FIG. 1 a at 120a). As an example, conically shaped trigger 120 may have a cone angle of approximately 45 degrees, which is actuated vertically via contact with a horizontally moving incoming vehicle. It should be appreciated that the cone angle may be of any suitable angle such that an incoming vehicle actuates the trigger. Thus, as a non-limiting example the cone angle may be anywhere from 5-90 degrees.


Further, while this example shows a conical trigger, alternatively, it may be planar shaped and angled (e.g., approximately 45 degrees) relative to an incoming track. As a further example and as shown in FIG. 1a, trigger 120a may have a flat, angled plane 122a (formed by a plurality of ridges) that is contacted by a vehicle on a track. Again, although shown with an angle of approximately 45 degrees, any suitable angle may be applied (e.g. 5-90 degrees) such that a vehicle actuates the trigger.


In some relay segments, actuation of a trigger by a first vehicle initiates a stunt and release of a second vehicle on the track set. As an example and referring again to FIG. 1, in the configuration illustrated, track play may be commenced with stunt element or relay segment 114. For example, actuation of a manual release or manual 102 may propel or launch vehicle 122 along track 130 toward a second relay segment 110. In one example embodiment, a relay segment may enable a variable change of vehicle traveling direction (between an incoming and outgoing vehicle), thus further providing variable configurations for more diverse track play.


It is noted that track 130 includes direction indicators, such as molded-in arrows, or cut-outs which may indicate vehicle direction and/or assembly instructions for a toy track set. For example, the direction indicators may aid in the ease of assembly for an expandable track set, may provide specific direction of vehicle travel used to initiate stunts, or enable passage past obstacles. Although the direction indicators are shown as a row of cut-out arrows, it should be appreciated that the direction indicators may be of any size and/or shape to indicate assembly direction and/or vehicle travel direction. Further, although a plurality of arrows is illustrated, a single arrow or other cut-out may also be used without departing from the scope of the disclosure. Further, in some embodiments, the direction indicators may be positioned in a center of the track so that the wheels of the vehicles are not impeded. It further should be appreciated that although shown as cut-outs, the direction indicators may be surface indicators, raised moldings, etc.


Referring back to FIG. 1, vehicle 122 traveling along track 130 in the direction of the direction indicators may contact or engage a second relay segment, e.g. relay segment 110. For example, relay segment 110 may be a stunt element, such as a crane element 125. Upon contact or actuation of trigger 120 through vehicle 122, a crane stunt event may be initiated. In the crane stunt event, a second vehicle, e.g. vehicle 124, may be released from jaws 126 of crane element or crane 125. FIG. 1b further illustrates another embodiment of a crane relay segment.


As shown in FIG. 1b, a crane relay segment 125a may include two triggers to perform a crane-based stunt. The first trigger may be a switch, such as a cone or other shaped actuation switch 120 at the end of an incoming track. A first vehicle may engage the first trigger and initiate release of a second vehicle which is held in the crane jaws. The vehicle released from the crane jaws 126a may fall and actuate a second trigger 128a to initiate the launch of a third vehicle onto an outgoing track. In addition, in some embodiments, the second trigger may also release a spring-loaded platform to knock off a stack of vehicles. The jaws of the crane, when fully closed, may hold the vehicle in a ready-to-be-released position. FIG. 1c further illustrates the mechanics of an example crane relay segment 125a.



FIG. 1
c illustrates a mechanism 127 for performing the affirmation two trigger event. In one embodiment an upper portion 129 of the crane is moved downward in the direction of arrow 131 wherein a plurality of gears 133 are rotated and potential energy is stored in a spring mechanism that is wound as the gears are rotated and a pawl or catch mechanism engages the gears to prevent back driving of the gears by this spring mechanism, wherein the pawl or catch mechanism is released from the engaging position when a conical surface 121 of trigger 120 is engaged thus causing the same to pivot about a pivot point 135 with respect to a lower portion 137 of the crane. Once the kinetic energy of the spring mechanism is released the gear train causes the upper portion of the crane to move upward in a direction opposite to arrow 131 which also causes a clasp 139 to release a pair of claw members 141 from their grasping position illustrated in FIG. 1c to the open position illustrated in FIG. 1, wherein a car 124 is dropped and second trigger 128a is activated again releasing stored potential energy to cause another stunt to occur for example the flipping of the toy vehicles illustrated in FIG. 1. Clasp 139 may be any suitable arrangement comprising a hook of one of the claw members configured to engage a member of the other one of the claw members to retain the claw members in the position illustrated in FIG. 1c and thus allowing them to open to the position illustrated in FIG. 1 when the upper portion crane is moved upwardly such that the vehicle retained in the claw members is now above trigger 128a.


Referring again to FIG. 1, following activation of relay segment 110, and release of vehicle 124 onto target 128, launching element 132 and opening shelf 134 may be actuated. Specifically, launching element 132 may launch vehicle 140 along track 142, while opening shelf 134 throwing vehicles 136 and 138. Vehicle 140 may be propelled toward a third relay segment, such as relay segment 112.


Vehicle 140 may actuate a trigger in relay segment 112. The relay segment 112 may actuate launching element 150 to launch a third vehicle 146 toward relay segment 114. In some embodiments, track events may be terminated at trigger 148. However, in other events, another relay segment, stunt element, or obstacle may be added to the track such that the track does not terminate at trigger 148.


It should be appreciated that each relay segment may be selectively positioned in the track chain. As an example, relay segment 110 may be at the beginning, middle or end of the track. Similarly, relay segments 112 and 114 may be positioned at the beginning, middle or end of the track. A user may be able to customize the track by positioning the relay segments in a desired order.


It should be appreciated that the track play of each relay segment may be activated directly or indirectly by actuation of the trigger. As an example of indirect activation, the relay segment may include a stunt element performed by either the first or second vehicle. Further, the stunt element may be performed by a third vehicle. Further still, the stunt element may include multiple simultaneous, parallel, and/or sequential stunts performed by a plurality of vehicles, where the stunts may be performed simultaneously, in sequence with one triggering the next, in parallel, or combinations thereof. In still another embodiment, the launching element and/or the trigger may also include stunt elements performed by one of the first and second, or other vehicles. Although described in regards to actuation of the stunt elements via vehicle triggering, alternatively, track play may commence via manual activation of any of the relay segments or stunt elements. While FIG. 1 shows various example relay segments with multiple stage stunts, as well as without stunts, numerous variations in relay elements are possible.


Although shown with regard to a single straight-line track, it should be understood that virtually any number of different track designs may be used without departing from the scope of this disclosure. For example, parallel track configurations may be used, as well as combination sequential/parallel track configurations may be used. Further, various stunts may be performed, rather than the drops and/or loops shown, such as jumping over voids, traversing obstacles, etc.



FIG. 2 shows an example relay segment 200 having a teeter-totter styled stunt element to provide indirect launching via automatic and/or manual trigger activation. Specifically, FIG. 2 shows an incoming track section 210 coupled to a conical trigger 212, which can also be actuated via the manual button 214. In this example, the trigger retains the ramp 220 in spring loaded position when the trigger or conical surface 212 thereof is in a downward position, such that contact by an incoming vehicle on track 210 causes the trigger to move vertically, release a catch that then releases spring loaded motion of ramp 220. For example, a vehicle may be pre-loaded at end 222 and held in place by stop 224. Then, upon release, the ramp 220 may rotate about pivot 226 as shown to launch a vehicle stored at 222. The vehicle may then exit the relay segment through exiting track section 230. In accordance with an exemplary embodiment of the present invention, the higher end ramp is pulled downward in the direction of arrow 217 to an urging force provided by a spring biased member or elastic member 227 thus causing the ramp 220 to pivot about pivot 226. The retention of the ramp in the illustrated position with the biasing member 227 extended it is facilitated by a catch that will engage a complementary member of the trigger which is moved out of its retaining position when the conical portion or the manual portion that of the trigger is moved thus releasing the stored potential energy of the elastic member.


While not shown in this example, the exiting track section 230 may be coupled to further track sections that may lead to additional relays segments, for example. Also, incoming track section 210 may be adjustable (e.g., rotatable or pivotally mounted to the relay segment for movement in the direction of arrows 211) to enable an incoming vehicle to enter the relay segment from a plurality of angles. Further, incoming track section 210 may be coupled to track segment that may be mounted to a higher altitude position, such that gravity may “launch” the incoming vehicle. Likewise, exiting track section 230 may also be adjustable.



FIGS. 3-3B illustrate an exemplary direct acting relay segment 300. Specifically, FIG. 3 shows an incoming track section 310 coupled to the segment proximate to a conical trigger 312, which can also be actuated via the manual button 314. In this example, the trigger locks a launcher in a loaded position when the launcher is moved to a launch position and the trigger is in the position illustrated in FIG. 3. The trigger releases the stored energy of the launcher when a contact portion of the trigger is moved upwardly to release a catch retaining the launcher in the launch position. In one exemplary embodiment contact of the conical surface of the trigger by an incoming vehicle on track 310 causes the trigger to move vertically, release a catch that is retaining the launcher in the launch position. As illustrated in FIG. 3 a spring loaded launcher or protrusion 320 slides between a launched position (illustrated by the solid lines in FIG. 3) and a launch position (illustrated by the dashed lines in FIG. 3) in launcher 322. Accordingly, and as the launcher slides from the launch position to the launched position a toy vehicle in launcher 322 is pushed out of the relay segment. For example, a vehicle may be pre-loaded in launcher 322 until activation. Then, the vehicle may then exit the relay segment through exiting track section 330.


In this example, the trigger is pivotally mounted to the launching stunt element via pins 311 for movement between a first position and a second position in the direction illustrated by arrows 313, wherein movement of trigger from the first position (illustrated) to the second position (not-illustrated) occurs when a vehicle moves into an area 315 between a contact surface of conical trigger 312 and incoming track segment 310 thus forcing the conical trigger upward and away from track segment 310.


In addition, and in order to provide manual activation of the trigger (i.e., to begin a series of triggering events by launching the first car from a relay segment or a plurality of users can individually launch a car from separate relay segments or any combination thereof) a manual switch 314 is also secured to the trigger such that an application of a force in the direction of arrow 317 will cause the trigger to pivot about pivot pins 311 and move the contact surface of the conical portion away from the track segment 310 and dust release the launcher from its launch position.


Referring now to FIGS. 3a-3b, a bottom portion of launcher 322 is illustrated. Here a bottom portion 321 of the launcher 320 slides within a slot 323 of the launcher in order to effect movement from the launch position to the launched position. In accordance with one exemplary embodiment of the present invention a catch 325 secures and retains a portion of bottom portion 321 as it slid into the launch position. In order to provide the biasing force for urging the launcher from the launch position to the launched position a biasing element 327 is secured to the launcher and bottom portion 321. In accordance with an exemplary embodiment of the present invention, the biasing element is an elastic member. Of course, it is understood that any biasing element can be used, non-limiting examples include springs, resilient members and equivalents thereof. In addition, it is also understood that any suitable configuration may be provided for the catch and the bottom portion. In an exemplary embodiment and as the trigger or the conical portion of the trigger moves away from the track segment 310 catch 325, which is secured to the trigger and any suitable manner moves away from its retaining position illustrated in FIG. 3b and allows the elastic member to slide the launcher from the launch position to be launched position thus propelling a toy vehicle out of launcher 322. It is, of course, understood that the aforementioned description of the movement of the trigger and release of a biasing member is provided as an example and the exemplary embodiments of the present invention are not intended to be limited to the specific embodiment disclosed above. Similarly, exemplary embodiments of the present invention are not limited to launcher described above. For example, other releasable spring biased or otherwise type of toy launchers are found in U.S. Pat. Nos. 4,108,437 and 6,435,929 and U.S. Patent Publication 2007/0293122 as well as those known to those skilled in the related arts.


It should be noted that exiting track sections of each of the relay segments, such as exiting track section 330, may be coupled to further track sections that may lead to additional relays segments. The relay segments may be interchanged such that the track is customized. Also, incoming track sections of the relay segments, such as incoming track section 310, may be adjustable (e.g., rotatably or pivotally mounted to the relay segment for movement in the direction of arrows 309) relative to exiting track section 330 to enable an incoming vehicle to enter the relay segment from a plurality of angles and/or an exiting vehicle to exit the relay segment at a plurality of angles. It being understood that the exiting track section of each relay segment can be coupled to a movable incoming track section of another relay segment via connector track sections releasably secured to each track section via a releasable engagement mechanisms such as a tongue and groove arrangement. Accordingly, and through the use of movable incoming track segment's multiple angles and orientations are capable of being provided by the vehicle tracks set wherein multiple relay segments of installed therein.



FIG. 4 shows an example indirect acting relay segment 400 having a gravity actuated intermediate falling stunt path. Specifically, FIG. 4 shows an incoming track section 410 coupled to a conical trigger 412, which can also be actuated via the manual button 414. In this example, the trigger may be spring loaded in a downward position, such that contact by an incoming vehicle on track 410 causes the trigger to move vertically, and push a vehicle positioned at the end section 418 to begin the falling stunt. As the vehicle is moves down ramp 440, it falls through the void 442 and may intermittently contact other track sections (e.g., 444, 446, 448) before landing on track 450. If the vehicle successfully lands on track 450, gravity moves the vehicle to be launched and it exits the relay segment through exiting track section 430.



FIG. 5 shows an example indirect acting relay segment 500 having a gravity actuated zig-zag ramp stunt. Specifically, FIG. 5 shows an incoming track section 510 coupled to a conical trigger 512. In this example, the trigger may be spring loaded in a downward position, such that contact by an incoming vehicle on track 510 causes the trigger to move vertically, and push a vehicle positioned at the end section 518 to initiate movement down ramp 540, such as via rotation by platform 542. As the vehicle is moves down ramp 540, if successful, it is launched and exits the relay segment through exiting track section 530.



FIG. 6 shows an example relay segment 600 which may be selectively positioned along the track. As an example, the relay segment may include a track receiver 602 such that the track 604 lays into a groove 603 of the relay segment 600 in contrast to sliding male/female connector. A trigger or actuator 605 may be included to effect a stunt. For example, in the illustrated embodiment, activation of the lever (via contact with a traveling toy vehicle on the track) may cause the top of the silo to launched upward to simulate an explosion.



FIG. 7 shows an example indirect acting relay segment 700 having a gravity actuated hammer launch stunt. Specifically, FIG. 7 shows an incoming track section 710 coupled to a conical trigger 712, which can also be actuated via the manual button 714. In this example, the trigger may be spring loaded in a downward position, such that contact by an incoming vehicle on track 710 causes the trigger to move vertically, and initiate rotation of hammer box 716 about axis 718. A vehicle may be pre-loaded and positioned within hammer box 716 (which is open at end 740, not shown) such that upon swinging downward and stopping in the horizontal position, momentum is imparted to a vehicle that is launched out and/or down exiting track section 730, which may serve as a stop to stop rotation of hammer box 716.


While not shown in this example, the exiting track section 730 may be coupled to further track sections that may lead to additional relays segments, for example. Also, incoming track section 710 may be adjustable (e.g., rotatable) relative to exiting track section 730 to enable an incoming vehicle to enter the relay segment from a plurality of angles and/or an exiting vehicle to exit the relay segment at a plurality of angles.



FIG. 8 shows two relay segments 800, including a basketball hoop stunt 802 and a ramp stunt/launcher stunt 804. The relay segments may be positioned in any order on the track. Specifically, basketball hoop stunt 802 includes a spring-loaded platform 810 on which a vehicle may pre-loaded. Upon actuation of the manual button 814, spring-loaded platform 810 rotates about axis 816 and if a vehicle passes through hoop 818, it may actuate a secondary trigger 840.


Another basketball hoop stunt 800a is shown in FIG. 8a. The relay segment may be configured such that an incoming vehicle is flipped up (e.g., via a spring loaded plate) toward a hoop, and if the vehicle lands in the hoop, a second actuator is triggered to launch a second vehicle in the same or alternative direction as the travel of the first, incoming vehicle.


Similarly, ramp stunt/launcher stunt 804, may be triggered such that, a vehicle, pre-loaded at the top 842 of ramp 850, and held by catch 844, is released (by movement of catch 844) to launch the vehicle out and/or down exiting track section 830, which may actuate or terminate another device, such as rotation of hammer box 716.



FIG. 9 shows an example indirect acting relay segment 900 having a gravity actuated rotating ramp launch stunt. Specifically, FIG. 9 shows an incoming track section 910 coupled to a conical trigger 912, which can also be actuated via the manual button 914. In this example, the trigger may be spring loaded in a downward position, such that contact by an incoming vehicle on track 910 causes the trigger to move vertically, and initiate rotation of rotating ramp 916 about axis 918. A vehicle may be pre-loaded and positioned within rotating ramp 916 at end 940 such that upon swinging downward and stopping in the downward position, a vehicle is launched down exiting track section 930. In this example, exiting track section 930 is sloped to further increase exiting speed of an exiting vehicle.


While not shown in this example, the exiting track section 930 may be coupled to further track sections that may lead to additional relays segments, for example. Likewise, in this or other examples the incoming track section may be coupled to other relays/stunts via still further track sections. Also, incoming track section 910 may be adjustable (e.g., rotatable) relative to exiting track section 930 to enable an incoming vehicle to enter the relay segment from a plurality of angles and/or an exiting vehicle to exit the relay segment at a plurality of angles.



FIG. 10 shows an example indirect acting relay segment 1000 having a loop and launch stunt. Specifically, FIG. 10 shows an incoming track section 1010 coupled to a conical trigger 1012, which can also be actuated via the manual button 1014. In this example, the trigger may be spring loaded in a downward position, such that contact by an incoming vehicle on track 1010 causes the trigger to move vertically and release a catch holding spring loaded launching arm 1016 (note that in FIG. 10, spring loaded launching arm 116 is shown in the fully released state, whereas it is positioned vertically/downward in its pre-loaded state) so that it can rotate about axis 1018 and launch a vehicle pre-loaded at position, generally indicated at 1040. Upon launch, the pre-loaded vehicle travels through the loop track stunt 1042 and is launched out exiting track section 1030. Arrow 1044 indicates the direction of vehicle motion through the loop track stunt 1042. FIG. 10a shows the conical trigger 1012 in a first position while FIG. 10b. shows the conical trigger in a second position as it is moved up by the toy vehicle and in accordance with an exemplary embodiment of the present invention the trigger releases a launching element for launching a vehicle from the relay segment when the trigger is moved from the first position to the second position.



FIG. 11 shows still another track set example, in which motion of a single vehicle may initiate a plurality of vehicles through a plurality of relay segments positioned in parallel configuration. Specifically, as shown in FIG. 11, track set 1100 is shown having a first relay segment 1102 including a dual-action vehicle stunt. Specifically, first relay segment 1102 includes incoming track section 1110 coupled to a conical trigger 1112, which can also be actuated via the manual button 1114. In this example, the trigger may be spring loaded in a downward position, such that contact by an incoming vehicle on track 1110 causes it to move vertically and release a catch holding first and second preloaded vehicles 1120 and 1122, substantially concurrently. Alternatively, the vehicles may be released sequentially. For example, the release of one vehicle may be delayed relative to release of another vehicle.


Continuing with FIG. 11, relay segment 1102 includes a first and second ramp 1101, 1103 leading in different (e.g., opposite) directions, such that vehicles 1120 and 1122 may be launched by gravity to first and second exiting track sections, respectively. Further, track set 1100 may include two direct acting relays, such as relay 300, and finishing flag sections 1134 and 1136. As shown in FIG. 11, relays 300 may be positioned coupled to exiting track sections 1130 and 1132 and finishing flag sections 1134 and 1136 via various track segments. Further, as noted herein, vehicles may be preloaded into the two relays 300 (e.g., 1140 and 1142), which can be launched via actuation of vehicles 1130 and 1132, respectively. In this way, a sequential/parallel race configuration can be formed.



FIG. 12 further illustrates a relay segment configured as a twin tower stunt element 1200. As an example, in the twin tower stunt element, a single input triggering event may cause simultaneously release of two vehicles moving in opposite directions propelled by gravity. It should be appreciated that a manual trigger may be included in each of the relay segments, including the twin tower stunt element, so that the relay segments may be the first stunt in the series. Moreover, in some large relay segments, there may be two or more manual triggers, such as on the front and back side of the element. For example, in the twin tower stunt element as illustrated there is a front manual activation switch. In some embodiments, there may be a similar activation switch on the back of the stunt element.



FIG. 12 illustrates yet another customizable track set. As with the previous embodiments, the track set may include a plurality of interchangeable relay segments which may be coupled to create a customized expandable track set, wherein the relay segments may include one or more stunt elements and may be selectively positioned at the beginning, middle, or end of the track. In some embodiments, the relay segments may be configured to enable a first toy vehicle to trigger a second toy vehicle to traverse an obstacle or perform a stunt. Further in some embodiments, a relay segment exit vehicle may be released to travel a subsequent relay segment.


It should be appreciated that the track sets described herein may be used for toy vehicles. As an example, the toy vehicles may be 1:64 scale models, however other sized toy vehicles may be also used. One exemplary range would be 1:50 scale of less, again it is, of course, understood that scales greater or less than 1:50 are contemplated to be within the scope of exemplary embodiments of the present invention.


A toy vehicle track set 100a having multiple relay segments 110a, 112a, 114a, 116a, 118a and 120a is shown in FIG. 12. As discussed in more detail below, each relay segment may be selectively positioned in the beginning, middle or end of the track. A user may customize the track by positioning the relay sections in desired portions of the track. In one embodiment, a plurality of relay segments may be sequentially coupled together with a plurality of track segments to generate a series of relay events. The series of events, which may include various stunt elements, can be rearranged in a plurality of sequences and/or parallel paths to provide numerous play patterns. In this way, a user can experience diverse track play and excitement time and time again.


In this example, each relay segment 110a, 112a, and 114a may include an incoming vehicle trigger which may directly or indirectly causes the launching of another outgoing vehicle, also referred to herein as a relay segment exit vehicle. As an example, each relay segment may include an incoming track, such as incoming track 122a, for an incoming vehicle, and an exit track, such as exit track 124a, for an outgoing vehicle. The exit track of one relay segment may be interchangeably coupled with the incoming track of a second relay segment such that the outgoing vehicle from one relay segment may become the incoming vehicle of a next relay segment.


One or more launchers may be provided to accelerate toy vehicles along the track. As such, the launchers may be configured to engage and urge a toy vehicle to travel along the track. It should be appreciated that although launchers are described herein, vehicles may be manually propelled along the track without the use of a launcher without departing from the scope of the disclosure.


Although any suitable launcher may be used, in the illustrated embodiments, various automatically and manually-triggered release launcher elements are illustrated. A vehicle may be positioned in launch position such that a launch element may slidingly engage the vehicle to propel the vehicle along the track. The launch element may be biased to a launch position, such as by springs or any other suitable biasing mechanism such that release of an activator releases its stored potential energy.


In one example, the relay segments may include incoming vehicle triggers. The triggers may be configured to enable an incoming vehicle to actuate a stunt and release of an outgoing vehicle from the relay segment. The triggers may be positioned such that a vehicle traveling along the track actuates the trigger.


As one example, the vehicle triggers may be conical-shaped triggers (shown in FIG. 12 at 126a) or other shaped triggers. As an example, conical-shaped trigger 126a may have a cone angle of approximately 45 degrees, which may be actuated vertically via contact with a horizontally moving incoming vehicle. It should be appreciated that the cone angle may be of any suitable angle such that an incoming vehicle actuates the trigger. Thus, as a non-limiting example the cone angle may be anywhere from 5-90 degrees.


Further, while this example shows a conical trigger, alternatively, it may be planar shaped and angled (e.g., approximately 45 degrees) relative to an incoming track. As a further example, an example trigger may have a flat, angled plane formed by a plurality of ridges) that is configured to be contacted by a vehicle on a track. Again, although in one example the trigger may have an angle of approximately 45 degrees, any suitable angle may be applied (e.g. 5-90 degrees) such that a vehicle actuates the trigger. Further, the trigger may be engaged under or along the side of the track, such that the vehicle actuates the trigger by traveling over or through a portion of the track.


In some relay segments, actuation of a trigger by a first vehicle initiates a stunt and release of a second outgoing vehicle on the track set. In some embodiments, manual triggers may also be included, alone or in combination, with the vehicle triggers. Manual triggers may be configured to be actuated such that a stunt is initiated and/or an outgoing vehicle is released from the relay segment. The outgoing vehicle may travel to a second relay segment.


It should be appreciated that the track play of each relay segment may be activated directly or indirectly by actuation of a trigger. As an example of indirect activation, the relay segment may include a stunt element performed by either a first or second vehicle. Further, the stunt element may be performed by a third vehicle. Further still, the stunt element may include multiple simultaneous, parallel, and/or sequential stunts performed by a plurality of vehicles, where the stunts may be performed simultaneously, in sequence with one triggering the next, in parallel, or combinations thereof. In still another embodiment, the launching element and/or the trigger may also include stunt elements performed by one of the first and second, or other vehicles. Although described in regards to actuation of the stunt elements via vehicle triggering, alternatively, track play may commence via manual activation of any of the relay segments or stunt elements.


As an example and referring again to FIG. 12, in the configuration illustrated, track play may be commenced with stunt element or relay segment 110a. For example, actuation of manual release or manual trigger 102a may propel or launch a toy vehicle (not shown) along exit track 124a toward a second relay segment 112a. In one example embodiment, a relay segment may enable a variable change of vehicle traveling direction (between an incoming and outgoing vehicle), thus further providing variable configurations for more diverse track play.


It is noted that track connector sections, as shown for example at 130a, may be interposed between relay elements extending the distance between a first and second relay element. Thus, in addition to selective positioning of each relay segment, track connector sections may be selectively positioned to enable customization of the track since each of the incoming track sections they are releasably secured thereto are rotatably mounted to the relay segment.


One or more portions of the track set, such as the incoming track and exit track of the relay segments and/or the track connector segment may include direction indicators, shown at 132, such as molded-in arrows, or cut-outs which may indicate vehicle direction and/or assembly instructions for a toy track set. For example, the direction indicators may aid in the ease of assembly for an expandable track set, may provide specific direction of vehicle travel used to initiate stunts, or enable passage past obstacles. Although the direction indicators are shown as a row of cut-out arrows, it should be appreciated that the direction indicators may be of any size and/or shape to indicate assembly direction and/or vehicle travel direction. Further, although a plurality of arrows is illustrated, a single arrow or other cut-out may also be used without departing from the scope of the disclosure. Further, in some embodiments, the direction indicators may be positioned in a center of the track so that the wheels of the vehicles are not impeded. It further should be appreciated that although shown as cut-outs, the direction indicators may be surface indicators, raised moldings, etc. In an exemplary embodiment, the arrows are integrally molded with the track and/or relay segment.


For example, a vehicle released from relay segment 110a and traveling along track 130a in the direction of the direction indicators may contact or engage a second relay segment, e.g. relay segment 112a. As described in more detail below, each relay segment may actuate a stunt. Stunts may include one or more, as well as any combination of, loops, jumps, collisions, simulated explosions, vehicle crashes, vehicle drops, vehicle lifts, vehicle obstacles, vehicle spins and other vehicle obstacles. In some embodiments, stunt vehicles may be preloaded for release upon actuation of the relay segment trigger (e.g. actuation by an incoming vehicle of the vehicle trigger or manual actuation of a trigger).


For example, relay segment 110a may be a stunt element, such as a falling and pivoting ramp element 138a. Upon contact or actuation of trigger 140a, a falling and pivoting ramp stunt event may be initiated. A stunt vehicle (not shown) may be pre-positioned on platform 142a. In the falling and pivoting ramp stunt event, platform 142a may be rotatably coupled to arm 144a which may be pivotally coupled through pivot 146a to the relay segment. Upon actuation by an incoming vehicle, the arm 144a may swing from a first generally vertically-extended position (shown) to a second generally horizontally-extended position. Further, platform 142a may rotate such that the platform rotates to generally correspond to enable release of the stunt car down exit track 148a. As such, the pre-positioned vehicle may be released down exit track 148a toward the next relay segment, such as relay segment 114a.


Addition details illustrating an example falling and pivoting ramp element 112a are shown in FIG. 2. As shown, an incoming track 150a may enable an incoming vehicle to contact or actuate trigger 140a. Although shown as a conically-shaped trigger, it should be appreciated that the trigger may be any suitable, manual and/or vehicle, actuated switch. The incoming vehicle may be stopped at trigger 140a.


Actuation of trigger 140a may release arm 144a from a first position. The first position, as illustrated, is a substantially vertical position, where platform 142a is in a substantially parallel plane to the ground surface. Upon release of arm 144a from the first position, arm 144a pivots or swings about pivot point or hinge 146a such that the arm falls as indicated by arrow 152a. Further, in some embodiments, platform 142a may be rotatably coupled to arm 144a such that it may rotate as indicated at arrow 154a.


Release of arm 144a and rotation of platform 142a, results in the arm and platform moving to a vehicle release position indicated in dashed lines in FIG. 13. As shown at 156a, the arm may be substantially parallel to the ground surface such that platform 142a is substantially aligned with exit track 148a. Further, at 158a, the platform has rotated such that a front portion 160a, with an opening for vehicle release, is aligned with the exit platform 148a.


In one embodiment, the platform 142a includes a front portion 160a and a rear portion 162a. Rear portion may include a stop wall 164a to prevent a preloaded vehicle from prematurely releasing from the platform. Additional vehicle engagement features, such as detents may further retain the preloaded vehicle in the platform during the stunt. As discussed above, upon rotation of the platform, front portion 160a aligns with exit track 148a. The angle of the platform in the release position enables the vehicle to break away from the engagement features and travel down exit track 148a toward a subsequent relay segment.


In some embodiments, lock features may be provided to lock the arm in the first and second positions. Release structures may be further provided to enable a user to release the arm from the first and second positions. Further, although not shown in detail in regards to the falling and pivoting ramp element, the relay segments may be configured to fold into compact configurations to reduce packaging size and for ease of storage. Additional examples regarding relay segment folding are disclosed in more detail below.


Referring back to FIG. 12, following activation of relay segment 112a, and release of a preloaded vehicle from platform 142a onto exit track 148a, the preloaded vehicle is now an incoming vehicle for the next relay segment, such as relay segment 114a. Thus, although described in this example where activation of relay segment 112a results in subsequent release of a vehicle to activate relay segment 114a, other configurations are possible and contemplated. Thus, it should be appreciated that each relay segment may be selectively positioned in the track chain. As an example, relay segment 110a may be at the beginning, middle or end of the track. Similarly, relay segments 112a, 114a, 116a, 118a, 120a may be positioned at the beginning, middle or end of the track. A user may be able to customize the track by positioning the relay segments in a desired order or combination.


Relay segment 114a is an example of a direct acting relay segment. An incoming vehicle may actuate a trigger 200a which may effect release of a preloaded vehicle from launcher 202a. The preloaded vehicle may exit relay segment 114a toward relay segment 116a along exit track 204a.


Direct acting relay segment 114a is similar to the relay segment illustrated in FIG. 3 wherein a launching stunt element 300, including an incoming track 310 pivotally mounted thereto proximate to conical trigger 312, which can also be actuated via the manual button 314. In this example, the trigger is pivotally mounted to the launching stunt element via pins 311 for movement between a first position and a second position in the direction illustrated by arrows 313, wherein movement of trigger from the first position (illustrated) to the second position (not-illustrated) when a vehicle moves into an area 315 between conical trigger 312 and incoming track segment 310.


Movement of the conical trigger 312 again causes release of stored potential energy to move a launching member in a manner similar to that described with respect to FIGS. 3-3c, wherein contact by an incoming vehicle on track 310 causes the trigger to move vertically, release a catch that then releases spring loaded launcher protrusion 320 in launcher 322. For example, a vehicle may be pre-loaded in launcher 322 until activation. Then, the vehicle may then exit the relay segment through exiting track section 330.


It should be noted that exiting track sections of each of the relay segments, such as exiting track section 330, may be coupled to further track sections that may lead to additional relays segments. The relay segments may be interchanged such that the track is customized. Also, incoming track sections of the relay segments, such as incoming track section 310, may be adjustable (e.g., rotatable) relative to exiting track section 330 to enable an incoming vehicle to enter the relay segment from a plurality of angles and/or an exiting vehicle to exit the relay segment at a plurality of angles.


Referring back to FIG. 12, an outgoing vehicle from relay segment 114a is an incoming vehicle for relay segment 116a. Incoming vehicle travels along incoming track 163a to actuate trigger 164a of relay segment 116a. Relay segment 116a may be a stunt element, such as an exchanger stunt element or exchanger. The incoming vehicle initiates the stunt, following which a pre-loaded stunt vehicle performs the stunt and exits stunt at 166a toward the subsequent stunt 118a.


Specifically and as illustrated in FIG. 14 stunt element 161 is configured to provide a multiple loop stunt for a preloaded vehicle. As shown, incoming track 163a is pivotally mounted to the stunt element proximate to a conical trigger 164a. It should be appreciated that although shown as a conical trigger, the trigger may be any suitable shape such that a vehicle traveling on track 163a can activate the stunt. Further, in some embodiments, a manual trigger may also be provided. In this example, the trigger is spring loaded in a downward position, such that contact by an incoming vehicle on track 163a causes the trigger 164a to move vertically and release a catch that then releases a preloaded vehicle down ramp 168a into the exchanger loops 170a.


As illustrated, a preloaded vehicle may be positioned at the top of ramp 168a and held in launch position by stop 172a. Upon actuation of trigger 163a, stop 172a is released and the preloaded stunt vehicle launches down the ramp to direction changer 174a and then through booster 176a. Booster 176a may be any device to impart addition acceleration onto the toy vehicle. For example, booster 176a may be motorized wheels which further launch the vehicle into loops 170a. A switch 175a may be used to turn on the booster motor.


A directional key 178a directs the vehicle into alternative loops. For example, in the illustration, the direction key 178a has a path-defining section 180a which provides a rail edge defining the vehicle pathway and a contact switch 182a which upon contact with the vehicle as it travels along the defined pathway is flipped such that the key first defines a first pathway 184a, and upon contact with the vehicle defines a second pathway 186a. Each time the vehicle goes around the loop, the direction key is switched such that the vehicle alternatively travels the first pathway and then the second pathway.


In some embodiments, a timer may be used to time the vehicle's travel in loops 170a. For example, the vehicle may continue to travel in the loops for a predetermined period, such as a period of 5 seconds or any other preset time period. Following the predetermined period, the vehicle may be ejected from the loops. In other embodiments, the vehicle may perform a predetermined number of loops prior to ejection from the loops.


Ejection of the vehicle from loops 170a may occur after a predetermined event, a predetermined time, or in some embodiments, upon a user's activation. The vehicle may be ejected from exchanger stunt element 161a. For example, in some embodiments, completion of the predetermined event or time may actuate the directional indicator platform such that it raises up defining a vehicle ejection path.


As shown in FIG. 15, a cavity 190a is provided under the directional indicator 178a. In some embodiments, following completion of the loop portion of the stunt, the directional indicator may move to allow the vehicle to follow a vehicle ejection path to exit track 166a. In other embodiments, completion of the loop portion of the stunt may trigger a preloaded stunt vehicle positioned in cavity 190a to be launched out along exit track 166a.


In such embodiments, the vehicle traveling the loops may be ejected from the loops such that the vehicle falls from the exchanger stunt element. For example, the directional indicator may block the traveling path and causes the vehicle to impinge against the tip of the directional indicator and be forced from the track. In some embodiments, additional switches or changes in the boosters may be provided to break the vehicle's travel path resulting in the vehicle being discharged from the loops.


Returning back to FIG. 12, the outgoing vehicle released from relay segment 116a along exit track 166a may travel to relay segment 118a. This outgoing vehicle of relay segment 116a is incoming vehicle for relay segment 118a. Relay segment 118a may be a stunt element, such as a tower stunt element. The incoming vehicle initiates the stunt, following which a pre-loaded stunt vehicle exits stunt element at 340a toward a subsequent relay segment.



FIG. 16 illustrates an example tower stunt element 300a in more detail. As illustrated, tower stunt element 300a is configured to provide a multiple vehicle stunt. As shown, incoming track 302a is coupled to a conical trigger 304a, which can also be actuated via one or more manual buttons or actuators. Actuation of trigger 304a results in initiation of a tower stunt, including release of a plurality of preloaded vehicles from the tower. For example, the trigger may be spring loaded in a downward position, such that contact by an incoming vehicle on track 302a causes the trigger to move vertically and release a catch that then initiates a first part of the multiple stage vehicle stunt.


As an example, a first stunt vehicle may preloaded into launch cavity 306a, wherein cavity 306a includes a launching structure such as a spring-loaded launch slider 307a which upon activation, such as through trigger 304a, slides forward. Motion is imparted to the preloaded stunt vehicle such that the stunt vehicle launches towards a target, such as bulls eye 308a. Although shown as a bulls eye, any design configuration is possible for the target.


Additionally, additional stunt vehicles may be preloaded into the release boxes 314a and 316a on side towers 310a and 312a respectively. Impact on the target, such as bulls eye 308a, may actuate a second stunt stage. In the second stunt stage, side towers 310a, 312a may be released such that the towers 310a, 312a fall outwards about hinges 318a and 320a as indicated by arrow 322a and 324a respectively. The release boxes are rotatively coupled to the towers such that upon actuation of the second stunt stage the release boxes rotate from a storage position to a release position. The storage position may be any suitable position where a vehicle does not fall from the release boxes. Thus, in some embodiments, the storage position may be such that the release boxes are parallel to the ground surface. In other embodiments, the release boxes may be angled such that the vehicles are retained in the storage boxes.


Actuation of the second stunt stage effect the release boxes 314a, 316a to rotate about pivot points 326a, 328a as indicated by arrows 330a, 332a. In the release position, the release boxes are angled such that the preloaded stunt vehicles fall from the boxes. Further, towers 310a and 312a fall outward such that preloaded vehicles and the towers crash into the ground surface.


A third stunt stage may be activated upon completion of the second stunt stage. For example, rotation of the towers from the base may actuate a switch to initiate a third stunt stage. In the third stunt stage, a release box 334a may be preloaded with another stunt vehicle. The release box may be in a first position facing the incoming track 302a and trigger 304a. The release box may be rotatively coupled to the top of the tower for rotation about pivot point 336a. Upon actuation of the third stunt stage, the release box may rotate from the first position to a release position where the preloaded vehicle is released down exit track 340a. As such, in the release position, the release box rotates 180 degrees such that it faces exit track 340a. It is noted that a structural detent mechanism may be used to hold the vehicle in the first position. This detent mechanism may include structure such as the top surface of the tower which when in the first position prevents the vehicle from releasing. In other embodiments, a moveable gate or structure may be provided which prevents movement of the vehicle when in the first position but allows the preloaded vehicle to release when in the release position.


As such the tower stunt element may be considered a multi-stage stunt element. In this multi-stage stunt element, completion of each stage actuates a further stage. Specifically, in the illustrated embodiment, actuation of the multi-stage stunt element results in actuation of a first stage where a first preloaded vehicle impacts a target; completion of the target impact actuates a second stage where two preloaded vehicles are released and two towers fall outward toward a ground surface; completion of the tower fall actuates a third stage where a fourth preloaded vehicles is launched down exit track 340a. This vehicle is the outgoing vehicle of the tower stunt element and becomes the incoming vehicle for the subsequent stunt.


Again referring back to FIG. 12, the vehicle released from relay segment 118a traveling along exit track 340a may further engage a relay segment element 120a. In one embodiment, relay segment element 120a is a single vehicle stunt element where the incoming vehicle is the outgoing vehicle. As an example, relay segment element 120a may be an explosion stunt element 350a. As such, the vehicle may actuate a trigger, such as an overhead vehicle trigger 352a while being retained on the track. The trigger may initiate a simulated explosion such as explosion of the top of the silo as shown in FIG. 12. Following actuation of the trigger 352a, the vehicle may continue along and exit relay segment 118a. Additional stunt elements may be added to the end of the track or the track may be terminated.


An example explosion stunt element 350a is shown in more detail in FIG. 17. It is noted that the explosion stunt element is an overlap element, in contrast to a linking element. Linking elements interconnect by linking one track segment into another track segment. The track segments removably lock together to form a continuous track. Typically, the linking elements including sliding male/female connectors. In contrast, as an overlap element, element 350a includes a track bed 354a which is configured to be positioned such that the track travels through the track bed. As an example and as shown in FIG. 17, the track bed may include a track receiver 356a such that a section of the track, such as a track connector section, may be slid into the receiver 356a and retained by retainer 358a.


A vehicle traveling along the track may actuate trigger or lever 352a to affect a stunt. Although shown as an overhead trigger, the trigger may be in any suitable position which does not substantially impede the travel of the vehicle. In other embodiments, the trigger, and/or additional structure following actuation of the trigger, may stop the travel of the vehicle. In the illustrated embodiment, activation of the lever (via contact with a traveling toy vehicle on the track) may cause the top of the silo 360a to launch upward to simulate an explosion. Although in the illustrated embodiment the silo explodes in a single piece, in alternative embodiments, multiple portions of the explosion element may separate. Stunt element further comprises a manual trigger element 362a, manual element 362a is coupled to 352a such that movement of manual element 362a causes a catch to release a spring to launch a top portion 361a away from the stunt element 350 to simulate an explosion.


While FIG. 12 shows various example relay segments with multiple stage stunts, as well as without stunts, numerous variations in relay elements are possible. Further, although shown in regards to a single track, it should be understood that virtually any number of different track designs may be used without departing from the scope of this disclosure. For example, parallel track configurations may be used, as well as combination sequential/parallel track configurations may be used. Further, various stunts may be performed, rather than the drops and/or loops shown, such as jumping over voids, traversing obstacles, etc.



FIG. 18 provides another example track set 1000a. Track set 1000a includes a plurality of relay segments, 1100a, 1200a and 1300a. Further, example track set 1000a illustrates track accessory 1050a. As discussed regards to FIG. 12, each relay segment may be selectively positioned in the beginning, middle or end of the track. A user may customize the track by positioning the relay sections in desired portions of the track. In one embodiment, a plurality of relay segments may be sequentially coupled together with a plurality of track segments to generate a series of relay events. The series of events, which may include various stunt elements, can be rearranged in a plurality of sequences and/or parallel paths to provide numerous play patterns. Similarly, track accessories may be selectively positioned anywhere along the track.


As an example track accessory, flip accessory 1050a enables the user to selectively raise the track 1002a to improve vehicle travel along the track. Such an accessory enables adjustment of the track such that the speed of the vehicle may be increased. Other accessories may be used to increase or decrease speed, adjust the angle or the track, or otherwise alter the vehicle pathway. As such, the flip accessory may be coupled to one or more track segments that may be mounted to a higher altitude position, such that gravity may “launch” the incoming vehicle.


Track 1002 may be attached to a pivot plate 1064. In some embodiments, track 1002, such as a track connection section, may be snapped onto pivot plate 1064. In other embodiments, the track may be slid onto pivot plate 1064 or otherwise coupled to plate 1064. Further, although described as a pivot plate in this example, it should be appreciated that the pivot plate may be any suitable structure to enable support and coupling of the track. Use of the flip accessory may enable the track to be positioned such that a steep angle is created for vehicle travel. Vehicles released from the top of the track will increase speed such that the vehicles have sufficient speed to actuate the various triggers of the relay segments. Further, increased vehicle speed enhances play value of the track set.


A vehicle released on track 1002a may travel to relay segment 1100a. Relay segment 1100a may be a stunt element, such as a spiral crash stunt element. Incoming track 1102a may enable the incoming vehicle to actuate a trigger initiating a spiral crash stunt event. Completion of the stunt may result in two vehicles being released from two exit tracks 1104a, 1106a. Two vehicles are now traveling on the track set. Alternative pathways may be defined for such vehicles or parallel pathways. As described in more detail below, in the illustrated embodiment, the example track set has been configured such that a first vehicle travels to relay segment 1200a and 1300a and the second vehicle travels to relay segment 1202a and 1302a.



FIG. 19 illustrates an example spiral crash stunt element 1110a. As illustrated, spiral crash stunt element is configured to provide a spiral crash drop for two preloaded vehicles. As shown, incoming track 1102a is coupled to a vehicle trigger, such as a conical trigger 1103a. It should be appreciated that other trigger configurations are possible, including other vehicle trigger configurations, as well as manual trigger configurations, such as a manual trigger 1105a. In this example, the vehicle trigger 1103a may be spring loaded in a downward position, such that contact by an incoming vehicle on track 1102a causes the trigger to move vertically and through a rod linkage release traveler 1108a from a start position such that the traveler spirals down rod 1112a releasing preloaded vehicles onto exit tracks 1104a and 1106a.


Two preloaded vehicles may be positioned on carriers 1114a and 1116a. The carriers extend outward and are part of traveler 1108a. Upon actuation of trigger 1103a, traveler 1108a may be released from the start position such that the traveler rotates downwards as indicated by arrow 1117a about rod 1112a. Gravity pulls the traveler downwards with the rod including spiral coil structures which force the traveler to spin as it heads down the rod. A stop plate 1118a stops the traveler in a release position where both carrier 1114a and 1116a are aligned with exit tracks 1104a and 1106a, respectively. Preloaded vehicle may be released onto the exit tracks as outgoing vehicles from spiral crash stunt element 1110a.


It should be noted that each of the relay segments may be configured to fold to enable storage and/or reduce packing size. As such, many of the pieces of each relay segment are articulated to enable the pieces to fold and the structure to collapse inward. Further, in some embodiments, the relay segments are configured such that at least a top and bottom surface are substantially planar. The substantial planarity enables the relay segment to be more easily packaged or stacked for storage. The folding enables easy storage without the difficulties and frustrations that arise when such structures need to be disassembled for storage or packing.


As discussed above, spiral crash stunt element 1110a is configured as relay segment 1100a in FIG. 18. After actuation of relay segment 1100a, two preloaded vehicles are released on exit tracks 1104a and 1106a respectively. Additional relay segments may be interposed to improve game play. For example, in the illustrated embodiment, a direct acting relay segment, such as a launch stunt element as shown and discussed in regards to FIG. 3 is shown in the example track set. However, it should be appreciated that any other stunt element may be selectively connected to one or both of exit tracks 1104a and 1106a.


Referring back now to FIG. 18, outgoing vehicles from relay segments 1200a, 1202a may be incoming vehicles for relay segments 1300a, 1302a respectively. As an example, relay segments 1300a, 1302a may be any stunt element. As illustrated, both relay segment 1300a, 1302a are flip stunt elements.



FIG. 20 illustrates an exemplary flip stunt element 1310a. As illustrated, flip stunt element 1310a is configured to flip a preloaded stunt vehicle. As shown, incoming track 1304a enables a vehicle 1312a to contact a trigger 1308a and then exit on exit track 1306a. Flip stunt element 1310a may be a stunt element where the incoming vehicle is the outgoing vehicle. As such, the vehicle may actuate a trigger, such as an overhead vehicle trigger 1308a, while being retained on the track. The trigger may actuate the flipping of a preloaded vehicle 1314a from a carriage 1316a. Following actuation of the trigger 1308a, the vehicle may continue along and exit relay segment 1310a along exit track 1306a.


Similar to the explosion stunt element described above, flip stunt element is an overlap element. As such, flip stunt element 1310a includes a track bed 1316a which is configured to receive a section of the track, such as a track connector section. The track may be slid into the track bed.


Carriage 1316a is configured to hold the preloaded vehicle prior to actuation of the flip stunt element. The vehicle may be supported by extensions and is configured to rotatively connected to the carriage such that activation of trigger 1308a causes rotation of the carriage such that the toy vehicle held therein is flipped or thrown from the track area.


Referring now to FIG. 21 another exemplary track set 2000 is illustrated. Track set 2000 includes relay segments 2100 and 2200. As discussed with regard to FIGS. 12 and 18, each relay segment may be selectively positioned in the beginning, middle or end of the track. A user may customize the track by positioning the relay sections in desired portions of the track. In one embodiment, a plurality of relay segments may be sequentially coupled together with a plurality of track segments to generate a series of relay events. The series of events, which may include various stunt elements, can be rearranged in a plurality of sequences and/or parallel paths to provide numerous play patterns.


In the illustrated track set 2000 an incoming vehicle travels along incoming track 2102 to actuate trigger 2104 of relay segment 2100. Relay segment 2100 may be a stunt element, such as a gravity-actuated zig-zag ramp stunt element. Thus, the incoming vehicle initiates the stunt, following which the pre-loaded stunt vehicle exits stunt 2100 at 2106 toward the subsequent stunt 2200.


Specifically, FIG. 21 illustrates an example gravity-actuated zig-zag ramp stunt element 2110. As illustrated, zig-zag ramp stunt element 2110 is configured to provide a zig-zag track path 2108 for a preloaded stunt vehicle. As shown, incoming track 2102 is coupled to a conical trigger 2104. It should be appreciated that other trigger configurations are possible, including other vehicle trigger configurations, as well as manual trigger configurations. In this example, the trigger may be spring loaded in a downward position, such that contact by an incoming vehicle on track 2102 causes the trigger to move vertically and release a vehicle stop 2111 (such as through rod linkage 2113) such that a preloaded stunt vehicle stored at 2112 is released down zig-zag track path 2108.


The zig-zag ramp stunt element 2110 includes a support brace 2114 which maintains the start of the zig-zag track path in a relatively high vertical position. Gravity enables the car to move down the path. Although not required, in some embodiments, a spring-loaded launcher may be provided to further accelerate the vehicle along the zig-zag track path.


In some embodiments, various structures or designs may be used to indicate to a user the position for placing a pre-loaded vehicle. For example, different textures, paint or designs may be used to indicate that a vehicle should be loaded for activation in the stunt element.


In some embodiments, the zig-zag track may include angled sections which slow a vehicle down as it travels down the path. Rails 2116 may prevent the vehicle from careening off of the track. Further, cut-outs 2118 may be provided in the track to further disrupt the vehicles motion adding excitement to the stunt element. In some embodiments, the cut-outs and track shaped may provide enhanced excited my slowing the vehicle down such that additional anticipation is created.


It should be appreciated that other stunt elements may include speed control elements. These speed control elements include speed retarders and speed accelerators. Speed retarders, such as built-in delayed releases, controlled drops, speed, etc., may enhance play value by increasing the anticipation of an event. Further, speed accelerators, including ramp inclines, may, for example, increase play value by keeping vehicles moving through the track set.


In accordance with an exemplary embodiment of the present invention and referring to FIG. 21, the outgoing vehicle from relay segment 2100 travels to relay segment 2200. The outgoing vehicle is now the incoming vehicle for relay segment 2200 and travels along incoming track 2202 to actuate trigger 2204 of relay segment 2200. Relay segment 2200 may be a stunt element, such as a shock drop stunt element. Thus, the incoming vehicle initiates the stunt, such that pre-loaded stunt vehicle exits stunt 2200 at 2206 toward a subsequent relay element (not shown) or end.



FIG. 22 illustrates rotating ramp launch stunt 2230 as an example of an indirect acting relay segment having a gravity actuated rotating ramp launch stunt. Specifically, an incoming track 2232 is moveable mounted to the relay segment proximate to a conical trigger 2234, which can also be actuated via the manual button 2236. In this example, the trigger when in the downward position locks an acuatable spring loaded member in an unreleased or loaded position, such that contact by an incoming vehicle on track 2232 causes the trigger to move vertically, and initiate rotation of rotating ramp 2238 about axis 2240. A vehicle may be pre-loaded and positioned within rotating ramp 2238 at end 2242 such that upon swinging downward and stopping in the downward position, a vehicle is launched down exiting track section 2244.


Referring now to FIG. 23 still another relay segment is illustrated. Here the relay segment is a free-fall stunt element 3110. As illustrated, free-fall stunt element 3110 is configured to provide a free fall stunt for a preloaded vehicle. As shown, incoming track 3102 is coupled to a conical trigger 3104, which can also be actuated via the manual button 3108. In this example, the trigger may configured to release a spring loaded stunt element such that contact by an incoming vehicle on track 3102 causes the trigger to move vertically and release a catch that then releases a vehicle basket 3111 such that a preloaded stunt vehicle free falls to target 3112.


The vehicle basket 3111 may be hingedly connected to an arm 3114 as indicated at pivot point 3116. A vehicle may be preloaded in the basket. Activation of trigger 3104 results in the basket swinging downwards, as indicated by arrow 3117, such that the vehicle drops out of the basket and falls toward the ground. FIG. 23 illustrates the basket 3111 in a pre-trigger configuration, where the basket is substantially perpendicular to the arm.


In some embodiments, the preloaded stunt vehicle is configured to fall onto a target 3112. The target may be part of a platform or other structure. Upon impact with the target, a third vehicle may be released. As an example, a second pre-loaded vehicle may be positioned in cavity 3118. Cavity 3118 may include launching structure such as a spring loaded launch slider 3120 which upon activation slides forward, causing the second preloaded stunt vehicle to be accelerated toward exit 3106. This second preloaded vehicle becomes the outgoing vehicle of relay element 3100.


Referring now to FIGS. 24-33D an alternative exemplary embodiment of the present invention is illustrated. Here a track set 4100 having three relay segments 4110, 4112, and 4114 is shown at least in FIG. 24. In this embodiment, a user may customize the track set by positioning the relay sections in any desired portions of a track set including other relay segments disclosed herein.


As illustrated, each relay segment 4110, 4112, and 4114 includes an incoming vehicle trigger, movable member or release mechanism which may directly or indirectly causes the launching of another outgoing vehicle or object, wherein the outgoing vehicle or object from one segment may become the incoming vehicle or object of a next segment that strikes the trigger, movable member or release mechanism of the next segment.


Although any suitable launcher may be used, in the illustrated embodiments, various automatically and manually-triggered release launcher elements are illustrated. In one implementation, a vehicle may be positioned in a launch position such that a launch element may slidingly engage the vehicle to propel the vehicle along the track. The launch element may be biased to a launch position, such as by springs, elastic bands or any other suitable biasing mechanism such that release of an activator releases its stored potential energy.


In one embodiment, the relay segments may include a trigger, such as a conically shaped trigger, angled trigger shapes that are not necessarily conical or a movable member. In some relay segments, actuation of a trigger by a first vehicle or object initiates a stunt and release of a second vehicle on the track set.


Referring now to at least FIGS. 24-25B, relay 4110 is illustrated here relay 4110 has a trigger mechanism 4111 similar to the previous embodiments wherein movement of the trigger mechanism from a first position to a second position will cause the relay 4110 to perform a function and release an object or car towards another relay of the track set. As illustrated, relay 4110 has a track segment 4113 pivotally secured to the relay proximate to the trigger such that an incoming vehicle may move trigger 4111. Once trigger 4111 is moved to the second position a tab 4115 is retracted into a track 4117 of the relay and an object or car being held behind tab 4115 is free to traverse down track 4117 in the direction of arrow 4119 towards another relay. Relay 4110 also has a tongue member 4121 for securement to another track segment 4122.


In addition and in one embodiment, relay 4110 also has a member 4123 rotatably mounted to the relay such that once trigger 4111 is manipulated member 4123 is rotated by a mechanism located within the relay such that the member 4123 rotates in the directions of arrows 4125. In one embodiment, member 4123 is configured to resemble a radar dish and movement thereof simulates scanning of an area to provide a general theme to the track set. Accordingly and in one non-limiting implementation of this embodiment, movement of trigger 4111 from the first position to the second position will ultimately cause tab 4115 to be retracted such that an object may travel down track 4117 however rotation of member 4123 may occur before, during or after retraction of tab 4115. If movement of member 4123 occurs before retraction of tab 4115 there will be a time delay from movement of the trigger to the second position and retraction of tab 4115.


Additionally, relay 4110 can also have a manual trigger mechanism 4127 that will retract tab 4115 and cause rotation of member 4123 without requiring movement of trigger 4111.


Referring now to at least FIGS. 24-26D, relay 4112 is illustrated. Here relay 4112 has a trigger mechanism 4129 similar to the previous embodiments wherein movement of the trigger mechanism from a first position to a second position will cause the relay 4112 to perform a function and release an object towards another relay of the track set. As illustrated, relay 4112 has a track segment 4131 pivotally secured to the relay proximate to the trigger such that an incoming vehicle may move trigger 4129. Once trigger 4129 is moved to the second position an object 4133 is launched towards another relay segment, which as illustrated in FIG. 24 is relay 4114.


In one embodiment, object 4133 is configured to resemble a missile that is configured to be received on a launching member or rod 4135 wherein a spring located either within missile 4133 or on rod 4135 is compressed when the missile is received on rod 4135 and a latch 4137 releasbly secures the missile to the rod by having a feature 4139 that engages a portion of the missile. In this embodiment, movement of the trigger 4129 will release the missile and a compressed spring will launch the missile into the air. As illustrated, in FIGS. 26B and 26C the rod or launching member is capable of being located in a variety of positions from a vertical position illustrated in FIG. 26B towards a substantially horizontal position illustrated in FIG. 26C by pivotally securing rod 4135 to relay 4112. It is, of course, understood that any angular configuration of rod 4135 is contemplated to allow for the aiming of the missile towards other relays or just the launching of the missile. In addition, any suitable launching mechanism capable of being activated by the movement of trigger 4129 is also considered to be with the scope of exemplary embodiments of the present invention.


Accordingly and in one non-limiting implementation of this embodiment, movement of trigger 4129 from the first position to the second position will ultimately cause missile 4133 to be launched from the relay. In addition and similar to the other embodiments, relay 4112 can also have a manual trigger mechanism 4141 that will cause the missile to be launched from the relay.


Referring now to at least FIGS. 24-28, relay 4114 is also illustrated here relay 4114 has a release mechanism or trigger mechanism 4143 wherein movement of the trigger mechanism from a first position to a second position will cause the relay 4114 to perform a function and release an object or car towards another relay of the track set. As illustrated, release mechanism 4143 comprises a target surface 4145 secured to an arm member 4147, wherein the arm member is moveably mounted to the relay for movement between the first position and the second position. In this embodiment, the target surface and the relay are configured such that the release surface can be positioned in either the first or second position and movement therefrom towards either the first or second position will cause the relay to perform the function and release the object. In other words, movement of the arm member from one position to another will activate a launcher of the relay. For example, in FIG. 27 the target surface is in the first position vertically orientated with respect to relay 4114 such that movement towards the second position in the direction of arrow 4148 will activate a launcher 4149. In addition and in an alternative embodiment, the release mechanism and the target surface are rotatably secured to the relay for full 360 degrees rotation in the direction of arrows 4150 allowing for adjusting of the target surface in a variety of different positions. In this embodiment, arm member 4147 is pivotally secured to a base portion 4146 that is rotatably secured to relay 4114.


As illustrated, the relay will have a launcher 4149 that is activated by release mechanism 4143 as it moves from either the first position to the second position from the second position towards the first position or another position. Launcher 4149 is similar to the launcher described above and in particular FIGS. 3-3B and equivalents thereof.


Since release mechanism 4143 is capable of activating launcher from either the first position or the second position, various configurations are capable of being provided for example, with the release mechanism and the target in a somewhat vertical configuration with respect to the relay an object striking the surface of the release mechanism and moving it towards a second position or a somewhat horizontal configuration with respect to the relay the launcher will be released and vice versa. FIGS. 24 and 29 show the release mechanism of relay 4114 in a vertical position while FIGS. 30-32 show the release mechanism in the second or horizontal position. In essence, relay 4114 provides a variably positionable target that when struck and actuated causes a toy vehicle or object to be released from relay 4114.


As illustrated, relay 4114 further comprises a pair of support legs 4151 each being pivotally mounted to relay to provide stability to the relay as the release mechanism is located in a variety of positions as well as provide a stable base such that objects striking the release member will move the same with respect to the relay without knocking it over.


In another configuration and as illustrated in at least FIGS. 28-28C relay 4112 will a have an opening or pair of openings 4153 that are configured to receive support legs 4151 therein such that relay 4114 can be secured to relay 4112 and release mechanism or target 4145 can be located directly in front of missile 4133 when rod 4135 of relay 4112 is in the position of FIG. 26C or FIGS. 28B and 28C such that missile 4133 will most certainly hit target 4145 when it is released from relay 4114. This feature is useful for younger children who may not be skilled enough to align the target with the missile when there is a substantial distance therebetween such as the distance illustrated in FIG. 24.


Relay 4114 also has a tongue member 4155 for securement to another track segment 4157, which in one embodiment terminates with a jump via a platform 4159.


Referring now to FIGS. 24-29, track set 4100 is shown where relay 4110 has been activated via movement of trigger 4111 and a vehicle will travel down tracks 4117 and 4122 until it moves trigger 4129 of relay 4112. The movement of trigger 4129 will cause missile 4133 to be launched towards target 4145 of release mechanism 4143 wherein movement of the release mechanism causes the launcher 4149 to launch a vehicle or object along track 4157.


In addition and since relay 4112 and 4114 are spaced from each other, the combination of relays 4112 and 4114 may also be referred to a relay 4200 having a first actuator or relay 4112 configured to launch the object or missile 4133 into air and a second actuator or relay 4114 having the release mechanism 4143 (see at least FIG. 29). Since the release mechanism 4143 of relay 4114 and the rod or the launcher 4135 of relay 4112 are repositionable, the interconnection of actuators or relays 4112 and 4114 can be vertical or horizontal of any other configuration. For example and as illustrated in at least FIGS. 30 and 31, relay 4200 is shown with actuator or relay 4114 elevated from actuator or relay 4112. In this configuration, the launcher or rod 4135 of actuator 4112 is in a vertical position and the target 4151 of release mechanism 4143 is in a horizontal position such that it extends away from an edge of a surface upon which it is supported. Accordingly, missile or object 4133 is launched vertically to make contact with release mechanism 4143 and thus moves the same from a horizontal position toward a vertical position thereby activating launcher 4149. FIG. 30 shows the missile prior to launch and FIG. 31 shows the missile being propelled upwardly towards release mechanism 4143.


Referring now to FIG. 32 relay 4200 is shown with actuator or relay 4110 elevated from actuator or relay 4114. In this configuration, the release mechanism 4143 is in a horizontal position such that it is located slightly above the surface upon which it is supported. Accordingly and as an object or toy vehicle 4202 is released from relay 4110 it travels downwardly in the direction of arrow 4204 towards target surface 4145 of release mechanism 4143 and thus moves the same from the elevated horizontal position towards the surface it is supported thereon thereby activating launcher 4149 (e.g., movement of the mechanism from the second position towards another position, which may or may not be the first position).



FIGS. 33A-33D illustrate just some of the numerous configurations contemplated in accordance with exemplary embodiments of the present invention and FIG. 33D illustrates an embodiment wherein missile 4133 is launched from a hand held device or gun 4206 wherein an individual aims the missile directly at the release mechanism of the relay 4114.


Referring now to FIGS. 34-50 an alternative exemplary embodiment of the present invention is illustrated. Here a track set 5100 having three relay segments 5110, 5112, and 5114 is shown at least in FIG. 34. In this embodiment, a user may customize the track set by positioning the relay sections in any desired portions of a track set including other relay segments disclosed herein.


As illustrated, each relay segment 5110, 5112, and 5114 includes an incoming vehicle trigger, movable member or release mechanism which may directly or indirectly causes the launching of another outgoing vehicle or object, wherein the outgoing vehicle or object from one segment may become the incoming vehicle or object of a next segment that strikes the trigger, movable member or release mechanism of the next segment.


Although any suitable launcher may be used, in the illustrated embodiments, various automatically and manually-triggered release launcher elements are illustrated. In one implementation, a vehicle may be positioned in a launch position such that a launch element may slidingly engage the vehicle to propel the vehicle along the track. The launch element may be biased to a launch position, such as by springs, elastic bands or any other suitable biasing mechanism such that release of an activator releases its stored potential energy.


In one embodiment, the relay segments may include a trigger, such as a conically shaped trigger, angled trigger shapes that are not necessarily conical or a movable member. In some relay segments, actuation of a trigger by a first vehicle or object initiates a stunt and release of a second vehicle on the track set.


Relay 5110 has a trigger mechanism similar to the previous embodiments wherein movement of the trigger mechanism from a first position to a second position will cause the relay 5110 to perform a function and release an object or car towards another relay of the track set. Relay 5110 has a track segment pivotally secured to the relay proximate to the trigger such that an incoming vehicle may move the trigger. Once the trigger is moved to the second position an object or car is launched towards relay 5112. Additionally, relay 5110 can also have a manual trigger mechanism that launch the object.


Referring now to at least FIGS. 35-37, relay 5112 is illustrated. Once again relay 5112 has a trigger mechanism 5060 similar to the previous embodiments wherein movement of the trigger mechanism from a first position to a second position will cause the relay 5112 to perform a function and release an object towards another relay of the track set. As illustrated, relay 5112 has a track segment 5062 pivotally secured to the relay proximate to the trigger such that an incoming vehicle may move trigger 5060. Once trigger 5060 is moved to the second position an object 5133 is launched towards another relay segment, which as illustrated in FIG. 40 is relay 5114.


In one embodiment, object 5076 is configured to resemble a missile. As illustrated, in FIGS. 41A-41C the missile launching member is capable of being located in a variety of positions. It is, of course, understood that any position of the missile launching member is contemplated to allow for the aiming of the missile towards other relays or just the launching of the missile. In addition, any suitable launching mechanism capable of being activated by the movement of trigger 5060 is also considered to be with the scope of exemplary embodiments of the present invention.


Accordingly and in one non-limiting implementation of this embodiment, movement of trigger 5060 from the first position to the second position will ultimately cause missile 5076 to be launched from the relay. In addition and similar to the other embodiments, relay 5112 can also have a manual trigger mechanism 5052 that will cause the missile to be launched from the relay.


Referring now to at least FIGS. 34, 40, 42 and 43, relay 5114 is also illustrated here relay 5114 has a release mechanism or trigger mechanism wherein movement of the trigger mechanism from a first position to a second position will cause the relay 5114 to perform a function and release an object or car towards another relay of the track set. As illustrated, release mechanism comprises a target surface. The relay 5114 will have a launcher that is similar to the launcher described above and in particular FIGS. 3-3B and equivalents thereof.


In another configuration and as illustrated in at least FIGS. 34 and 45 relay 5112 is configured such that relay can be releasably secured to relay 5114 and the target of relay 5114 can be located directly in front of missile 5076 when it is launched such that the missile will most certainly hit the target when it is released from the relay. This feature is useful for younger children who may not be skilled enough to align the target with the missile when there is a substantial distance therebetween.


In addition and since relay 5112 and 5114 are spaced from each other, the combination of relays 5112 and 5114 may also be referred to a relay 5200 having a first actuator or relay 5112 configured to launch the object or missile 5076 into air and a second actuator or relay 5114 having the release mechanism or trigger for launching another object or vehicle.


As shown in the embodiment of FIGS. 34-45 a playset 5100 may include a vehicle launcher or first relay segment 5010, a projectile-launching figure or relay 5112, a target figure or relay 5114, at least one track section 5030, and alternatively a vehicle jump ramp, and plurality of objects, toy vehicles or toy cars 5034 configured to be propelled along the track sections.


In some examples, some or all of the components of the toy-car-launching playset may be suitable designed, configured, and/or decorated to depict a common theme. For example, as shown in the FIGS., the vehicle launcher, the launching figure or relay 5112, and the target figure or relay 5114, including one or more components of each of these elements may be configured to resemble robots, humanoids, cyborgs or any other character.


As shown in the example presented in FIGS. 34-45, the projectile launching figure or relay 5112 may include, a base 5058, a trigger 5060, a track segment 5062, a lower body 5064 mounted on the base 5058, an upper body 5066, an arm 5068, and a projectile launcher 5070.


The track segment 5062 may be pivotally connected to the base and the trigger may includes a generally conical contact element 5048. In some examples, the trigger 5060 may include one or more alternate, auxiliary, or manual triggers 5052, which may provide an alternate method of activating the projectile-launching figure or relay 5112.


The lower body may be rigidly mounted to the base. However, in some examples, the lower body may be mounted to the base such that the lower body may be rotated, translated, or otherwise moved relative to the base. The upper body may be rigidly mounted to the lower body, or the upper body may be mounted to the lower body such that the upper body may pivot or rotate relative to the lower body and/or the base. For example, as generally shown in the examples presented in FIGS. 41A-41C, the upper body may be connected to the lower body via a pivotal waist joint 5072, with the upper body being configured to pivot about an axis that is transverse relative to a surface upon which the projectile-launching figure or relay 5112 is positioned. By “transverse,” it is meant that the indicated members may be obliquely or perpendicularly oriented.


The projectile-launching figure or relay 5112 may be configured such that the upper body is caused to rotate relative to the lower body. Such rotation may be driven by a torsional spring or other driving force, such as an electric, or other type, motor. In some examples, the rotation of the upper body relative to the lower body may be retarded or otherwise slowed down relative to the rotation that would otherwise be provided by the spring or other driving force. For example, a wind-up motor may be provided as a governing gearbox 5074, which may be disposed within the upper or lower body of the projectile-launching figure, and a spring 5075, which may be external to the gearbox, may drive the rotation of the gearbox and the upper body. Examples of spring-operated or wind-up motors are disclosed in U.S. Pat. Nos. 2,057,557; 2,587,052; and 4,493,671, the disclosures of which are incorporated herein by reference thereto. In some examples, the spring and/or the gearbox may be manually energized by manually rotating the upper body relative to the lower body.


As shown in the FIGS., the arm 5068 may be rotatably attached to the upper body of the projectile-launching figure or relay 5112. The rotation of the arm may be driven by a torsional spring or other source of driving force, such as an electric, or other type, motor. The rotation of the arm may be un-retarded, or it may be retarded by a mechanism such as that described above with respect to the rotation of the upper body.


The projectile launcher may be disposed on the arm, and rotatable therewith. The projectile launcher may be configured to launch, propel or fire one or more darts or projectiles. The projectile launcher may be powered by an elastic element, such as a spring, or other source of force, such as a pressurized or compressed gas. In some examples, the projectile-launching figure or relay 5112 may include one or more projectile storage locations or clips 5177 to store or otherwise retain a projectile 5076, as shown in FIG. 38.


As will be more fully discussed below, the projectile-launching figure or relay 5112 may be configured such that activation of the trigger causes the arm to rotate relative to the upper body, the upper body to rotate relative to the lower body, and the projectile launcher to fire the projectile. Although the listed actions may occur in the order in which they are listed, it should be understood that these actions may occur in any suitable order. Furthermore, it is within the scope of this disclosure for any two or more of the listed actions to occur with a suitable delay therebetween or to occur simultaneously.


In some examples, the projectile-launching figure or relay 5112 may include a sighting device or scope 5078, which may be used to assist with aligning and/or aiming the projectile-launching figure or relay 5112, such as relative to the target figure or relay 5114. The alignment and/or aiming of the projectile-launching figure or relay 5112 will be more fully discussed below.


As shown in the example of FIGS. 36 and 37, the scope 5078 may be in the form of a tube disposed on the arm, such as in the hand 5079 of the arm that is not attached to the projectile launcher. In some examples, the scope may be fixed or otherwise secured to the hand the scope may be configured to resemble a detachable piece of the projectile launcher. The scope may be in the form of a simple, open tube through which a user 5080 may look to align and/or aim the projectile-launching figure or relay 5112 relative to the target figure or relay 5114. However, it is within the scope of the disclosure for the scope to include one or more actual or simulated optical elements, such as one or more crosshairs and/or one or more convex and/or concave lenses, to assist with aiming and/or aligning the projectile-launching figure or relay 5112 relative to the target figure or relay 5114.


In one embodiment, the scope is secured to the hand or arm that is not coupled to the projectile launcher however and when the upper body portion is in the second position with respect to the lower body portion, the scope can be used to determine where the projectile launcher will be aimed when the upper body portion rotates or twists back to the first position and the launcher or arm pivots or rotates from the second position back to the first position.


A nonexclusive illustrative example of a target figure or relay 5114, which may be suitable for use with the toy-car-launching set, is shown in FIGS. 34, 39 and 40. Unless otherwise specified, the target figure or relay 5114 and/or its various components may, but are not required to, contain at least one of the structures, components, functionalities, concepts, and/or variations described, illustrated, and/or incorporated herein. The target figure or relay 5114 may include a base 5082, a lower body 5084, an upper body 5086, and a launching element 5088. The base may include a track connector 5090, which may be used to connect the base to a track section, as shown in the FIGS.


The launching element may be configured to apply a force to, and induce motion in, or propel an object such as a toy car, such as along a track section connected to the track connector. The function, operation, and construction of the launching element may generally correspond to that of the launching element described above.


In some examples, the target figure or relay 5114 may include one or more target elements 5092, which may be attached to the upper body. As shown in the FIGS., the target element may be configured to simulate a shield being held by the target figure or relay 5114.


In some examples, the upper body of the target figure or relay 5114 and/or the target element may be configured to provide and/or act as a trigger for launching element 5088. For example, the target figure or relay 5114 may be configured such that an impact to the upper body 5086 and/or to the target element 5092, such as by the projectile 5076, causes the launching element 5088 to launch or propel an object or toy car along a track section 5030 connected to the track connector 5090.


In some examples, the upper body may be separable from the lower body. For example and as shown in FIG. 40, the upper body may be configured to separate, explode, pop-off, and/or otherwise spring or move away from the lower body, such as in response to an impact by the projectile to the upper body and/or to the target element. In such an example, the target figure or relay 5114 may include a latch 5094 and one or more elastic elements 5096, such as a spring or rubber band. The latch may be configured to retain the upper body proximate the lower body, such as until the upper body and the target element receive an impact. The one or more elastic elements may be configured to separate the upper body from the lower body once the latch 5094 is released.


In some examples, the target figure or relay 5114 and the projectile-launching figure or relay 5112 may be configured to assist with a proper alignment therebetween. For example, as shown in FIG. 34 the target and projectile-launching figures may include one or more keying features, such as a key 5098 and a corresponding receptacle or notch 5100, that a user may use to properly align the target figure or relay 5114 and the projectile-launching figure or relay 5112.


The keying features may be configured to provide a connection between the target figure or relay 5114 and the projectile-launching figure or relay 5112. The connection may be relatively loose, but may still provide enough of a positive engagement such that the target figure or relay 5114 and the projectile-launching figure or relay 5112 may be retained together. A nonexclusive illustrative example of a jump-ramp support 5104 is shown in the FIGS. The jump ramp support may be configured to suitably elevate and/or angle one or more track sections such as to provide the vehicle jump ramp, as shown in FIGS.


The following paragraphs describe nonexclusive illustrative example of methods and/or modes of operation various embodiments and their various components, using the concepts and components discussed above. Although the steps of the following methods and/or operation modes may be performed in the order in which they are presented below, it is within the scope of this disclosure for the following steps, either alone or in various combinations, to be performed before and/or after any of the other following steps.


The vehicle launcher may propel a first toy car or object along a track section toward the projectile-launching figure or relay 5112. The projectile-launching figure or relay 5112 may launch or fire a projectile 5076 toward the target figure or relay 5114, which may subsequently explode into separate parts and launch a second toy car or object along another track segment.


In one embodiment and once operation or action of the projectile-launching figure or relay 5112 is initiated, such as in response to a toy car contacting the trigger, the arm and projectile launcher may drop, rotate or pivot through an angle, which may be about ninety (90) degrees, from a first or raised position, as shown in FIG. 41A, to a second or lowered position, as shown in FIG. 41B. The rotation of the arm to the second position may happen relatively quickly, such as where the motion is ungoverned, un-damped or un-retarded. The upper body may twist, rotate or pivot relative to the lower body through an angle, which may be about ninety (90) degrees, from a first position, as shown in FIGS. 41A and 41B, to a second position, as shown in FIG. 41C. The rotation of the upper body may happen relatively slowly, as compared to the dropping of the arm, such as where the rotation of the upper body is damped or retarded. The rotation of the upper body may happen subsequent to and/or in response to the dropping of the arm, as suggested in FIGS. 41A-41C, or the upper body may rotate prior to, or simultaneous with, the dropping of the arm. In some examples, the rotational directions of the arm and the upper body may be reversed from those suggested in FIGS. 41A-41C.


Setting up the playset may include rotating the upper body and/or the arm of the projectile-launching figure or relay 5112 to the positions shown in FIG. 41A, and/or loading a projectile 5076 into the projectile launcher. When the trigger of the projectile-launching figure or relay 5112 is actuated, the arm 68 of the projectile-launching figure or relay 5112 may rotate, to a second position and the upper body of the projectile-launching figure or relay 5112 may twist or pivot to a second position, and the projectile launcher may fire a projectile. When the projectile strikes the target figure or relay 5114, such as on the upper body and/or the target element, the upper body of the target figure or relay 5114 may be ejected upward, and the launching element 5088 of the target figure or relay 5114 may propel another car or object away from the relay 5114.


Although the projectile-launching figure or relay 5112 and target figure or relay 5114 may be in contact, with the key engaged with the notch, as shown in the FIGS., the projectile-launching figure or relay 5112 and target figure or relay 5114 may be spaced some distance apart, as shown in FIG. 43, such as non-limiting distances of up to six (6) inches, twelve (12) inches, or even eighteen (18) or more inches apart.


The projectile-launching figure or relay 5112 and target figure or relay 5114 may be configured such that, when in contact, the projectile is likely to strike the target figure or relay 5114, such as on the upper body and/or the target element. When spaced apart, the user may need to exercise sufficient skill to align the projectile-launching figure or relay 5112 with the target figure or relay 5114 such that the projectile is likely to strike the target figure or relay 5114, such as on the upper body and/or the target element. The projectile launcher may be configured to launch the projectile sufficiently far and/or with sufficient force such that the projectile may impact the target figure or relay 5114 with sufficient force when the projectile-launching figure or relay 5112 and target figure or relay 5114 are spaced apart up to six (6) inches, twelve (12) inches, or even eighteen (18) or more inches.


Referring now to FIGS. 46-50 a non-limiting mechanism 5001 for effecting the movement of projectile-launching figure or relay 5112 and the target figure or relay 5114 is illustrated. As discussed above an upper body portion 5066 is rotationally mounted to the lower body portion and a torsion spring 5067 provides a biasing force to the upper body portion in the direction of arrow 5069 and a shoulder hub 5071 is also rotationally mounted to the upper body portion. A spring 5073 provides a biasing force to hub 5071 in the direction of arrow 5075. In addition, a trigger member 5077 is biased in the direction of arrow 5079 by a spring 5081. One end of trigger member 5077 has a cam portion 5083 located in an opening of hub 5071.


During operation and when the upper body portion is rotated in a direction opposite to the biasing force of spring 5067 a distal end 5085 of a linkage member 5087 engages a recess of the upper body portion and retains it in the position in FIGS. 34, 36, 37 and 41A when it has been moved from a first position of FIGS. 35, 41B to that a second position of FIGS. 34, 36, 37 and 41A such that a biasing force in the direction of arrow 5069 is applied to the upper body portion. The upper body portion remains in this position until the linkage 5087 is moved and the distal end 5085 is refracted such that the biasing force of spring 5067 can be released and the upper body portion is moved from second position back to the first position.


In addition and the shoulder hub can be rotated from a first position with respect to the upper body portion (FIGS. 35, 38, 41A) wherein the projectile launcher 5070 is generally horizontal with respect to the surface the relay is placed on, of course non-horizontal or angled positions are contemplated for the first position of the projectile launcher. The shoulder hub can be rotated from the first position to a second position with respect to the body portion wherein the projectile launcher is pointing upward (FIGS. 34, 36, 27, 41A, 42 and 43. When the hub is rotated to the second position the biasing force 5075 of spring 5073 is overcome and a catch of the hub is engaged by a spring biased release mechanism 5089 to retain the hub and the projectile launcher in the second position.


During operation and when the linkage 5087 is moved such that the distal end 5085 no longer retains the upper body portion in the second position with respect to the lower body portion the spring 5067 rotates the upper body to the first position with respect to the lower body portion. However and in one embodiment, a spring biased gear box 5091 provides a braking force via a gear 5093 to slow down the movement of the upper body portion back to the first position.


During this movement and before the upper body portion reaches the first position from the second position a release lever 5095 releases the spring biased release mechanism 5089 and spring 5073 rotates the hub and the projectile launcher to the first position, which in one embodiment occurs before the upper body portion reaches its first position with respect to the lower body portion, which is due in part to the braking function of gear box 5091.


Finally and as the upper body portion reaches the first position from the second position with respect to the lower body portion the trigger member 5077 is moved against the biasing force of spring 5081 by a feature 5097 that engages a cam surface 5099 of the trigger member and the cam portion 5083 activates the projectile launcher and the projectile is launched. The aforementioned mechanism is merely provide as an example and exemplary embodiments contemplated equivalent mechanisms known to those skilled in the related arts.



FIGS. 49 and 50 illustrate the target relay 5114 and a release mechanism 5003 associated therewith. Here the upper body portion 5086 has a linkage member 5101 that is biased downwardly in the direction of arrow 5103 by a spring 5105 coupled to a member 5107 rotationally secured to the lower body portion 5084. As shown, the upper body portion 5086 has a feature 5109 that when inserted into the lower body portion depresses a member 5111 and spring 5113. As member 5111 and spring 5113 are depressed a tab 5115 rotates member 5107 in the direction of arrow 5117 and linkage 5101 is moved upward in a direction opposite to arrow 5103. One member 5111 is fully depressed a spring biased catch 5119 retains member 5111 in the depressed position wherein spring 5119 is compressed and potential energy is stored therein. As discussed above and when the projectile contacts shield 5092 member 5109 has a feature 5121 that depresses spring biased catch 5119 such that the spring 5113 will launch the upper body portion away and the biasing force of spring 5105 will push linkage down in the direction of arrow 5103 and a launcher of the relay will be activated.


For example and referring now to FIG. 50 a distal end of the linkage moving in the direction of arrow 5103 will move a spring biased lever 5123 that is engaged to releasably retain a launcher 5125 that is coupled to an elastic member 5127 that when released will launch an object or car away from relay 5114.


In various embodiments and when upper body portion is rotated from the first position to the second position and the arm is rotated from the first position to the second position and the trigger of the projectile-launching figure or relay 5112 is activated either manually or by an incoming object, the upper body rotates from the second position to the first position and the arm of the projectile-launching figure or relay 5112 rotates from the second position to the first position and a projectile is launched from the projectile-launching figure or relay 5112 towards the target figure or relay 5114.


After the projectile strikes the target figure or relay 5114, such as on the upper body or the target element, the upper body of the target figure or relay 5114 is ejected upward and the launching element of the target figure or relay 5114 is activated and an object or car is launched from relay 5114.


As discussed above and in one embodiment, the relay 5112 has scope 5078 scope to the hand or arm that is not coupled to the projectile launcher. Accordingly and when the upper body portion is in the second position with respect to the lower body portion, the scope can be used to determine where the projectile launcher will be aimed when the upper body portion rotates or twists back to the first position and the launcher or arm pivots or rotates from the second position back to the first position.


In addition and in one embodiment a method of linking two relay segments with a projectile launcher is provided wherein an upper body portion of a relay is rotated from a first position with respect to a lower body portion against a biasing force of a spring to a second position and the upper body portion is retained in the second position. Prior to or after rotating the upper body portion an arm with a projectile launcher is rotated from a first position to a second position against a biasing force of another spring and retained in the second position. Thereafter, the upper body portion and the arm are rotated back to the first position by the biasing forces of the springs when a trigger of the relay is actuated. The upper body portion rotating at a slower rate then the arm and when both the arm and the upper body portion are in the first position a projectile is launched at another relay segment or target segment.


The target relay segment when impacted by the projectile is configured to launch one portion in the air and release a spring biased launcher at the same time and thus propel a car or object away from the target relay segment.


Exemplary embodiments of the present invention provide relay segments or actuators that are easy to assemble and operate stunts that can be rearranged and repositioned for numerous play configurations.


While the present invention has been described in terms of specific embodiments, it should be appreciated that the spirit and scope of the invention is not limited to those embodiments. The features, functions, elements and/or properties, and/or combination and combinations of features, functions, elements and/or properties of the track set may be claimed in this or a related application. All subject matter which comes within the meaning and range of equivalency of the claims is to be embraced within the scope of such claims.

Claims
  • 1. A relay for a toy, comprising: a first relay segment having an upper portion rotatably secured to a lower portion for movement between a first position and a second position with respect to the lower portion;a trigger coupled to the first relay segment, the trigger being configured for movement from a first position to a second position;a mechanism for retaining the upper portion in the second position after it has been rotated to the second position from the first position, the upper portion being spring biased towards the first position, wherein the mechanism releases the upper portion to allow for rotation movement of the upper portion to the first position from the second position, when the trigger is moved from the first position to the second position;a projectile launcher for launching a projectile into air after the release mechanism releases the upper portion and the upper portion is rotated to the first position from the second position; anda second relay segment, the second relay segment having a release mechanism for launching a portion of the second relay segment in the air as well as launching an object from the relay when the second relay segment is impacted by the projectile.
  • 2. The relay as in claim 1, wherein the projectile launcher is rotatably secured to the upper portion of the first relay segment for movement between a first position and a second position, the projectile launcher being spring biased towards the first position with respect to the upper portion, wherein the mechanism of the first relay segment retains the projectile launcher in the second position after it has been rotated to the second position from the first position and wherein the mechanism of the first relay segment releases the projectile launcher to allow for rotation movement of the projectile launcher to the first position from the second position, when the trigger is moved from the first position to the second position.
  • 3. The relay as in claim 2, wherein the trigger is coupled to the mechanism of the first relay segment by a linkage.
  • 4. The relay as in claim 2, wherein the projectile launcher rotates into the first position from the second position prior to the upper portion rotating to the first position from the second position when the trigger is moved from the first position to the second position.
  • 5. The relay as in claim 4, wherein the mechanism of the first relay segment further comprises a spring biased gear box to provide a braking force to the lower portion as the upper portion rotates from the second position to the first position.
  • 6. The relay as in claim 4, wherein there is no direct physical connection between the first relay segment and the second relay segment other than the first object.
  • 7. The relay as in claim 6, wherein the first relay segment is coupled to a first vehicle track segment and the second relay segment is coupled to a second vehicle track segment and wherein the object launched from the second relay segment is a toy vehicle propelled on the second vehicle track segment by a launcher of the second relay segment, the launcher being actuated by the mechanism.
  • 8. The relay as in claim 7, wherein the first vehicle track segment is pivotally mounted to the first relay segment.
  • 9. The relay as in claim 4, wherein the projectile launcher is rotatably secured to the upper portion of the first relay segment for movement between a first position and a second position about a first axis with respect to the upper portion and wherein the upper portion rotates about second first axis with respect to the first relay segment and wherein the first axis is transverse with respect to the second axis.
  • 10. The relay as in claim 9, wherein the upper portion is an upper body portion of a humanoid and the projectile launcher is secured to a first arm that is rotatably secured to the upper portion of the first relay segment and the first arm and the launcher move together between the first position and the second position.
  • 11. The relay as in claim 10, wherein the upper body further comprises a second arm rotatable secured to the upper body, wherein the second arm further comprises a sight for aligning a direction of the projectile to be launched by the projectile launcher.
  • 12. The relay as in claim 11, wherein the sight is aligned with the direction when the upper body is in the second position.
  • 13. The relay as in claim 1, wherein the trigger further comprises a conically shaped surface positioned above a first track segment pivotally secured to the first relay segment.
  • 14. The relay as in claim 1, wherein the trigger further comprises an angled surface positioned above a first track segment and the first position locates the angled surface a first distance from the first vehicle track segment while the second position locates the angled surface a second distance from the first vehicle track segment, the second distance being greater than the first distance.
  • 15. The relay as in claim 14, wherein the first distance is less than a height of a toy vehicle traveling on the first vehicle track segment, wherein the toy vehicle is a 1:50 scale model or less.
  • 16. The relay as in claim 1, wherein the portion of the second relay segment is an upper portion and the release mechanism of the second relay segment has a linkage member that is biased is a first direction to a first position by a member rotationally secured to a lower body portion of the relay segment and the upper body portion has a feature that when inserted into the lower body portion moves the member and linkage in a direction opposite to the first direction to a second position and wherein the feature is retained in the lower body portion by the release mechanism of the lower body portion and the release mechanism further comprises a spring for launching feature and the upper body portion from the lower body portion when the upper body portion is impacted by the projectile and the linkage moves from the second position to the first position.
  • 17. The relay as in claim 16, wherein movement of the linkage member in the first direction to the first position from the second position causes a launcher of the second relay segment to launch the object from second relay segment.
  • 18. An interchangeable toy track set, comprising: a plurality of interchangeable relays segments each of which may be coupled to each other to create a plurality of variations for the toy track set; andwherein at least one of the plurality of interchangeable relays comprises:a first relay segment having an upper portion rotatably secured to a lower portion for movement between a first position and a second position with respect to the lower portion;a trigger coupled to the first relay segment, the trigger being configured for movement from a first position to a second position;a mechanism for retaining the upper portion in the second position after it has been rotated to the second position from the first position, the upper portion being spring biased towards the first position, wherein the mechanism releases the upper portion to allow for rotation movement of the upper portion to the first position from the second position, when the trigger is moved from the first position to the second position;a projectile launcher for launching a projectile into air after the release mechanism releases the upper portion and the upper portion is rotated to the first position from the second position; anda second relay segment, the second relay segment having a release mechanism for launching a portion of the second relay segment in the air as well as launching an object from the relay when the second relay segment is impacted by the projectile.
  • 19. The interchangeable toy track set as in claim 18, wherein the projectile launcher is rotatably secured to the upper portion of the first relay segment for movement between a first position and a second position, the projectile launcher being spring biased towards the first position with respect to the upper portion, wherein the mechanism of the first relay segment retains the projectile launcher in the second position after it has been rotated to the second position from the first position and wherein the mechanism of the first relay segment releases the projectile launcher to allow for rotation movement of the projectile launcher to the first position from the second position, when the trigger is moved from the first position to the second position and wherein the projectile launcher rotates into the first position from the second position prior to the upper portion rotating to the first position from the second position when the trigger is moved from the first position to the second position and wherein the projectile launcher is rotatably secured to the upper portion of the first relay segment for movement between a first position and a second position about a first axis with respect to the upper portion and wherein the upper portion rotates about second first axis with respect to the first relay segment and wherein the first axis is transverse with respect to the second axis and wherein the upper portion is an upper body portion of a humanoid and the projectile launcher is secured to a first arm that is rotatably secured to the upper portion of the first relay segment and the first arm and the launcher move together between the first position and the second position and wherein the upper body further comprises a second arm rotatable secured to the upper body, wherein the second arm further comprises a sight for aligning a direction of the object to be launched by the projectile launcher.
  • 20. A method for actuating a relay of a toy track set, the method comprising: rotating an upper body of a first relay segment to a first position from a second position, the upper body being spring biased towards the first position;retaining the upper body in the second position by a mechanism;rotating a projectile launcher rotationally secured to the upper body portion to a second position from a first position, the projectile launcher being spring biased towards the first position;retaining the projectile launcher in the second position by the mechanism;actuating a trigger coupled to the first relay segment, the trigger being configured for movement from a first position to a second position, the trigger being coupled to the mechanism wherein movement of the trigger to the second position releases the upper body to allow for rotation movement of the upper body to the first position from the second position and the mechanism releases the projectile launcher to allow to allow for rotational movement of the projectile launcher to the first position from the second position and wherein the projectile launcher launches a projectile into air after the mechanism releases the projectile launcher; andimpacting a second relay segment with the projectile wherein the second relay segment launches a portion of the second relay segment into air and an object is launched away from the second relay segment.
CROSS-REFERENCE TO RELATED APPLICATIONS

This claims the benefit of U.S. Provisional Patent Application Ser. No. 61/172,617, filed Apr. 24, 2009, the contents of which are incorporated herein by reference thereto. This application is also a continuation-in-part of U.S. Patent Application Ser. No. 12/717,645, filed Mar. 4, 2010, which is a continuation-in-part of U.S. patent application Ser. No. 12/111,168 filed Apr. 28, 2008, which claims the benefit of U.S. Provisional Patent Application Ser. Nos. 60/926,583 filed Apr. 27, 2007 and 60/966,029 filed Aug. 24, 2007, the contents each of which are incorporated herein by reference thereto.

Provisional Applications (3)
Number Date Country
61172617 Apr 2009 US
60926583 Apr 2007 US
60966029 Aug 2007 US
Continuation in Parts (2)
Number Date Country
Parent 12717645 Mar 2010 US
Child 12766804 US
Parent 12111168 Apr 2008 US
Child 12717645 US