Toy vehicles are well known. It is believed that a new toy vehicle incorporating a new wheel design capable of operating in multiple environments would provide more engaging play activity than previous toy vehicles.
A toy vehicle comprises a chassis and a plurality of wheels mounted so as to support the chassis; at least one electric motor operably coupled to at least one of the wheels to rotate the at least one coupled wheel about a rotational axis to propel the toy vehicle in a direction at least generally perpendicular to rotational axis and at least one electric power source operably coupled to the motor to power the motor. At least the one wheel operably coupled to the motor includes a hub and a tire mounted on the hub. The tire has an interior sufficiently hollow to make the wheel buoyant in water and the wheel is sufficiently sealed to prevent water penetration of the interior of the tire with the wheel immersed in water and loss of buoyancy. The tire of the at least one wheel has a central portion surrounding the hub and a plurality of hollow lobes spaced from one another about the central portion and extending generally outwardly from the hub, the central portion and the rotational axis. Each lobe is hollow and sealed to water penetration so as to contribute to buoyancy of the wheel. Each lobe has a pair of opposing outer sides cut by a plane perpendicular to rotational axis and bisecting the wheel. At least one of the opposing outer sides of each lobe is at least partially cupped to improve thrust generated by rotation of the at least one wheel in water.
The following detailed description of the preferred embodiment of the present invention will be better understood when read in conjunction with the appended drawings. For the purposes of illustrating the invention, there is shown in the drawings an embodiment which is presently preferred. It is understood, however, that the invention is not limited to the precise arrangements and instrumentalities shown. In the drawings:
Certain terminology is used in the following description for convenience only and is not limiting. The words “right,” “left,” “lower” and “upper” designate directions in the drawings to which reference is made. The words “inwardly” and “outwardly” refer to directions toward and away from, respectively, the geometric center of the toy vehicle and designated parts thereof. The terminology includes the words specifically mentioned, derivatives thereof and words of similar import. Additionally, the word “a” as used in the specification means “at least one.”
Referring to the drawings in detail, wherein like numerals indicate like elements throughout, there is shown in
At least one and preferably each of the wheels 40 each include a hub 42 and a tire 44 mounted on the hub 42. Preferably, the hub 42 and tire 44 are separate components, joined together during assembly of the toy vehicle 10. Alternatively, the hub 42 and tire 44 could be formed as a single, unitary component, for example, by coextrusion. Each tire 44 has an interior 44a sufficiently hollow to make the wheel 40 buoyant in water. The wheel 40 is sufficiently sealed to prevent water penetration of the interior 44a of the tire 44 with the wheel 40 immersed in water to cause a loss of the buoyancy. The tires 44 may be made buoyant by having a completely hollow, sealed interior filled with air or other gas or even a vacuum or a partially hollow interior filled, for example, with a foam material 42c. The tire 44 may have a solid outer body surrounding a foam filled interior or the foam form the outer surface 44b of the tire 44. Preferably, the tires 44 are fabricated from a buoyant material such an expanded plastic material like an expanded polypropylene or another, preferably closed cell foam material and, more preferably, a substantially rigid foam plastic material. Tires 44 made from expanded polypropylene are essentially unpressurized and rigid. The wheels 40 are made sufficiently buoyant from size and material selection and construction to float toy vehicle 10 in water.
Preferably, each tire 44 includes a central portion 45 (in phantom in
Referring to
When operated on a solid surface (including concrete, grass, sand, and snow), circumferential outer tips 49 of the lobes 46 sequentially rotate into contact with the solid surface as the toy vehicle 10 moves. The outer tips 49 define an outermost circumferential surface and circumferential outer perimeter 47 (in phantom) of the respective wheel 40. In the depicted embodiment 10, the plurality of wheels 40 are sufficiently large and positioned relative to the remainder 38 of the toy vehicle 10 (constituted by any body and the chassis 30) such that circumferential outer perimeters 47 of the wheels define a volume 36 (in phantom in
The toy vehicle 10 may be equipped with any of a variety of known wheel drives for propulsion. For example, referring to
In operation, a user activates the toy 10 and may then proceed to use the manual actuators 105, 105 of the wireless remote controller 105 to control respective independent operation of the left drive motor 52 and the right drive motor 92. By operation of both motors 52, 92, the toy 10 can be propelled forward or backward. By varying the relative speed and/or direction of rotation of the left and right side drive motors, the toy vehicle 10 can be turned while operating either in water or on a solid surface.
It will be appreciated by those skilled in the art that changes could be made to the embodiment described above without departing from the broad inventive concept thereof. For example, the toy vehicle 10 is preferably controlled via radio (wireless) signals from the wireless transmitter 105. However, other types of controllers may be used including other types of wireless controllers (e.g. infrared, ultrasonic and/or voice-activated controllers) and even wired controllers and the like. The vehicle 10 can be constructed of, for example, plastic or any other suitable material such as metal or composite materials. In addition to remote control, the toy vehicle 10 may be operated under programmed control, set during manufacture or selectively by a user or may be configured to proceed in a forward direction and be equipped with suitable sensors/switches (107a, 107b in phantom in
Number | Date | Country | Kind |
---|---|---|---|
PCTUS20060043214 | Nov 2006 | WO | international |
This patent application claims priority to U.S. Provisional Patent Application No. 60/734,011 filed Nov. 4, 2005, entitled “Toy Vehicle” and to International Application No. PCT/US2006/0043214 filed 6 Nov. 2006 with the same title, the disclosures of which are incorporated herein by reference.