This disclosure relates to toy vehicles, particularly but not exclusively those of the type that might be played with by children. A toy vehicle may include a manually chargeable drive unit, configured so that on discharge of a charged drive unit the vehicle runs at a speed selected by the user from a plurality of available speeds.
Many different types of toy vehicles have previously been proposed. Toy vehicles with mechanisms for storing energy to drive the vehicle are found in Great Britain Patent Nos. 2135895 and 2148138 and U.S. Pat. Nos. 1,503,009; 2,006,156; 2,604,727; 2,830,403; 4,516,954; 4,541,815; 4,568,309; 4,680,021, 4,786,269 and 6,450,857, the disclosures of which are incorporated herein by reference.
For example, U.S. Pat. No. 6,450,857 (to Imagic, Inc. of Tokyo, Japan) discloses a four-wheel drive toy vehicle that can be pushed by hand to spin a flywheel contained within the body of the toy. On release of the vehicle, energy stored in the spinning flywheel is communicated, by a series of gears, to each of the four vehicle wheels and the vehicle moves backwards or forwards (depending on in which direction the vehicle was pushed to charge the drive unit) until the energy stored in the flywheel has discharged. This toy vehicle includes driven front wheels that can move vertically up and down to enable the vehicle to drive over small obstacles and rougher surfaces without coming to a halt.
A toy vehicle may include a drive unit; a plurality of wheels; mechanical linkage coupling the drive unit to one or more of the wheels to permit energy stored in the drive unit to be discharged to drive the one or more wheels and propel the vehicle; and a user operable selector mechanism configured to permit a user of the toy to select, from a plurality of different speeds, a desired speed at which the vehicle will be propelled when energy from the drive unit is discharged through the one or more wheels.
In some examples, a selector system may include a gear train, a carrier for a gear train and a control mechanism. The gear train may include a plurality of gears, with each of the gears being associated with a particular propulsion speed being moveable into meshing engagement with mechanical linkage for connecting a drive unit to one or more wheels for driving the one or more wheels at the associated propulsion speed. The control mechanism may be arranged to control the movement of the carrier for the selection of a particular propulsion speed. The control mechanism may be retainable in a plurality of positions each of which is associated with a particular carrier position and hence a particular selected propulsion speed.
In some examples, a toy vehicle may include a chassis; a drive unit contained within the chassis; a plurality of wheels provided chassis; mechanical linkage provided within the chassis for coupling the drive unit to one or more of the wheels to permit energy stored in the drive unit to be discharged to drive the one or more driven wheels and propel the vehicle; a user operable selector mechanism configured to permit a user of the toy to select, from a plurality of different speeds, a desired speed at which the vehicle is propelled when energy from the drive unit is discharged through the one or more driven wheels. The selector system may include a carrier for a gear train and a control mechanism. The gear train may include a plurality of gears, each of which gears may be associated with a particular propulsion speed, and may be moveable into meshing engagement with mechanical linkage for connecting a drive unit to one or more wheels for driving the one or more wheels at the associated propulsion speed. The control mechanism may be arranged to control the movement of the carrier for the selection of the particular propulsion speed, the control mechanism being retainable in a plurality of positions each of which is associated with a particular carrier position and hence a particular selected propulsion speed. The vehicle further may include: an actuator pivotally mounted on the chassis and operable by the user to operate the user operable selector system; and bodywork that is capable of being coupled to the actuator, a depression of the bodywork towards the chassis being operable to pivot the actuator towards the chassis to effect operation of the user operable selector system.
Preferred features and advantages of these and other aspects and embodiments of toy vehicles are set out in the accompanying claims and elsewhere in the following description.
An example of a toy vehicle is described, by way of illustrative example only, with reference to the accompanying drawings, in which:
a and 9b are plan views in cross-section along the line C-C in
A toy vehicle will now be described that incorporates a flywheel as a drive unit, and mechanical linkage to provide four-wheel drive. It should be noted, however, that while the example described hereafter represents a particularly advantageous arrangement, the description is provided only by way of an illustrative example, with variations in combinations, sub-combinations, and characteristics of features being possible. No single feature or characteristic is necessary for all possible combinations or sub-combinations. It is eminently possible, for example, for a drive unit other than a flywheel to be used. It is also not essential that the vehicle be an all-wheel drive vehicle or a four-wheel vehicle.
Finally, it should also be noted that where relative positions and movements (such as top, bottom, front, rear, up, down, forwards and backwards) are mentioned hereafter, these terms are merely illustrative and as such should not be read as implying that the orientation of the vehicle or components thereof must be as specifically described.
Referring now to
Referring now to
The chassis also includes a pair of slots 13, one on either side of the vehicle (only one being visible), through which a front axle 15 extends. The front axle 15 extends all of the way through the chassis and is pivotable about a point inside the chassis to allow the front wheels to move “up” and “down” in the direction indicated.
The front axle 15 carries the front wheels (one on either end), and as the axle continues right through the chassis a movement of one front wheel upwards with respect to the chassis causes the other wheel to move downwards with respect to the chassis. As mentioned above, the pivoting front chassis makes it easier for the vehicle to negotiate small obstacles and rough ground.
An actuating member 17 is pivotally coupled (by means of a pivot pin 19 passed through the chassis) to the uppermost surface of the chassis 5. The actuating member includes front and rear tabs 21 that are snap-fittable into grooves or recesses formed in the underside of the bodywork 7 to attach the bodywork 7 to the vehicle.
The actuating member 17 carries a wedge-shaped cam 23 (the cam tapering in a direction into the plane of the paper) that is moveable, in a manner later to be described, to drive a cam follower 25 (in a direction into the plane of the paper) that forms part of a user operable selector mechanism. The actuating member 17 is pivotable, about the pivot pin 19, from the position indicated to a position where it lies closer to the uppermost surface of the chassis 5. The actuating member 17 includes a partly curved guide arm 27 that is flanged at its lowermost end (not visible) inside the chassis. Pivoting movement of the actuating member 17 causes the guide arm 27 to move into and out of the chassis 5, the flanged lowermost end of the guide arm 27 preventing the actuating member from being detached from the chassis 5.
As shown in
Although not shown in the drawings, the chassis is split longitudinally (i.e. in a direction from the front axle to the rear axle) into two sections that are joined to one another, for example by means of a number of screws.
The front axle 15 extends through a pivot coupling 31 that comprises a pivot head 33 received in a notch in the wall of the chassis 5, a first channel 35 through which the front axle 15 extends, and a second channel 37 into which a proximal end 39a of a transmission shaft 39 is fitted in such a way that the transmission shaft 39 can rotate with respect to the pivot coupling 31.
The front axle 15 carries a crown gear 41 that is arranged to mesh with a first transmission gear 43 carried by the transmission shaft 39. The distal end 39b of the transmission shaft 39 carries a second transmission gear 45 that is arranged to mesh with a crown gear 47 carried by the rear axle 11. The rear axle crown gear 47 includes a clutch mechanism (shown in detail in
The rear axle also carries two drive gears 49, 51—the smaller 51 of which may be formed as a pinion of the larger 49. In this preferred embodiment, the larger 49 of the two drive gears is driven (in a manner that is later described in detail) in a low-speed mode, and the smaller 51 is driven in a high-speed mode.
As will immediately be appreciated by those persons skilled in the art, driving either of the two drive gears 49, 51 rotates the rear axle, and the rear wheels 3 and crown gear 47 carried thereby. Rotation of the crown gear 47 causes the first and second transmission gears 43, 45 carried by the transmission shaft 39 to rotate, and the rotation imparted to the first transmission gear 43 is imparted to the crown gear 41 carried by the front axle 15 to drive the front wheels 3 of the vehicle.
Referring now to
The crown gear includes a recessed inner base surface 53 bounded by an upstanding peripheral wall 55 that carries the teeth of the crown gear 47. The base surface 53 includes a plurality of upstanding, generally triangular spaced teeth 59 that are arranged to interfere with projecting protuberances 65 formed on the periphery of a clutch 61. The clutch 61 comprises an annular ring 63 that is fixedly attached to the rear axle 11 so as to rotate with the axle. The protuberances 65 extend outwardly from the periphery of respective resilient arms 67 that extend from the annular ring 63 and are deformable (in the event of an excessive torque applied to the rear axle) towards the ring 63.
As depicted in
This arrangement, whereby the clutch 61 is arranged to slip in the event of an excessive applied torque, is advantageous as it prevents damage that might otherwise occur (for example to the teeth 57 of the crown gear and the meshing teeth of the second transmission gear 45) were, for example, rotation of the front wheels to be impaired for some reason.
Mounted within the chassis 5 is a drive unit 69, which in this example comprises a flywheel 71. The flywheel 71 is located in the chassis by means of a pivot pin 73 that enables the flywheel 71 to spin. The flywheel is engaged by a drive shaft 75, the distal end 75a of which is formed with a pinion 77. The pinion 77 meshes with a first gear wheel 79 that is located within the chassis by means of a second pivot pin 81. The first gear wheel 79 also comprises a pinion 83 that is arranged to mesh with a second gear wheel 85 that is located within the chassis by means of a third pivot pin 87. The second gear wheel 85 comprises an elongated pinion 89 that is arranged to mesh with a gear train 91 that is fixedly attached to the aforementioned translatable gear train axle 31.
The gear train 91 comprises a spur wheel 93 that moveable along the axle 31 and is normally biased away from a bush 95 by means of a spring 97. The spur wheel 93 meshes with the elongated pinion 89 and is formed with a ratchet 99 that meshes with a corresponding ratchet 101 formed on a first low speed gear wheel 103 that is fixedly attached to the axle 31. The spur wheel 93, ratchets 99, 101, low speed gear wheel 103 and spring 97 form a clutch mechanism that is operable to decouple the driven wheels and other gearing from the flywheel in the event that a torque should be applied to the translatable axle 31 that exceeds the lateral force exerted by the spring to bias the spur wheel 93 away from the bush 95.
The gear train further comprises a high-speed gear wheel 105 that is spaced from the low-speed gear 103 by toothless gripper section 107—the function of which will later be described. In a preferred arrangement, the ratchet 101, the low speed gear wheel 103, the toothless gripper section 107 and the high-speed gear wheel 105 are formed as one component of the gear train. As will be apparent by comparing
As depicted in
As mentioned above,
As will now be apparent to those persons skilled in the art, moving the vehicle along a surface by hand causes the wheels to rotate which in turn (by virtue of the gearing depicted in
As will be appreciated by those persons skilled in the art at each gear/pinion interface between the gear train 91 and the flywheel 71, the angular velocity of the gears is stepped-up—the effect of this being that the flywheel can be spun very rapidly even if the vehicle is only moved relatively slowly along a surface to drive the wheels.
Once the flywheel has been spun (by moving the vehicle along a surface by hand to rotate the wheels) to “charge” the drive unit 69, releasing the vehicle allows the flywheel to discharge the energy stored by driving the gearing described above to move the wheels, and hence propel the vehicle along the surface until the energy stored by the flywheel has dissipated.
While we have thus far described in detail how the drive mechanism of the vehicle functions, we have not as yet explained how the user interacts with the vehicle by means of a user operable selector mechanism to move the translatable gear train axle from the aforementioned low-speed configuration to the aforementioned high-speed configuration (and back again).
Referring now to
In
The user operable selector mechanism 109 will later be described in detail. It is sufficient at this point merely to mention that the toothless gripper section locates in the selector mechanism 109 so that rotation of the gear train 91 (with the gear train axle 31) is not impaired, and so that movement of the selector mechanism 109 carries with it the gear train 91 located therein.
a and 9b are plan views in cross-section along the line C-C in
Referring first to
a shows a slow speed configuration wherein the shuttle 117 is locked (in a manner that is later described) against the spring bias in a position where it projects only slightly from the stationary housing 115. In this position the gear train is held (by virtue of the location of the toothless gripper section 107 in the notched portion 123) in a position whereby the low-speed gear wheel 103 meshes with the larger 49 of the two drive gears on the rear axle 11.
Operation, by the user, of the selector mechanism unlocks the shuttle 117, whereupon the shuttle 117 moves with the spring bias to project further from the stationary housing 115. As the shuttle moves out of the housing it carries with it the first, second and third arms 119, 121 and 123; the notched portion 123; the gear train 91 located in the notched portion 123; and the gear train axle 31. Movement of these components continues until the shuttle 117 reaches the limit of its movement out of the housing 115, at which point (as depicted in
Subsequent operation of the user operable selector mechanism moves the shuttle 115 (against the spring bias) back to the locked position depicted in
Referring firstly to
Referring now to
To assemble this component the distal end 133a of the hook 133 is fixed inside the second part 115b of the housing by engaging the distal end 133a with a fixing (not visible) provided generally in the centre of the base (not visible) of the second housing part 115b. Once fixed in place the proximal end 133b (and remainder of the spring) is upstanding from the base of the second part 115b and locates in a channel 135 formed in a wall of the second part 115b in such a way that the proximal end 133b of the hook 133 can pivot (within the confines of the channel 135) about the fixed distal end 133a in the direction indicated. Once the hook 133 has been fitted in place the spring 131 is fitted over the fixing in the base of the second housing part 115b so that the spring is also upstanding therefrom.
Referring now to
The top wall 141 of the shuttle 117 carries a generally T-shaped tab portion 151 that is configured so that the tab portion can be slidingly received in the slot 129 defined by the fingers 127 depending from the first arm 119 of the aforementioned one component of the user operable selector mechanism depicted in
The first part 115a of the housing 115 includes a top wall 153 that is formed with a square aperture 155 that is sized to be slightly larger than the first section 145 of the shuttle 117 but smaller than the larger second section 147 of the shuttle 117 so that the shuttle 117 can move through the aperture 155 up to the point where the step 149 bears against the underside of the top wall 153. One sidewall of the first part 115a is formed with a channel 157 that functions as an extension of the channel 135 formed in the second part 115b. The second part 115b comprises a plurality of upstanding pins 159 that can be fitted into corresponding sockets (not visible) formed in the sidewalls of the first part 115a, to join the first part 115a to the second part 115b.
To complete the assembly of this component of the user operable selector mechanism, the shuttle 117 is located on the upstanding spring 131 so that the spring locates in the aforementioned second channel and the proximal end 133b of the J-shaped hook 133 locates at a start position 161 (
Once assembled, the shuttle 117 will be biased by the spring 131 such that the circumferential step 149 bears against the underside of the top wall 153 of the housing 115 (and the shuttle projects from the housing to its greatest extent) and the proximal end 133b of the hook 133 locates at a start position 161 (
The base 169 includes a first incline 173 (bounded by the dashed lines in
Referring now to
As the shuttle 117 withdraws within the housing 115, the proximal end 133b of the hook 133 moves from the start position 161 in the cam track 143 through an intermediate position 181, up the first incline 173, and over the lip 175 to a first limit point 183 where the spring 131 is compressed to its fullest extent and the shuttle 117 is close to bearing against the base of the second housing part 115b, and can withdraw no further into the housing. At this point, the actuating member 17 bears upon the upper surface of the chassis, and cannot be pivoted any further towards the chassis 5.
Considering now the configuration of the mechanical linkage at this limit point, it will be apparent to those persons skilled in the art, that as the shuttle withdraws within the housing, so the high-speed gear wheel 105 of the gear train 91 (which is located in the crescent shaped section 123 on the end of the third arm 125) moves out of meshing engagement with the smaller drive gear 51 (carried by the rear axle 11) and the low-speed gear wheel 103 moves into meshing engagement with the larger drive wheel 49. In other words, operating the selector mechanism to move the hook proximal end 133b from the start point 161 to the limit point 183 simultaneously causes the gear train 91 and translatable axle 31 provided within the chassis 5 to move from the position depicted in
Releasing the actuating member 17 causes the shuttle 117 to move, under the action of the bias provided by the compressed spring 131, out of the housing 115 and simultaneously the distal end 133b of the hook 133 to move from the limit point 183 in the cam track 143 towards the central protuberance 167 and the locking notch 171 formed therein (the distal end 133b of the hook 133 being prevented from moving back down the incline 173 towards the start position 161 by the ridge 175). As the proximal end 133b of the hook 133 moves into the locking notch, so the gear train 91 moves back slightly from the limit position where the low-speed gear wheel 103 is fully meshed with the larger drive wheel 49 to a position where the low-speed gear wheel 103 and larger drive wheel 49 are meshed to a lesser extent, but still to an extent that readily permits the one to drive the other and vice versa.
When the proximal end 133b of the hook is in the locking notch 171 it is retained in that notch by virtue of the bias provided by the partly compressed spring 131, which acts to pull the proximal end into the notch. In this position, the low-speed gear wheel 103 is effectively locked in meshing engagement with the larger drive wheel 49 and any propulsion of the vehicle will occur at a relatively low speed. When the proximal end 133b of the hook 133 is located in the locking notch the actuating member 17 is slightly spaced from the upper surface of the chassis, but not as spaced as when the proximal end 133b of the hook 133 is in the start position 161.
On the reapplication of a force in the direction P to the actuating member, the actuating member moves once more into abutment with the upper surface of the chassis, and the proximal end 133b of the hook 133 moves to a second limit position 185.
Releasing the actuating member at this point again causes the shuttle 117 to move, under the action of the bias provided by the compressed spring 131, out of the housing 115 and simultaneously the distal end 133b of the hook 133 to move from the second limit point 185 in the cam track 143 past the central protuberance 167, up the second incline 177, through a second intermediate position 187 and over the second ridge 179 before coming to rest in the start position 161.
As the distal end of the hook 133b moves out of the second limit point 185, through the second intermediate point 187 to the starting position 161, the gear train 91 carried by the crescent shaped end 123 of the third arm 125 moves so that the low-speed gear wheel 103 disengages from meshing engagement with the larger 49 of the two drive wheels, and so that the high-speed gear wheel 105 moves into meshing engagement with the smaller drive gear 51. In other words, operating the selector mechanism to move the hook proximal end 133b from the second limit point 185 through the second intermediate point 187 to the starting point 161 simultaneously causes the gear train 91 and translatable axle 31 provided within the chassis 5 to move from the position depicted in
As will now be apparent to those persons skilled in the art, by repeatedly pressing and releasing the actuating member (or directly on the bodywork 7 of the vehicle) it is possible to switch between the low-speed and high-speed propulsion modes for the vehicle. This switching of propulsion speeds can be accomplished both before the vehicle is charged and set in motion, and while the vehicle is in motion, and will greatly increase the appeal and hence marketability of the toy as a whole.
While a toy vehicle has been described above in detail, it will be apparent to those persons skilled in the art that modifications and alterations may be made. For example, while the drive unit described comprises a flywheel, it will be apparent that a variety of different drive mechanisms could instead be utilized. Similarly, while switching between two discrete speed modes is described, it is apparent that switching between more than two speed modes could be accomplished by incorporating minor design changes in the embodiment disclosed. Furthermore, while the vehicle disclosed comprises four driven wheels, it is apparent that not all of the wheels need be driven. It is also apparent that the vehicle need not necessarily have four wheels. It could, for example, have a single wheel, two wheels, three wheels or more than four wheels.
A final point of note is that while certain combinations of features described herein have explicitly been enumerated in the accompanying claims, the scope of the present disclosure is not limited to those combinations set out in the claims at this time but instead extends to encompass any combination of features herein described irrespective of whether those features are claimed in combination hereafter. Accordingly, no single feature or element, or combination thereof, is essential to all possible combinations that may be claimed now or later. Thus, any given invention disclosed by example in the disclosure does not necessarily encompass all or any particular features, characteristics or combinations, except as specifically claimed.
Where “a” or “a first” element or the equivalent thereof is recited, such usage includes one or more such elements, neither requiring nor excluding two or more such elements. Further, ordinal indicators, such as first, second or third, for identified elements are used to distinguish between the elements, and do not indicate a required or limited number of such elements, and do not indicate a particular position or order of such elements unless otherwise specifically indicated.
The present application claims foreign priority from Chinese Patent Application Serial No. 200410101475.6, filed Dec. 16, 2004, and PCT Patent Application Serial No. PCT/CN2005/000684, filed May 17, 2005, which applications are incorporated herein by reference in their entirety for all purposes. This application is also a continuation of PCT Patent Application Serial No. PCT/CN2005/000684 filed, May 17, 2005.
Number | Name | Date | Kind |
---|---|---|---|
2006156 | Bonanno | Jun 1935 | A |
2604727 | Swenson | Jul 1952 | A |
3656586 | Robson | Apr 1972 | A |
3707805 | Buck | Jan 1973 | A |
4068392 | Montgomery et al. | Jan 1978 | A |
4087935 | Edmisson et al. | May 1978 | A |
4116084 | Masuda | Sep 1978 | A |
4141256 | Wilson et al. | Feb 1979 | A |
4241534 | Larsson et al. | Dec 1980 | A |
4312151 | Orenstein | Jan 1982 | A |
4333261 | Jones et al. | Jun 1982 | A |
4386777 | Prehodka | Jun 1983 | A |
4459438 | Kaiser | Jul 1984 | A |
4511342 | Hart et al. | Apr 1985 | A |
4516954 | Chow et al. | May 1985 | A |
4536169 | Fekete et al. | Aug 1985 | A |
4540380 | Kennedy et al. | Sep 1985 | A |
4541815 | Lee et al. | Sep 1985 | A |
4568309 | Maxim et al. | Feb 1986 | A |
4579544 | Matsushiro | Apr 1986 | A |
4680021 | Maxim | Jul 1987 | A |
4786269 | Nagel et al. | Nov 1988 | A |
4900117 | Chen | Feb 1990 | A |
4940444 | Russell | Jul 1990 | A |
5080627 | Oriya et al. | Jan 1992 | A |
5165347 | Wagner | Nov 1992 | A |
5273480 | Suto | Dec 1993 | A |
5342048 | Jones et al. | Aug 1994 | A |
5678489 | Wang | Oct 1997 | A |
5865661 | Cyrus et al. | Feb 1999 | A |
5931714 | Johnson | Aug 1999 | A |
5974977 | Johnson et al. | Nov 1999 | A |
6093079 | House | Jul 2000 | A |
6422151 | Maleika | Jul 2002 | B2 |
6482070 | Hogan | Nov 2002 | B2 |
6764376 | Agostini et al. | Jul 2004 | B2 |
Number | Date | Country |
---|---|---|
2228794 | Jun 1996 | CN |
2228794 | Jan 2002 | CN |
2474203 | Jan 2002 | CN |
3409975 | Mar 1984 | DE |
3240712 | Oct 1984 | DE |
3500533 | Jul 1985 | DE |
3628961 | Aug 1986 | DE |
3941093 | Jun 1991 | DE |
0091971 | Mar 1982 | EP |
0105058 | Oct 1982 | EP |
0200837 | Dec 1985 | EP |
0280496 | Feb 1988 | EP |
1120144 | Dec 2000 | EP |
477953 | Jan 1938 | GB |
1380660 | Feb 1973 | GB |
1495374 | Dec 1977 | GB |
1533374 | Nov 1978 | GB |
2135895 | Dec 1983 | GB |
2148138 | Oct 1984 | GB |
2180768 | Sep 1986 | GB |
2230467 | Mar 1990 | GB |
WO0123058 | Apr 2001 | WO |
WO03101569 | Dec 2003 | WO |
WO2004016333 | Feb 2004 | WO |
Number | Date | Country | |
---|---|---|---|
20060135036 A1 | Jun 2006 | US |
Number | Date | Country | |
---|---|---|---|
Parent | PCT/CN2005/000684 | May 2005 | US |
Child | 11300043 | US |