Toy vehicle

Information

  • Patent Grant
  • 8764511
  • Patent Number
    8,764,511
  • Date Filed
    Wednesday, April 25, 2012
    12 years ago
  • Date Issued
    Tuesday, July 1, 2014
    10 years ago
Abstract
A toy vehicle has a frame pivotally supporting for side to side movement, front and rear carriages each having at least one road wheel to support and steer the vehicle. A steering control member is slidably supported between the carriages and moved sided to side by a steering actuator subassembly to simultaneously pivot facing ends of the carriages in the same lateral direction to steer the vehicle in the opposing lateral direction. The actuator subassembly simultaneously moves the vehicle body and a structure that simulate a pair of eyes in a front windshield area to simulate animated responses of the toy vehicle.
Description
BACKGROUND OF THE INVENTION

Hippely et al. U.S. Pat. No. 7,833,081 describes a motorized toy vehicle having a fanciful facial expression formed by pairs of moving eyes and eye brows under a front windshield and a movable mouth in the front grill area of the vehicle. Propulsion and steering of the toy vehicle is conventional. The mouth and eye components may be moved together by a pair of motor driven, coaxial cams or the mouth motor driven and the eye components moved manually through a control button on the vehicle roof. All disclosed versions of these toy vehicles require three electrically operated actuators: a propulsion motor, a steering motor/servo and a special effect motor moving the mouth or mouth and eye components.


It would be desirable to increase the number of animated features of these toy vehicles without adding additional electrically operated actuators.


BRIEF SUMMARY OF THE INVENTION

In a primary aspect, the invention is a toy vehicle comprising: a vehicle frame having opposing front and rear ends and opposing lateral sides extending between the ends; a front wheel carriage mounted for lateral side to side pivotal movement on the vehicle frame proximal the front end of the vehicle frame; at least one front road wheel rotatably mounted on the front wheel carriage so as to support the front end of the frame for movement of the toy vehicle; a rear wheel carriage mounted for lateral side to side pivotal movement on the vehicle frame proximal the rear end of the vehicle frame; at least one rear road wheel rotatably mounted on the rear wheel carriage so as to support the rear end of the frame for movement; a steering control member located between and operably connected directly with each of the front and rear wheel carriages so as to simultaneously pivot proximal adjoining inner ends of the front and rear wheel carriages in one lateral direction on the frame and thereby pivot the distal outer ends of the front and rear wheel carriages simultaneously in an opposing remaining lateral direction on the frame whereby the vehicle can be steered in the opposing remaining lateral direction; a steering actuator configured to move the steering control member laterally to steer the toy vehicle in a desired lateral direction; and a controller operably connected with the steering actuator to activate the steering actuator to move the steering control member and thereby pivot the front and rear wheel carriages to steer the toy vehicle.


In another aspect, the invention is a toy vehicle comprising: a plurality of rotatably mounted road wheels arranged to support the toy vehicle for movement on a support surface; a structure movably mounted so as to generate an animated response of the toy vehicle; a steering actuator operatively connected with at least one of the plurality of road wheels to pivot the at least one road wheel with respect to a vertical axis to steer the toy vehicle and to simultaneously move the structure and the steering control member to thereby pivot at least the one road wheel to selectively steer the toy vehicle simultaneously while generating the animated response.


In yet another aspect, the invention is a toy vehicle comprising: a vehicle frame; a plurality of road wheels supported from the vehicle frame and supporting the toy vehicle for movement, at least one of the road wheels being mounted to the chassis for pivotal movement about a vertical axis so as to steer the toy vehicle; a vehicle body mounted on the vehicle frame so as to rock about an other axis extending through the toy vehicle between the front and rear ends; and an actuator subassembly operatively connected with the at least one road wheel and the vehicle body so as to rock the vehicle body about the other axis while simultaneously pivoting the at least one road wheel to steer the toy vehicle.





BRIEF DESCRIPTION OF THE DRAWINGS

The foregoing summary, as well as the following detailed description of the invention, will be better understood when read in conjunction with the appended drawings. For the purpose of illustrating the invention, there are shown in the drawings embodiments which are presently preferred. It should be understood, however, that the invention is not limited to the precise arrangements and instrumentalities shown. In the drawings:



FIG. 1 is a front perspective view of a motorized toy vehicle embodying the invention;



FIG. 2 is a rear perspective view of the toy vehicle;



FIG. 3 is an exploded view of a first mechanical embodiment of the toy vehicle;



FIG. 4 is a first partially reassembled view of the toy vehicle of FIG. 3;



FIG. 5 is a second partially reassembled view of the toy vehicle of FIG. 3;



FIG. 6 is a third partially reassembled view of the toy vehicle of FIG. 3;



FIG. 7 is an exemplary circuit diagram; and



FIG. 8 is an exploded view of a second mechanical embodiment of the toy vehicle.





DETAILED DESCRIPTION OF THE INVENTION

In the various figures, like numerals will be used to indicate like elements. FIGS. 1 and 2 depict a first embodiment toy vehicle 10 embodying the invention. The vehicle 10 includes a body 14, a least one and preferably a pair of front road wheels 47 and at least one and preferably a pair of rear road wheels 42. The body 14 preferably includes a flexible member 20 forming a “nose” 20a and a “mouth” 20b, has a front window opening 15 defining a front windshield area (also 15) and a rear window opening 19. It mounts a decorative rear spoiler or wing 18. A electrical jack 21 is preferably provided configured to matingly receive a plug connector (not depicted) for recharging an on-board power supply 22 of the vehicle 10. Working LED headlights 97 and taillights 98 are optionally provided as is a speaker 92, the sound from which is permitted to pass through holes 19a in the rear window area 19 above the speaker 92.


Referring to FIG. 3, most of the individual components of the toy vehicle 10 are revealed in exploded view. Preferably the vehicle construction is body 14 supported on a chassis preferably including a vehicle frame 12. Frame 12 has opposing front and rear ends 12a, 12b and opposing left and right lateral sides 12c, 12d extending between the ends 12a, 12b. While frame and body construction is preferred, split shell or other monocoque construction can be used.


The toy vehicle 10 has three motor/gear subassemblies that each include an electric motor and speed reduction gearing. A first motor/reduction gearing combination is indicated generally at 33 and is part of a propulsion module or subassembly 32 at the rear of the vehicle 10. A second motor/reduction gearing combination is indicated generally at 53 and is part of a special effects (FX) “mouth” module or subassembly indicated generally at 51 at the front end 12a. Second motor/reduction gearing combination 53 is a configured as a servo to operate a “mouth” 50 formed by flexible member 20 by moving upper and lower jaws 64, 66 of the mouth subassembly 51. A third motor/reduction gearing combination is indicated generally at 71 and is configured as another servo that is located between and above the propulsion and mouth subassemblies and their motor/reduction gearing combinations. Third motor/reduction gearing combination is part of a steering module or subassembly 70 that controls animated movement of the toy vehicle as well as steering as will be described. Servos provide only limited rotational output, whether through stop switches or slip clutches or the like. Preferably, all of the motors/servos are reversible.


Each of the pair of front road wheels 47 is preferably formed by hub or rim 48 and tire 49 but one-piece and other constructions are possible. The pair of front road wheels 47 are mounted for free rotation on opposing stub shafts 46 provided in fixedly coaxial positions on opposite sides of a front wheel carriage 45 and support the front end 12a of the vehicle frame 12 and the toy vehicle 10 for movement of the vehicle on a support surface. The stub shafts 46 are fixedly coaxial on the front wheel carriage and, by their rotatable mounting, the front wheels 47 are thus also coaxially mounted to rotate about a common axis fixed with respect to the carriage 45. The propulsion module/subassembly 32 is otherwise conventional and is mounted in or on a rear wheel carriage 38. Rear road wheels 42 are fixed on a rear axle 40 of the propulsion module 32 and support the rear end 12b of the vehicle frame 12 and vehicle 10 for movement of the vehicle. Rear axle 40 is driven by a propulsion motor 34 and reduction gear train/transmission 36. The rear axle 40 is fixed in location on the rear wheel carriage 38 and thus the rear wheels 42 are also mounted for rotation about a common axis, the central axis of the axle 40, fixedly positioned on that carriage 38. Each rear road wheel 42 is also formed by hub or rim 43 and tire 44. The front and rear road wheels 42, 47 may be identical as indicated or different, as desired.


Referring to FIGS. 3 and 4, the front wheel carriage 45 is itself mounted on the frame 12 on a vertically extending front post 13a proximal the front end 12a of the frame 12 for lateral side to side pivotal movement about a vertical central axis of the front post. The rear wheel carriage 38 is also pivotally mounted on the frame 12 on a separate, vertically extending rear post 13b proximal the rear end 12b of the frame 12 for side to side pivotal movement about a vertical central axis of the rear post. An upper chassis member 24 is fixed to the frame 12 between the wheel carriages 45, 38 and slidably supports a steering control member 28 located between and operably connected directly with each of the front and rear wheel carriages. FIG. 4 shows a bottom side of the control member 28. Pins 29a, 29b extend down from the front and rear, laterally extending horizontal panels or flanges of steering control member 28 are receive in yokes 38b, 45b provided at the free ends of front and rear control arms 38a, 45a, respectively provided at mutually facing ends on the front and rear wheel carriages 38, 45. FIG. 5 shows the vehicle frame 12 with the steering control member 28 removed revealing its top side. Extending vertically and laterally side by side in the top center of the steering control member 28 are a pair of spaced apart, planar parallel rigid ribs 30 that define a gap 31 in between. The gap 31 receives a steering actuator member in the form of crank 79b (see FIG. 6) that is exposed on a bottom side of the steering actuator module 70 containing the third motor reduction gearing combination 71. Side to side sliding movement of the steering control member 28 under actuation of the crank 78b by the third motor reduction gearing combination 71 of the steering actuator module 70 pivots the proximal inner ends of both the front and rear carriages 38, 45 to the same lateral side 12c or 12d as the steering control member 28 and pivots the distal outer ends of both carriages 38, 45 including the front and rear road wheels 47 and 42 simultaneously in a remaining opposing lateral direction and side of the frame to steer the toy vehicle 10 in the remaining lateral direction of the remaining opposing lateral side. In this way, the crank 78b, third motor reduction gearing combination 71 and steering actuator module 70 are all operably connected with the front and rear wheel carriages 45, 38 and through the carriages with the front and rear road wheels 47, 42.


Also protectively captured between the frame 12 and upper chassis member 24 are a preferably rechargeable power supply 22 and control electronics indicated generally at 26. Referring to FIG. 7, control electronics 26 includes a controller 90 preferably in the form of a microprocessor or equivalent Application Specific Integrated Circuit (ASIC) operably connected with the power supply 22, with the three motor/reduction gearing combinations 33, 53 and 71 through a motor driver circuit 35a and power amplifier 35b combination and through servo drivers 55 and 75, respectively, including stop switches (not separately depicted) mechanically coupled with the outputs of motor/reduction gearing combination 53, 71 to limit there operation and range of rotation, and with the lights 97, 98 and speaker 92 to control all operations. Rechargeable power supply 22 is operably connected with the jack 21. Preferably the controller 90 is preprogrammed or otherwise configured to perform a series of predetermined actions in a predetermined order including steering/movement of the vehicle, operation of the lights and/or generation of sounds. However, the control electronics could also include a wireless signal receiver operably connected with the controller 90, which would then be preprogrammed or otherwise configured to respond conventionally to commands from a user operated, remote control transmitter.


Referring to FIGS. 3 and 6, the steering actuator module 70 with third motor reduction gearing combination 71 includes a housing with upper and lower halves 72a, 72b receiving and supporting a motor (hidden in the lower housing) that drives a first speed reduction gear 76 with a central shaft extending longitudinally in the housing 72 between the rings of teeth at either end of the shaft. The front end of the first gear 76 meshes with a second speed reduction gear 77 also with two concentric rings of teeth, the smaller ring of which pivots a crank set 78 at the front end of the housing 72. Crank set 78 includes opposed cranks 79a, 79b, which are exposed through openings in the housing 72. The lower crank 79b engages and slides the control member/slide actuator 28 laterally side to side for steering. The upper crank 79a engages and operates an animated eye component in the form of a sliding eye member indicated generally at 80. The third motor reduction gearing combination 71 with stop switches at the crank output to limit the range of angular rotation of the cranks constitute a steering servo.


Still in FIG. 3, sliding eye member 80 has an inverted U shape with a pair of parallel arms 81a extending downwardly from a cross member 81b. A pair of “eyes” or, more specifically, “pupils” 81c extend forward and down from the cross member 81b and hook over an inner windshield 82 so as to be slidable side to side along a top edge of the windshield 82. Eyes/pupils 81c are dark in color and the inner front windshield 82 is light in color so that the eyes/pupils 81c can be seen on the windshield 82. The upper crank 78a of the module 70 is received between the downwardly extending arms 81a of the U shaped member 80 to move the member 80 and eyes/pupils 81c side to side while the front and rear carriages 45, 38 are being pivoted by the lower crank arm 78b. Preferably a window member 16 is molded to be fitted inside of the body 14 over the sliding eye assembly 80 to cover it and the other openings provided in the body 14 for the front window 15, side windows (unnumbered) and rear window 19.


The flexible member 20 forms the hood and grill area at the front of the toy vehicle 10 and is molded to define the nose 21a and mouth opening 21b beneath the nose and windshield eyes/pupils 81c. The FX module 51 sits inside and below the member 20 preferably on the front wheel carriage 45. Module 51 also preferably includes a housing with upper and lower halves 52a, 52b containing a motor 54 and speed reduction gearing indicated generally at 56 meshed with a geared wheel 58. Opposing upper and lower jaw members 64, 66 are supported on the front end of the housing 52 hinged on common axis and cammed together so as to pivot in opposite vertical directions. Vertical arcuate flanges 65a and 67a are provided at the foremost ends of jaw members 64, 66, and are connected with the flexible member 20 above and below the mouth opening 21b so that portions of the flexible member 20 above and below the opening 21b move like lips with up/down movement of the jaw members 64, 66. A pin 60 is eccentrically located on geared wheel 58 and is received in an elongated slot 62a in a rear end of a connecting link 62. The forward end of link 62 is non-rotatably connected to a lever arm 65b of the upper jaw member 64 such that rotational movement of the pin 60 is converted into pivotal movement of the arm 65b and upper jaw member 64 and opposing pivotal movement of the lower jaw member 66 opening and closing the mouth 50.


The body 14 is preferably mounted to the frame of the chassis to pivot about a central longitudinal axis so as to raise up one lateral side while simultaneously dropping the remaining lateral side. Preferably, an arm 94 with rounded upper/distal tip is fixedly mounted on the frame 12 extending upwardly behind the rear of the rear wheel carriage 38. A bracket 96 is fixedly attached to the inside of the rear of the vehicle body 14 and is configured to form a recess to seat on the arm 94 and support the rear of the body 14 for longitudinal pivotal movement. An upward and forward extending arm 25 is provided on the upper chassis member 24. The body 14 is itself also configured on its inner side to form a pivot seat configured to receive the top of arm 25 and support the front of the body 14 so that the body 14 can be pivoted about the aforesaid central longitudinal axis, which extends through upper distal tips of the arms 25, 94. The vehicle body 14 is thus supported on the vehicle frame 12 to pivot about the central longitudinal axis and configured to be rocked on the central longitudinal axis by operable connection with the steering control member 28. Preferably, the lateral outer edges of the ribs 30 on the steering control member 28 are configured (sized, shaped and located) to strike the proximal inside surface of the body 14 when the member 28 is moved to a right or left extreme lateral position while pivoting the carriages 38, 45. One or the other of the ribs 30 strikes and cams the body 14 to pivot the struck side of the body 14 upward on the arms 25, 96. The arms 25, 96 can also be used to pivotally secure the body 14 to the vehicle frame 12 so that the body 14 cannot be lifted away.



FIG. 8 depicts a second embodiment toy vehicle of the present invention indicated generally at 110. Most of the components of toy vehicle 110 at least identical in function if not also in appearance to those of toy vehicle 10 and are indicated by the same reference numerals increased by 100. Thus frame 112 corresponds functionally to frame 12 and body 114 to body 14. The major differences will now be noted.


The shapes of many of the components have been changed. Beyond that, the location of the control electronics 126 has changed. The propulsion module/subassembly 132 now has a cover 136 to retain parts in the carriage 138 forming a lower housing for the components of the propulsion module/subassembly 132. The construction of the road wheels has changed. The rear wheel hub 143 is now two piece. The tire and rim construction of the front wheels 47 has been replaced by one piece road wheels 147. A spacer 148 is provided to be located between the outer surface of the stub axle 136 and an inner circumferential surface of the wheel 147 corresponding to a tire. A retention pin 150 secures the wheel 147 to the stub shaft 146. The lever arm 165b of the mouth subassembly 151 has been moved from the upper jaw 164 to the lower jaw 166. The length of the first speed reduction gear 176 is shortened. The configuration of the body supporting pivot arms 125 and 194 has been changed and the latter has been made an integral part of the frame 112. The LED's for the front lights are separately shown at 197a and there are no taillight LED's shown although they are still optional.


It will be appreciated by those skilled in the art that still other changes could be made to the embodiments described above without departing from the broad inventive concept thereof. To that end, Hippely et al. U.S. Pat. No. 7,833,081 is attached hereto as an Appendix and incorporated by reference herein in its entirety for at least the changes it suggests. This invention is not limited to the particular embodiments disclosed.

Claims
  • 1. A toy vehicle comprising: a plurality of rotatably mounted road wheels arranged to support the toy vehicle for movement on a support surface;a structure movably mounted so as to generate an animated response of the toy vehicle;a steering actuator operatively connected with at least one of the plurality of road wheels to pivot the at least one road wheel with respect to a vertical axis to steer the toy vehicle and to simultaneously move the structure to generate the animated response; anda controller operably connected with the steering actuator to selectively activate the steering actuator to move the structure and the steering control member to thereby pivot at least the one road wheel to selectively steer the toy vehicle simultaneously while generating the animated response.
  • 2. The toy vehicle of claim 1 further comprising a vehicle frame; anda wheel carriage mounted on the vehicle frame to pivot about a first vertical axis, the at least one of the plurality of road wheels being rotatably mounted to the wheel carriage to rotate about a wheel axis fixed on the wheel carriage;wherein the steering actuator is operatively connected with the wheel carriage to pivot the carriage with the at least one road wheel about the vertical axis and thereby steer the wheel carriage and the toy vehicle.
  • 3. The toy vehicle of claim 2 wherein the wheel carriage is a first wheel carriage pivotally mounted on a first longitudinal end of the vehicle frame and the toy vehicle further comprising a second wheel carriage mounted on a second longitudinal end of the vehicle frame for pivotal movement about a second vertical axis, at least another of the plurality of road wheels being mounted for rotation on the second carriage, the steering actuator being directly operatively connected with each of the first and second wheel carriages to simultaneously pivot the first and second wheel carriages on the vehicle frame to simultaneously steer opposing ends of the toy vehicle.
  • 4. The toy vehicle of claim 2 wherein the structure simulates a pair of eyes in a front windshield area of the toy vehicle.
  • 5. The toy vehicle of claim 2 wherein the structure is a vehicle body supported on the vehicle frame to pivot about a central longitudinal axis of the toy vehicle and configured to be rocked on the central longitudinal axis by operable connection with the steering control member.
  • 6. The toy vehicle of claim 2 wherein the steering actuator is a subassembly of the toy vehicle and comprises a servo providing a limited rotational output and a pair of opposed cranks coupled with the servo output to be pivoted over a limited angular range by the servo, one crank of the pair being operably connected with at least the wheel carriage and the other crank of the pair being operably connected with the structure to generate the animated response.
  • 7. The toy vehicle of claim 3 further comprising a propulsion motor mounted on the first wheel carriage in driving connection with the at least one road wheel to rotate the at least one road wheel to propel the toy vehicle on the support surface.
  • 8. A toy vehicle having opposing front and rear ends and comprising: a vehicle frame;a plurality of road wheels supported from the vehicle frame and supporting the toy vehicle for movement, at least one of the road wheels being mounted to the chassis for pivotal movement about a vertical axis so as to steer the toy vehicle;a vehicle body mounted on the vehicle frame so as to rock about an other axis extending through the toy vehicle between the front and rear ends; andan actuator subassembly operatively connected with the at least one road wheel and the vehicle body so as to rock the vehicle body about the other axis while simultaneously pivoting the at least one road wheel to steer the toy vehicle.
  • 9. The toy vehicle of claim 8: wherein the vehicle frame has opposing front and rear ends and opposing lateral sides extending between the ends;wherein the plurality of road wheels includes at least one front road wheel and at least one rear road wheel;wherein the vehicle further comprises:a front wheel carriage mounted for lateral side to side pivotal movement on the vehicle frame proximal the front end of the vehicle frame, the at least one front road wheel being mounted on the front wheel carriage for rotation on a horizontal transverse axis fixed on the front wheel carriage so as to support the front end of the frame for movement of the toy vehicle including turns; anda rear wheel carriage mounted for lateral side to side pivotal movement on the vehicle frame proximal the rear end of the vehicle frame, the at least one rear road wheel being mounted on the rear wheel carriage for rotation on a horizontal transverse axis fixed on the rear wheel carriage so as to support the rear end of the frame for movement including turns; andwherein the actuator subassembly includes:a steering control member located between and operably connected directly with each of the front and rear wheel carriages so as to simultaneously pivot inner ends of the front and rear wheel carriages each proximal the steering control member in one lateral direction on the frame and thereby pivot outer ends of the front and rear wheel carriages each distal to the steering control member simultaneously in an opposing remaining lateral direction on the frame whereby the vehicle can be steered in the opposing remaining lateral direction; anda steering actuator configured to move the steering control member laterally to steer the toy vehicle in a desired lateral direction.
  • 10. The toy vehicle of claim 9 wherein at least one of the front and rear wheel carriages supports a second road wheel, the at least one road wheel and the second road wheel being fixedly coaxial on opposite lateral sides of the at least one wheel carriage.
  • 11. The toy vehicle of claim 10 further comprising a second structure movably mounted with respect to the chassis and configured to generate an animated response of the toy vehicle and wherein the steering actuator is configured to simultaneously move the second structure with the steering control member to generate the animated response simultaneously with the vehicle body and with the front and rear wheel carriages with the at least one front wheel and the at least one rear wheel, respectively, both being pivoted to steer the toy vehicle.
  • 12. The toy vehicle of claim 11 wherein a remaining one of the front and rear wheel carriages also supports a second road wheel, the at least one road wheel and the second road wheel being fixedly coaxial on opposite lateral sides of the remaining wheel carriage.
  • 13. The toy vehicle of claim 8 further comprising: a second movable structure associated with the vehicle frame and adapted to be moved to generate an animated response; andthe actuator subassembly further being operatively connected with the second movable structure and further being adapted to move the second movable structure to generate the animated response of the second movable structure and simultaneously steer the vehicle and pivot the vehicle body.
  • 14. The toy vehicle of claim 13 wherein the second movable structure simulates a pair of eyes in a front windshield area of the toy vehicle.
CROSS REFERENCE TO RELATED APPLICATIONS

This application is related to U.S. Application No. 61/0518,167 filed Apr. 29, 2011, which is incorporated by reference herein in its entirety.

US Referenced Citations (139)
Number Name Date Kind
2601930 Druge et al. Jul 1952 A
2832177 Mueller Apr 1958 A
3115724 Clarke Dec 1963 A
3236006 Carroll Feb 1966 A
3387404 Appel Jun 1968 A
3471963 Tomiyama Oct 1969 A
3619940 Good et al. Nov 1971 A
3629680 Baynes et al. Dec 1971 A
3665643 Colgrove May 1972 A
3707805 Buck Jan 1973 A
3735525 Freed May 1973 A
3747265 Gagnon Jul 1973 A
3748780 Glass et al. Jul 1973 A
3828469 Giroud Aug 1974 A
3862514 Ueda Jan 1975 A
4079938 Beny et al. Mar 1978 A
4083143 Allen Apr 1978 A
4109913 Nielsen Aug 1978 A
4155197 Beny et al. May 1979 A
4187637 Nielsen Feb 1980 A
4248009 Ferris et al. Feb 1981 A
4260041 Mabuchi Apr 1981 A
4366645 Crain et al. Jan 1983 A
4385466 ReVelle May 1983 A
4402158 Seki et al. Sep 1983 A
4463520 Crosman Aug 1984 A
4476648 Maxim Oct 1984 A
4480401 Matsushiro Nov 1984 A
4488375 Cheng Dec 1984 A
4493669 Neuhierl Jan 1985 A
4547169 Maxim Oct 1985 A
4568307 Gabler et al. Feb 1986 A
4701150 Alvarez Oct 1987 A
4772242 McKay et al. Sep 1988 A
4810229 Shoji Mar 1989 A
4846756 Hesse Jul 1989 A
4925427 Wu May 1990 A
5092808 Takasaka et al. Mar 1992 A
5108126 Banse Apr 1992 A
5108341 DeSmet Apr 1992 A
5141464 Stern et al. Aug 1992 A
5173072 Ozawa Dec 1992 A
5181877 Perkitny Jan 1993 A
5259808 Garr Nov 1993 A
5267888 Hippely et al. Dec 1993 A
5292275 Swisher et al. Mar 1994 A
5304087 Terzian et al. Apr 1994 A
5310379 Hippely et al. May 1994 A
5312288 Williams May 1994 A
5334077 Bailey Aug 1994 A
5334078 Hippely et al. Aug 1994 A
5338246 Suto Aug 1994 A
5338249 Hildebrand et al. Aug 1994 A
5391106 Lidert, Jr. Feb 1995 A
5409263 Klawitter Apr 1995 A
5482494 Ishimoto Jan 1996 A
5525090 Halford et al. Jun 1996 A
5580296 Chow Dec 1996 A
5626506 Halford et al. May 1997 A
5722872 Simmons et al. Mar 1998 A
5785576 Belton Jul 1998 A
5876263 DeCesare et al. Mar 1999 A
5882241 Mullaney et al. Mar 1999 A
5916007 Maxim Jun 1999 A
5941754 Maxim Aug 1999 A
6015330 Simmons et al. Jan 2000 A
6033285 Fine et al. Mar 2000 A
6036575 Rehkemper et al. Mar 2000 A
6039626 Gerold et al. Mar 2000 A
6068536 Madland et al. May 2000 A
6106362 Keller et al. Aug 2000 A
6186859 Hickman et al. Feb 2001 B1
6234866 Ben-Yakar et al. May 2001 B1
6283054 Engle Sep 2001 B1
6352464 Madland et al. Mar 2002 B1
6364509 Johnson, III Apr 2002 B1
6383054 Rauch May 2002 B1
6551169 Jaffe Apr 2003 B2
6599169 Edmisson et al. Jul 2003 B2
6620023 Yeung Sep 2003 B2
6626116 Clark, Jr. et al. Sep 2003 B2
6645037 Choi Nov 2003 B1
6663463 Dougherty et al. Dec 2003 B1
6692333 Kislevitz et al. Feb 2004 B2
6695673 Stadbauer et al. Feb 2004 B1
6699096 Christopherson et al. Mar 2004 B2
6699097 Rudell et al. Mar 2004 B2
6742613 Erlich et al. Jun 2004 B2
6758718 Morris Jul 2004 B1
6767272 Santarsiero Jul 2004 B2
6881120 Janes Apr 2005 B1
6926581 Lynders et al. Aug 2005 B2
6945843 Motosko Sep 2005 B1
7021988 Patton Apr 2006 B2
7090619 Miyamaru et al. Aug 2006 B2
7115014 McGrath et al. Oct 2006 B2
7121917 Hardouin et al. Oct 2006 B2
7234988 Patton Jun 2007 B2
7234990 Leonov et al. Jun 2007 B2
7329166 Hatting et al. Feb 2008 B2
7367863 Fosbenner et al. May 2008 B2
7387558 Swisher et al. Jun 2008 B2
7442109 Fosbenner et al. Oct 2008 B2
7448935 Trageser et al. Nov 2008 B2
7479055 Saeki Jan 2009 B2
7524231 Matheny et al. Apr 2009 B2
7537506 de la Torre May 2009 B2
7568962 Amadio et al. Aug 2009 B2
7698841 Vivat Apr 2010 B1
7722430 Hippely May 2010 B2
7744442 Rettberg et al. Jun 2010 B2
7762867 Agostini et al. Jul 2010 B2
7811152 McEntyre et al. Oct 2010 B2
7833081 Hippely et al. Nov 2010 B2
7837532 Reuter Nov 2010 B2
7841920 Rettberg Nov 2010 B2
8517790 Rehkemper et al. Aug 2013 B2
D691675 Kim et al. Oct 2013 S
8562386 Carlson et al. Oct 2013 B2
8568191 Rehkemper et al. Oct 2013 B2
20020077026 Li Jun 2002 A1
20050003733 Ritter et al. Jan 2005 A1
20050181703 Kuralt Aug 2005 A1
20070254554 Ellman et al. Nov 2007 A1
20080050999 Jang et al. Feb 2008 A1
20080318491 Ishibashi et al. Dec 2008 A1
20090029165 Goda Jan 2009 A1
20090036020 Nelson et al. Feb 2009 A1
20090075557 Arriola et al. Mar 2009 A1
20090093185 Maxim Apr 2009 A1
20090197504 Hsu Aug 2009 A1
20090233518 Hui Sep 2009 A1
20090298384 Connolly Dec 2009 A1
20100023148 Komorous-Towey et al. Jan 2010 A1
20100130096 Baarman et al. May 2010 A1
20100144239 Eck et al. Jun 2010 A1
20100167623 Eyzaguirre et al. Jul 2010 A1
20110104980 Bond May 2011 A1
20110189923 Bruder Aug 2011 A1
Foreign Referenced Citations (3)
Number Date Country
202010001555 Apr 2010 DE
224973 Nov 1924 GB
2011056243 May 2011 WO
Non-Patent Literature Citations (1)
Entry
UK Search Report issued on Jul. 13, 2012 in UK Application No. GB1207386.2.
Related Publications (1)
Number Date Country
20120276809 A1 Nov 2012 US
Provisional Applications (1)
Number Date Country
61518167 Apr 2011 US