The present invention relates generally to a toy water squirt gun and, more particularly, to a pressurized toy water squirt gun having a primary squirt gun and one or more detachable water weapons.
Pressurized squirt guns that eject water from a pressurized reservoir are generally known in the art. For example, U.S. Pat. No. 5,074,437 to D'Andrade et al. discloses a toy water gun that operates by releasing water from a water reservoir that is pressurized by air. The reservoir is pressurized using a manually operated air pump. When a trigger is operated, water is released under pressure from the reservoir through an outlet nozzle.
A number of additional water-based toy guns or other water-based toy weapons exist in the prior art. For example, U.S. Pat. No. 4,854,480 to Shindo discloses a squirt gun having a hollow housing and having an expandable rubber tube disposed within the hollow housing. A trigger squeezes or pinches a portion of the rubber tube against the housing to close off an outlet nozzle. Pressurized water is released from the rubber tube upon rotating the trigger, which releases the squeezed portion of the tube so that water may be dispensed from the outlet nozzle. Another water-based toy weapon can be found in U.S. Pat. No. 5,354,225 to Hix, which discloses a toy water grenade. A housing includes a fluid chamber surrounded by a pneumatic chamber. A piston member is arranged for sliding movement along the reservoir chamber upon release of a pin. Upon movement of the piston, exit ports are exposed and water is expelled from the fluid chamber.
In one aspect, the invention is directed to a toy water gun system comprising a primary water gun having a housing, a pressurizable reservoir, an outlet nozzle in flow communication with the reservoir, and an actuating trigger, with the primary toy water gun adapted to discharge an output stream of water through the outlet nozzle in response to actuation of the trigger. The housing of the primary water gun includes a first receiving area and a second receiving area, each of the first and second receiving areas having an output port, the output port of the first receiving area in flow communication with the reservoir via a first conduit, the output port of the second receiving area in flow communication with the reservoir via a second conduit. A first valve is positioned to control flow through the first conduit, and a second valve is positioned to control flow through the second conduit. A first detachable water toy is sized for mounting to the housing at the first receiving area and is arranged to receive water from the reservoir via the output port of the first receiving area in response to operation of the first valve. A second detachable water toy is sized for mounting to the housing at the second receiving area and is arranged to receive water from the reservoir via the output port of the second receiving area in response to operation of the second valve. The first and second detachable water toys are selectively removable from the primary water gun for use.
In further accordance with a preferred embodiment, the first detachable water toy includes a pressurizable reservoir, an outlet nozzle in communication with the reservoir, and an actuating trigger, with the first detachable water toy adapted to discharge an output stream of water through the outlet nozzle of the first detachable water toy in response to actuation of the trigger of the first detachable water toy. The first receiving area may include a spring-loaded plunger positioned to releasably retained the first detachable water toy in the first receiving area. Still preferably, the first detachable water toy includes an inlet port positioned to receive water from the output port of the first receiving area, and the spring-loaded plunger is adapted to maintain the inlet port of the first water toy in flow communication with the output port of the first receiving area when the first detectable water toy is disposed in the first receiving area.
The second detachable water toy may comprise a sponge, and the sponge may be throwable. Preferably, the second receiving area may include a first panel disposed adjacent the output port of the first receiving area and a second panel spaced away from the first panel, with the first and second panels cooperating to releasably retain the second detachable water toy in the second receiving area. The first and second panels may be shaped to correspond to the shape of the second detachable water toy.
The first and second valves may be spring-loaded, and the trigger of the primary water gun may be slidably mounted to the housing. The primary water gun may include a primary valve disposed adjacent the outlet nozzle, the primary valve operatively connected to trigger by a connecting rod.
In another aspect of the invention, a primary water gun includes a housing, a reservoir, an outlet nozzle in flow communication with the reservoir, an actuating trigger, and an outlet valve disposed adjacent the outlet nozzle and responsive to actuation of the trigger, with the primary toy water gun adapted to discharge an output stream of water through the outlet nozzle in response to actuation of the trigger. The housing of the primary water gun further includes a first receiving area and a second receiving area, with each of the first and second receiving areas having an output port. The output port of the first receiving area is in flow communication with the reservoir via a first conduit, and the output port of the second receiving area is in flow communication with the reservoir via a second conduit. A first valve is positioned to control flow through the first conduit, and a second valve is positioned to control flow through the second conduit. A first detachable water toy is removably attached to the first receiving area and includes an expandable bladder, a nozzle in communication with the bladder, and an actuating trigger, with the first detachable water toy adapted to discharge an output stream of water through the nozzle in response to actuation of the trigger. The bladder of the first detachable water toy is arranged to receive water through the nozzle from the reservoir of the primary water gun via the output port of the first receiving area in response to operation of the first valve. A second detachable water toy is removably attached to the second receiving area, with the second detachable water toy arranged to receive water from the reservoir via the output port of the second receiving area in response to operation of the second valve. Accordingly, the first and second detachable water toys are selectively removable from the primary water gun for use.
In accordance with a still further aspect of the invention, a toy water gun system includes a primary water gun having a housing, a reservoir, an outlet nozzle in flow communication with the reservoir, an actuating trigger, and an outlet valve disposed adjacent the outlet nozzle and responsive to actuation of the trigger. The primary water gun is adapted to discharge an output stream of water through the outlet nozzle in response to actuation of the trigger. The outlet valve includes a trip mechanism shiftable between a first position in which flow through the outlet nozzle is prevented, a second position in which flow through the outlet nozzle is permitted, and a third position different from the first position in which flow through the outlet nozzle is prevented, with the trip mechanism being shiftable between the first, second and third positions in response to movement of the trigger between a first position, a second position, and a third position, respectively. The housing of the primary water gun further includes a first receiving area and a second receiving area, each of the first and second receiving areas having an output port, the output port of the first receiving area in flow communication with the reservoir via a first conduit, the output port of the second receiving area in flow communication with the reservoir via a second conduit. A first valve is positioned to control flow through the first conduit, and a second valve is positioned to control flow through the second conduit. A first detachable water toy is removably attached to the first receiving area and includes an expandable bladder, a nozzle in communication with the bladder, and an actuating trigger, with the first detachable water toy adapted to discharge an output stream of water through the nozzle in response to actuation of the trigger. The bladder of the first detachable water toy is arranged to receive water through the nozzle from the reservoir of the primary water gun via the output port of the first receiving area in response to operation of the first valve. A spring-loaded plunger is positioned to bias at least a portion of the first detachable water toy into engagement with the housing. A second detachable water toy is removably attached to the second receiving area, the second detachable water toy arranged to receive water from the reservoir via the output port of the second receiving area in response to operation of the second valve. The first and second detachable water toys are selectively removable from the primary water gun for use.
In accordance with yet another aspect in the invention, a toy gun system comprises a primary toy gun having a housing, a pressurizable reservoir, a launch station in flow communication with the reservoir, an actuating trigger, and an actuator arranged to release pressure from the reservoir through the launch station, the launch station adapted to hold and release a foam projectile in response to actuation of the actuator. The housing of the primary toy gun further includes a receiving area, the receiving area having an output port in flow communication with the reservoir via a conduit. A valve is positioned to control flow through the first conduit, and a detachable toy gun is removably attached to the first receiving area. The detachable toy gun includes a pressurizable reservoir, a launch station in flow communication with the reservoir, and an actuator arranged to release pressure from the reservoir through the launch station. The launch station is adapted to hold and release a foam projectile in response to actuation of the actuator. The detachable toy including an input port arranged to route pressure from the output port of the receiving are to the reservoir of the detachable toy gun. The detachable toy is selectively operable to launch the foam projectile when the detachable toy is in the receiving area and when the detachable toy is removed from the receiving area.
Although the following text sets forth a detailed description of an exemplary embodiment of the invention, it should be understood that the legal scope of the invention is defined by the words of the claims set forth at the end of this patent. The detailed description is to be construed as exemplary only and does not describe every possible embodiment of the invention since describing every possible embodiment would be impractical, if not impossible. Numerous alternative embodiments could be implemented, using either current technology or technology developed after the filing date of this patent, which would still fall within the scope of the claims defining the invention.
It should also be understood that, unless a term is expressly defined in this patent using the sentence “As used herein, the term ‘______’ is hereby defined to mean . . . ” or a similar sentence, there is no intent to limit the meaning of that term, either expressly or by implication, beyond its plain or ordinary meaning, and such term should not be interpreted to be limited in scope based on any statement made in any section of this patent (other than the language of the claims). To the extent that any term recited in the claims at the end of this patent is referred to in this patent in a manner consistent with a single meaning, that is done for sake of clarity only so as to not confuse the reader, and it is not intended that such claim term by limited, by implication or otherwise, to that single meaning. Finally, unless a claim element is defined by reciting the word “means” and a function without the recital of any structure, it is not intended that the scope of any claim element be interpreted based on the application of 35 U.S.C. § 112, sixth paragraph.
Referring now to
As shown in
Referring to
Similarly, the second receiving area 30 is in flow communication with the reservoir 16 via a conduit 42. The conduit 42 includes an output port 44, and a valve 46 having a switch or handle 48. Again, the valve 46 may be a rotary valve or any other suitable valve. Preferably, a rotary spring 50 is provided adjacent to the handle 48 in order to maintain the valve 46 in a closed position. It will be understood that, upon operation of the valve 36 using the handle 38, that output port 34 may be placed in flow communication with the reservoir 16 via the conduit 32. Similarly, it will be understood that upon operation of the valve 46 using the handle 48, that the output port 44 may be placed in flow communication with the reservoir 16 via the conduit 42.
The toy water gun system 10 further includes a first detachable water toy 52 and a second detachable water toy 54. The first detachable water toy 52, in accordance with the disclosed example, takes the form of a water pistol. The water toy 52 is preferably sized to be releasably mounted to the first receiving area 28 of the primary water gun 12. Similarly, the water toy 54 is preferably sized to be releasably mounted to the second receiving area 30 of the primary water gun 12. The second water toy 54, in accordance with the disclosed example, preferably is constructed of an absorbent material, such as a sponge 56 covered by a water permeable cover 58. Alternatively, both water toys 52 and 54 may be water pistols, both may be absorbent sponges, or one or both may take the form of any other suitable water toy.
The first water toy 52 includes a nozzle 60 (best visible in
Referring to
Referring still to
Referring now to
Referring now to
Referring now to
Referring now to
Referring now to
Consequently, in accordance with the disclosed example, the trip assembly 84 serves to define three possible positions for the rotary valve 94. These positions include a first position shown in
Referring now to
Referring now to
To operate the pressurizing mechanism 64, a user (not shown), grips the handle 66 and slides the handle 66 generally to the right when viewing
When a user desires to operate the toy water gun system 10, the user may choose between the three water toys shown. Using the pressurizing mechanism 64 as described above, the appropriate pressure head is applied by reciprocating the handle 66 and forcing water into the system until the reservoir 16 is suitably pressurized. In the event the user wishes to eject water from the outlet nozzle 18 of the primary water gun 12, the user simply actuates the trigger 24 as described above.
The user may also desire to detach and use a selected one of the detachable water toys 52 and/or 54. In a preferred mode of operation, the user will first suitably pressurize the reservoir 16 using the pressurizing mechanism 64 as described above. In the event the user desires to operate the second water toy 54, the user manipulates the spring-loaded valve 46 disposed generally adjacent to the second receiving area 30, which allows pressurized water contained within the conduit 42 to flow out of the output port 44 and into the second water toy 54, thus soaking the second water toy 54. As can be seen in
When the user desires to use the first water toy 52, the first detachable water toy 52 should be placed in the first receiving area 28, with the plunger 29 engaging the recess 31 on the rearward end 33 of the first detachable water toy 52, and with the forward end 35 disposed in the recess 37. Accordingly, the plunger 29 serves to bias the second detachable water toy 52 forwardly, such that the forward end 35 is pressed into the recess 37 so that the toy 54 may be suitably retained in the first receiving area 28. It will be noted that the nozzle 60 of the first detachable water toy 52 will be in flow communication with the output port 34 of the conduit 32. Further, when the forward end 35 of the first detachable water toy 52 is in contact with the recess 37 under the biasing force of the plunger 29, the check valve will permit flow communication between the output port 34, the nozzle 60, and the reservoir 62. When the user desires to fill the reservoir 62, assuming the reservoir 16 has been suitably pressurized using the pressurizing mechanism 64 as described above, the user simply manipulates the handle 38 so as to open the valve 36, which routes pressurized water through the output port 34 of the first receiving area 28, through the nozzle 60 of the first detachable water toy 52, and into the reservoir 62 contained within the first detachable water toy 52. When a quantity of pressurized water is contained within the reservoir 62, the user closes the rotary valve 36 by simply releasing the handle 38. The first detachable water toy 52 is then ready to be removed from the first receiving area 28 in order to be used.
When the user desires to use the first detachable water toy 52, the user may rotate the first detachable water toy 52 from the position shown in
It will be understood that the toy water gun system 10 may include additional or fewer detachable water toys as desired. The number and location of the internal conduits may be readily adaptable to route pressurized water to the desired number of detachable water toys. It will also be understood that the water toy 52 may be suitably adapted to be fired while still attached to the primary water gun 12 at the first receiving station 28. For example, the water toy 52 may include one port for filling the reservoir inside the water toy 52, and a separate port or outlet nozzle to be used when firing the water toy 52 in a conventional manner.
The teachings of the present invention may also be applied to an air-operated toy gun system, in which a primary toy gun and/or one or more of the detachable toys are air-operated and are arranged to shoot, by way of example rather than limitation, soft foam projectiles using a blast of compressed air. In the event the toy gun system is arranged for air operation, each of the toy guns (i.e., the primary toy gun, the first detachable toy gun and the second detachable toy gun) each may be provided with a suitable launching station of type that receives and holds a soft foam projectile in preparation for launch. Further, one or more of the toy guns may include an air tank that may be pressurized to hold compressed air for launching the projectiles. One example of a toy gun having an air tank that may be pressurized to launch foam projectiles is illustrated and described in U.S. Pat. No. 5,515,837, entitled “Safety Nozzle for Multi-Shot Projectile Shooting Air Gun” which issued on May 14, 1996, and which is hereby expressly incorporated by reference herein in its entirety.
When such a toy gun system is provided, it will be understood that the above-described internal conduits will route pressurized air to the appropriate output ports at their corresponding receiving areas, such that an air-operated detachable toy gun disposed in an appropriate one of the receiving areas may be pressurized via the output port at that receiving area using a corresponding one of the valves. Additionally, and air-operated toy gun disposed in one of the receiving areas may be arranged to be fired while still disposed in one of the receiving areas. In such an exemplary form, the air operated toy gun may be pressurized through and inlet port on the toy gun, and may include a second outlet port disposed adjacent a launching station of the foam projectile. A one way valve responsive to air pressure may be provided such that the detachable air-operated toy gun may be automatically pressurized when the primary toy gun is pressurized. The projectile of the detachable toy gun may be launched using a trigger attached to the detachable toy gun, or by actuating the trigger on the primary toy gun.
The preceding text sets forth a detailed description of numerous different embodiments of the invention, it should be understood that the legal scope of the invention is defined by the words of the claims set forth at the end of this patent. The detailed description is to be construed as exemplary only and does not describe every possible embodiment of the invention since describing every possible embodiment would be impractical, if not impossible. Numerous alternative embodiments could be implemented, using either current technology or technology developed after the filing date of this patent, which would still fall within the scope of the claims defining the invention.