This disclosure relates to a trace information acquisition system and a method for acquiring trace information, and in particular to a system and method for acquiring trace information of a product manufactured through a plurality of stages.
In view of product quality maintenance and improvement, the construction of a traceability system capable of tracing manufacturing processes of a product manufactured through a plurality of stages, or a system for acquiring trace information of a product, is in demand recently. Such a traceability technique for products is disclosed in, for example, Japanese Unexamined Patent Application Publication Nos. 2007-249326 and 2005-346280.
According to Japanese Unexamined Patent Application Publication No. 2007-249326, trace information covering a plurality of sequential processes is acquired by storing information for associating the respective processes and using the stored process-to-process association information. The traceability technique according to Japanese Patent Application Publication No. 2005-346280 is configured to store a pointer that indicates where product trace information is stored in a process chain including a series of processes and to use the stored pointer to acquire the product trace information.
The traceability used in Japanese Unexamined Patent Application Publication Nos. 2007-249326 and 2005-346280 requires storage of information about the process-to-process associations and the trace information pointer indicating where the trace information is stored. In other words, the absence of the process-to-process association information or equivalents results in failed acquisition of product trace information such as trace information about the quality of an in-process product in production processes and trace information about energy consumed in production processes of a product. Such process-to-process association information is sometimes not stored in fields not using a common infrastructure, for example, in different supply chains or in a range spreading across supply chains, and it is, therefore, impossible to acquire the trace information including the trace information about the quality of the in-process product in the production processes and trace information about energy in the production processes of the product. In short, trace information including the trace information about the quality of an in-process product in production processes and trace information about energy in production processes of a product cannot be acquired in the fields not sharing an infrastructure.
A non-limiting feature of the disclosure is to provide a trace information acquisition system capable of acquiring trace information, such as trace information regarding the quality of an in-process product in production processes and trace information regarding energy in production processes of a product, even in the fields not sharing an infrastructure.
It is another aspect of the present disclosure to provide a method for acquiring trace information, such as trace information regarding the quality of an in-process product in production processes and trace information regarding energy in production processes of a product, even in the fields not sharing an infrastructure.
It is yet another aspect of the present disclosure to provide a trace information acquisition apparatus capable of acquiring trace information, such as trace information regarding the quality of an in-process product in production processes and trace information regarding energy in production processes of a product, even in the fields not sharing an infrastructure.
It is yet another aspect of the present disclosure to provide a trace information acquisition program capable of acquiring trace information, such as trace information regarding the quality of an in-process product in production processes and trace information regarding energy in production processes of a product, even in the fields not sharing an infrastructure.
It is yet another aspect of the present disclosure to provide a recording medium storing the trace information acquisition program capable of acquiring trace information, such as trace information regarding the quality of an in-process product in production processes and trace information regarding energy in production processes of a product, even in the fields not sharing an infrastructure.
A trace information acquisition system, according to an aspect of the present disclosure, is provided for acquiring trace information regarding a product manufactured through a plurality of stages includes a storage unit (storage) that stores event data sets regarding events performed on the product; and a acquisition unit (acquirer) that acquires trace information from the event data sets stored by the storage unit. The event data sets stored at the plurality of stages have a common data format.
The event data sets regarding the events performed on the product in the plurality of stages have a common data format, thereby enabling acquisition of trace information of the product based on the stored event data sets. This makes it possible to acquire the trace information of a product manufactured through a plurality of stages irrespective of infrastructures. For example, the acquisition of the trace information of the product manufactured through the plurality of stages can be done without storing data required to associate the stages with one another. Even if, therefore, the product is manufactured in fields not sharing an infrastructure, trace information can be acquired.
Each of the event data sets may include object data related to the event, personnel data related to the event, time data related to the event, positional data related to the event and status data related to the event.
The storage unit stores event activity data sets that are business activity information required to be stored upon event occurrence, and the acquisition unit acquires trace information from the event activity data sets stored by the storage unit.
The acquisition unit includes an extraction unit (extractor) that extracts a plurality of event data sets associated with one another from a plurality of the event data sets stored by the storage unit.
In addition, the associated event data sets extracted from the plurality of the event data sets by the extraction unit are event data sets with the same time data related to the events.
According to another aspect of the disclosure, the storage unit stores the event data sets using an RFID (Radio Frequency Identification) tag.
In the trace information acquisition system for acquiring trace information regarding a product manufactured through a plurality of stages, the storage unit stores event data sets regarding the quality of an in-process product in production processes, and the acquisition unit acquires trace information regarding the quality of the in-process product in the production processes from the event data sets stored by the storage unit.
Each of the event data sets includes storage ID data related to a storage event for storing quality information of the in-process product in the production processes, personnel data related to the storage event for storing the quality information, time data related to the storage event for storing the quality information, positional data related to the storage event for storing the quality information, and status data related to the storage event for storing the quality information.
The storage unit stores event activity data sets that are business activity information required to be stored upon occurrence of the event for storing the quality information, and the acquisition unit acquires trace information regarding the quality of the in-process product in the production processes from the event activity data sets stored by the storage unit.
In addition, the associated event data sets extracted from the plurality of the event data sets by the extraction unit may be event data sets with the same positional data.
Furthermore, in the trace information acquisition system for acquiring trace information regarding a product manufactured through a plurality of stages, the storage unit stores event data sets regarding energy in production processes of a product, and the acquisition unit acquires trace information regarding energy in the production processes of the product from the event data sets stored by the storage unit.
Each of the event data sets includes measuring instrument data that including information about a measuring instrument used to measure energy, personnel data related to a person who measures the energy, time data related to time for measuring the energy, positional data related to a location where the energy is measured, and status data related to a status in energy measurement operations.
In another aspect of the present disclosure, a method is provided for acquiring trace information regarding a product manufactured through a plurality of stages includes storing event data sets regarding events performed on the product, the event data sets stored at the plurality of stages having a common data format; and acquiring trace information from the event data sets stored in the storing step.
The method for acquiring trace information regarding a product manufactured through a plurality of stages, event data sets regarding the quality of an in-process product in production processes are stored in the storing step, the event data sets stored at the plurality of stages having a common data format, and trace information regarding the quality of the in-process product in the production processes is acquired in the acquiring step from the event data sets stored in the storing step.
In addition, the method for acquiring trace information regarding a product manufactured through a plurality of stages can be configured so that event data sets regarding energy in production processes of a product are stored in the storing step, the event data sets stored at the plurality of stages having a common data format, and trace information regarding energy in the production processes of the product is acquired in the acquiring step from the event data sets stored in the storing step.
In yet another aspect of the present disclosure, the trace information acquisition apparatus for acquiring trace information regarding a product manufactured through a plurality of stages includes a storage section (storage) that stores event data sets regarding events performed on the product, the event data sets stored at the plurality of stages having a common data format; and an acquisition section (acquirer) that acquires trace information from the event data sets stored by the storage section.
Preferably, in the trace information acquisition apparatus for acquiring trace information regarding a product manufactured through a plurality of stages, the storage section stores event data sets regarding the quality of an in-process product in production processes, the event data sets stored at the plurality of stages having a common data format, and the acquisition section acquires trace information regarding the quality of the in-process product in the production processes from the event data sets stored by the storage section.
In addition, the trace information acquisition apparatus for acquiring trace information regarding a product manufactured through a plurality of stages can be configured so that the storage section stores event data sets regarding energy in production processes of a product, the event data sets stored at the plurality of stages having a common data format, and the acquisition section acquires trace information regarding energy in the production processes of the product from the event data sets stored by the storage section.
In yet another aspect of the present disclosure, a non-transitory computer readable medium is provided for storing a computer program for a trace information acquisition program that causes a computer to execute, in order to acquire trace information regarding a product manufactured through a plurality of stages storing event data sets regarding events performed on the product, the event data sets stored at the plurality of stages having a common data format, and acquiring trace information from the event data sets stored by the storage unit.
Preferably, the trace information acquisition program causes a computer to execute, in order to acquire trace information regarding a product manufactured through a plurality of stages storing event data sets regarding the quality of an in-process product in production processes, the event data sets stored at the plurality of stages having a common data format, and acquiring trace information regarding the quality of the in-process product in the production processes from the event data sets stored by the storage unit.
In addition, the trace information acquisition program may cause a computer to execute, in order to acquire trace information regarding a product manufactured through a plurality of stages storing event data sets regarding energy in production processes of a product, the event data sets stored at the plurality of stages having a common data format, and an acquiring trace information regarding energy in the production processes of the product from the event data sets stored by the storage unit.
The recording medium comprises a computer-readable recording medium that stores the aforementioned trace information acquisition program.
According to the trace information acquisition system, the event data sets related to events performed on a product are stored at a plurality of stages have a common data format, thereby enabling acquisition of trace information of the product based the stored event data sets. This makes it possible to acquire the trace information of the product manufactured through the plurality of stages irrespective of infrastructures. For example, the acquisition of the trace information of the product manufactured through the plurality of stages can be done without storing data required to associate the stages with one another. Even if, therefore, the product is manufactured in fields not sharing an infrastructure, trace information, such as trace information regarding the quality of an in-process product in production processes and trace information regarding energy in production processes of a product, can be acquired.
In addition, the method for acquiring trace information, trace information acquisition apparatus, and trace information acquisition program and recording medium can also acquire trace information of a product manufactured through a plurality of stages irrespective of infrastructures. For example, the acquisition of the trace information of the product manufactured through the plurality of stages can be done without storing data required to associate the stages with one another. Even if, therefore, the product is manufactured in fields not sharing an infrastructure, trace information, such as trace information regarding the quality of an in-process product in production processes and trace information regarding energy in production processes of a product, can be acquired.
With reference to the drawings, descriptions will be made about embodiments of the present disclosure. At first, event data used in a trace information acquisition system according to one embodiment of the disclosure will be described.
Next, an event activity data set 13 will be described. The event activity data set 13 refers to business activity information required to be stored upon event occurrence, such as product quantity data and part consumption data. The event activity data set 13 is composed of data items attributing to events at each field. For example, a product quantity data set 14a of the event activity data set 13 includes “product ID” attributing to the object data and “time” attributing to the time data. “Case ID”, “number of conforming products” and “number of discarded products” are on-site input/acquisition information. A carry in/out data set 14b includes “gate ID” attributing to the positional data, “container ID” attributing to the object data, “time” attributing to the time data, and “carrier” being the on-site input/acquisition information. A operation daily report data set 14c includes “operator ID” attributing to the personnel data, “time” attributing to the time data, and “daily report” being the on-site input/acquisition information. An environmental data set 14d includes “facility ID” attributing to the positional data, “time” attributing to the time data, and “temperature” and “humidity” being the on-site input/acquisition information. A power quantity data set 14e includes “power meter ID” attributing to the positional data, “time” attributing the time data, and “electric power” being the on-site input/acquisition information. The event activity data set is associated with event data set with a minimum of data items to achieve a 1:1 correlation therebetween. In the event activity data sets in
The servers 22 and 23 can be implemented in one server. The connecting line 26 is not limited to wired communication, but can be partially or entirely implemented by wireless communication. The four computers 24a to 24d are used herein, but the number of the computers is not limited to four and one or more computers can be used. The trace information acquisition system does not need to include the sensing devices 25a, 25b and RFID tag system 27, or can include two or more, respectively.
A description will be now made about a method for storing event data about events performed on a product.
At first, data is captured from the sensing device (device) 25b through the device setting interface of the computer 24c (step S11 in
The event data master herein is used to associate the data of the event data with the contents of the event data. For example, personnel data is stored in the form of simple symbols, such as numerals and letters of alphabet. The personnel master in the event data master stores the association between the symbol and information, such as the name of an actual operator and the department the operator belongs to. The status master, positional master and object master are also structured in the same manner. The table master is available for various databases of product event data, part event data and so on. Note that the time data is represented simply by year, month, day and time and does not need to associate with other information, and therefore there is no master for time data.
Next, a method for storing data-transfer type event data with an existing system will be described. The method for storing data-transfer type event data refers to a method for storing event data that is converted from data retrieved from a storage device in an existing system such as the server 23 as shown in the system configuration of
Firstly, the server retrieves data from the production-management related server 23, which constructs an existing system (S21). Secondly, event data and event activity data are created by the interface logic of the existing system interface of the server 22 (S22, S23). Thirdly, databases of the event data master stored in the server 22 are updated (S24).
Next, a method for storing data-transfer type event data with external storage data will be described. The computer 24d captures data through the RFID tag system 27 (S31). Specifically, external-system storage data is captured from the RFID tag 28b attached on a product 29 by the reader/writer 28a and is input into the computer 24d. Then, event data and event activity data are created by the interface logic of an external storage data interface of the computer 24d (S32, S33). Subsequently, databases of the event data master stored in the server 22 are updated (S34).
In the above-mentioned manner, event data and event activity data are created with various types of data, i.e., the event-sensing type data obtained by the devices, data-transfer type data obtained from the existing system, and data-transfer type data obtained from the external storage data and are stored to update the databases.
As shown in
A method for acquiring trace information of a product with event data will be described.
Next, based on the extracted product event data sets, more specifically, based on time data and positional (location) data in the event data sets, simultaneously occurring parts events, that is, part events with the same time data and positional data are extracted (S43). In the extraction, the extraction unit extracts, from the plurality of event data sets, event data sets whose time data represent the same point of time as associated event data sets. Similarly, based on the extracted product event data sets, a part/case/placement event is extracted (S44), and then a part/case event is extracted from the extracted part/case/placement event (S45), and a part event is extracted from the extracted part/case event (S46). After the information of the part event extracted at S43 and the part/case/placement event, part/case event and part event extracted at S44 to S46, respectively, are validated based on the process master and the BOM information of the BOM master (S47), a procurement event, which is a related event, is extracted (S48). Note that the validation step performed with the process master and BOM master is optional.
In addition, after the extraction of the product event information at S42, a packaging/shipment event is extracted together with the part event (S49), and then a shipment event related to product shipment is extracted (S50). Similarly, after the extraction of the product event information at S42, a dismantled product event is extracted together with the part event (S51), and then a reuse event for the dismantled product is extracted (S52).
In the above-described manner, trace information, more specifically, information about relevant parts to the product, part information and information about the case, shipment and reuse are acquired from the event data sets. According to the trace information acquisition system, the event data sets about events performed on a product in a plurality of stages have a common data format, thereby enabling acquisition of trace information of the product from the stored event data sets. This allows the acquisition of trace information regarding a product manufactured through a plurality of stages irrespective of infrastructures. For example, the acquisition of the trace information of a product manufactured through a plurality of stages can take place without storing data used to associate the stages with one another. Even if, therefore, the product is manufactured in fields not sharing an infrastructure, trace information of the product can be acquired.
The trace information acquisition system stores a process to which a product to be traced is subjected in its life cycle as event data defining the start and end of the process. Simultaneously, the trace information acquisition system stores event data regarding part/component consumption and packaging and shipment that have taken place at the same place and time in the life cycle process of the product. The simultaneity of the events can create associations among the parts and components used to manufacture the product and also associations with a parts/components receiving process and a product shipment process, thereby acquiring trace information regarding from procurement of the parts and components to production and shipment of the product. In addition to the production processes, the simultaneity can create associations among the venous events including reclamation, dismantlement, reuse and recycling. Even for the venous events, the event data sets stored in a common data format at a plurality of stages make it possible to acquire trace information.
There are a product life cycle footprint and a carbon footprint as trace information representation. A product leaves traces of its existence across procurement, production, use, reclamation, dismantlement, reuse and recycling, and the traces and tracks are referred to as a product life cycle footprint. Records of amounts of CO2 (carbon dioxide) emitted in respective traces result in the tracking of CO2 emissions in the product life cycle footprint, which is referred to as a carbon footprint.
The method for acquiring trace information according to the disclosure is to acquire trace information of a product manufactured through a plurality of stages and includes a step of storing event data sets about events performed on the product, the event data sets stored at the plurality of stages having a common data format, and a step of acquiring trace information from the event data sets stored in the storing step.
A trace information acquisition apparatus according to the disclosure is to acquire trace information regarding a product manufactured through a plurality of stages and includes a storage section storing event data sets regarding events performed on the product, the event data sets stored at the plurality of stages having a common data format, and an acquisition section acquiring trace information from the event data sets stored by the storage section. The trace information acquisition apparatus corresponds to the server 22 in
A trace information acquisition program causes a computer, in order to acquire trace information regarding a product manufactured through a plurality of stages, to function as storage unit storing event data sets about events performed on the product, the event data sets stored at the plurality of stages having a common data format, and acquisition unit acquiring trace information from the event data sets stored by the storage unit.
A recording medium according to the disclosure is a computer-readable recording medium storing the trace information acquisition program.
A description will be made about the embodiment of the trace information acquisition system according to the present disclosure.
In addition, installation involves an “installation machine” event whose trigger specifies “operation start” and an “installation machine” event whose trigger specifies “operation completion”. As shown in
After the acquisition of the pieces of trace information, the trace information pieces are associated with each other as shown by a dotted line in
As shown in
Further description about the event data in manufacturing processes will be now made as another embodiment.
The trace information acquisition system can acquire trace information regarding a product manufactured through a plurality of stages irrespective of infrastructures. For example, the acquisition of the trace information of the product manufactured through the plurality of stages can take place without storing data required to associate the stages with one another. Even if, therefore, the product is manufactured in fields not sharing an infrastructure, trace information of the product can be acquired.
The method for acquiring trace information, the trace information acquisition apparatus, and the trace information acquisition program and recording medium can also acquire trace information of a product manufactured through a plurality of stages irrespective of infrastructures. For example, the acquisition of trace information of a product manufactured through a plurality of stages can take place without storing data required to associate the stages with one another. Even if, therefore, the product is manufactured in fields not sharing an infrastructure, trace information of the product can be acquired.
Another embodiment of the present disclosure will be described. First, a description will be made about event data used in the trace information acquisition system according to the embodiment of the disclosure.
Next, an event activity data set 33 will be described. The event activity data 33 refers to business activity information required to be stored upon occurrence of storage events for storing quality information of an in-process product in production processes. The event activity data set 33 is composed of data items attributing to events at each field. For example, a process condition data set 34 of the event activity data set 33 includes “storage ID” attributing to storage ID data and “time” attributing to time data. “Value 1”, “value 2” and “value 3” are on-site input/acquisition information. The event activity data set is linked with event data set with a minimum of data items to achieve a 1:1 correlation therebetween. In the event activity data set in
A description will be now made about a method for storing event data about the quality of a product in production processes by referring
At first, data is captured from the sensing device (device) 25b through the device setting interface of the computer 24c (step S11 in
The event data master herein is used to associate the data of the event data with the contents of the event data. For example, personnel data is stored in the form of simple symbols, such as numerals and letters of alphabet. The personnel master in the event data master stores the association between the symbol and information, such as the name of an actual operator and the department the operator belongs to. The status master, positional master and storage ID master are also structured in the same manner. The table master is available for various databases of process condition event data, process condition and state monitoring event data, operation storage event data, and so on. Note that the time data is represented simply by year, month, day and time and does not need to associate with other information, and therefore there is no master for time data.
The same method for storing data-transfer type event data with an existing system is adopted in this embodiment, and therefore the descriptions thereof will not be reiterated.
As shown in
A method for acquiring trace information regarding the quality of an in-process product in production processes with event data will be described.
Next, based on the extracted product event data sets, for example, based on personnel data, time data and positional (location) data in the event data sets, simultaneously occurring events involving one and the same person, that is, quality information storage events with the same personnel data, the same time data and the same positional data are extracted (S63). In the extraction, the extraction unit extracts, from the plurality of event data sets, event data sets having the same positional data as associated event data sets. In this manner, trace information regarding the quality of the in-process product in the production processes is acquired from the event data sets (S64).
According to the trace information acquisition system, the event data sets about the quality of an in-process product in a production processes are stored in a common data format at a plurality of stages, thereby enabling acquisition of trace information regarding the quality of the in-process product in the production processes based on the stored event data sets. This allows the acquisition of trace information regarding the quality of the in-process product, which is manufactured through the plurality of stages, in the production processes irrespective of infrastructures. For example, the acquisition of the trace information regarding the quality of a product, which is manufactured through a plurality of stages, in a production processes can take place without storing data required to associate the stages with one another. Even if, therefore, the product is manufactured in fields not sharing an infrastructure, trace information regarding the quality of the in-process product in the production processes can be acquired.
The trace information acquisition system may be configured to store a process to which a product to be traced is subjected in its life cycle as event data defining the start and end of the process and quality information of the product in the production process, and stores the both of them in the form of an event data set and an event activity data set. More specifically, as shown in
More specifically, with agreement between the personnel data 35b describing an operator and the personnel data 32b describing a data recorder, between the positional data 35d describing equipment and the positional data 32d describing equipment, and between the time data 35c describing time and the time data 32c describing time, the product data 35a in the production process and the storage ID data 32a related to the product quality can be associated with each other. Accordingly, the stored quality information containing data of the same person, the same location and the same time in the production processes of the product can be extracted as product quality trace information. Similarly, quality trace information can be acquired for venous events, such as reclamation, dismantlement, reuse and recycling.
There are a product life cycle footprint and a carbon footprint as trace information representation. A product leaves traces of its existence across procurement, production, use, reclamation, dismantlement, reuse and recycling, and the traces and tracks are referred to as a product life cycle footprint. Records of amounts of CO2 (carbon dioxide) emitted in respective traces result in the tracking of CO2 emissions in the product life cycle footprint, which is referred to as a carbon footprint.
The method for acquiring trace information according to the disclosure is to acquire trace information regarding a product manufactured through a plurality of stages and includes a step of storing event data sets about the quality of an in-process product in production processes, the event data sets stored at the plurality of stages having a common data format, and an step of acquiring trace information regarding the quality of the product in the production processes from the event data sets stored in the storage step.
A trace information acquisition apparatus according to the disclosure is to acquire trace information regarding a product manufactured through a plurality of stages and includes a storage section storing event data sets regarding the quality of an in-process product in production processes, the event data sets stored at the plurality of stages having a common data format, and an acquisition section acquiring trace information regarding the quality of the in-process product in the production processes from the event data sets stored by the storage section. The trace information acquisition apparatus corresponds to the server 22 in
A trace information acquisition program according to the disclosure causes a computer, in order to acquire trace information regarding the quality of an in-process product, which is manufactured through a plurality of stages, in production processes to function as storage unit storing event data sets regarding the quality of the product in the production processes, the event data sets stored at the plurality of stages having a common data format, and acquisition unit acquiring trace information regarding the quality of the product in the production processes from the event data sets stored by the storage unit.
A recording medium according to the disclosure is a computer-readable recording medium storing the trace information acquisition program.
A description will be made about another embodiment of the trace information acquisition system according to the present disclosure.
Specifically, the “condition setting” event with the trigger specifying “set” stores storage ID data of “setting condition”, personnel data of “operator A”, positional data of “installation machine 4”, time data of “8:50”, and status data of “normal end” as an event data set. This means that the operator A properly set conditions to the installation machine 4 at 8:50. Similarly, the “state monitoring” event with the trigger specifying “monitoring” stores storage ID data of “monitoring results”, personnel data of “operator A”, positional data of “installation machine 4”, time data of “9:15”, and status data of “normal end” as an event data set. This means that the operator A properly finished storing the monitoring results with the installation machine 4 at 9:15. Similarly, the “memo” event with the trigger specifying “inspection completion” stores storage ID data of “memo”, personnel data of “operator A”, positional data of “installation machine 4”, time data of “10:00”, and status data of “normal end” as an event data set. This means that the operator A properly finished storing the memo with the installation machine 4 at 10:00. Similarly, the “inspection storage” event with the trigger specifying “inspection completion” stores storage ID data of “inspection storage”, personnel data of “operator B”, positional data of “installation machine 4”, time data of “7:00”, status data of “normal end” as an event data set. This means that the operator B properly finished the inspection storage with the installation machine 4 at 7:00.
In addition, the production processes of the product involve an “installation machine” event whose trigger specifies “operation start” and an “installation machine” event whose trigger specifies “operation completion”. As shown in
After the acquisition of the pieces of trace information, the trace information pieces regarding the quality of the in-process product in the production processes are associated with one another as shown by solid lines in
The additional associations can be created using the event data sets of the production process of the product. Specifically, the event data sets involved in the quality storage are associated with the event data sets involved in the product production via “installation machine 4” of the positional data in
The trace information acquisition system can acquire trace information regarding the quality of the in-process product, which is manufactured through a plurality of stages, in the production processes irrespective of infrastructures. For example, the acquisition of the trace information regarding the quality of the in-process product, which is manufactured through the plurality of stages, in the production processes can take place without storing data required to associate the stages with one another. Even if, therefore, the product is manufactured in fields not sharing an infrastructure, trace information regarding the quality of the in-process product in the production processes can be acquired.
The method for acquiring trace information, the trace information acquisition apparatus, and the trace information acquisition program and recording medium can also acquire trace information regarding the quality of the in-process product, which is manufactured through a plurality of stages, in the production processes irrespective of infrastructures. For example, the acquisition of the trace information regarding the quality of the in-process product, which is manufactured through the plurality of stages, in the production processes can take place without storing data required to associate the stages with one another. Even if, therefore, the product is manufactured in fields not sharing an infrastructure, trace information regarding the quality of the in-process product in the production processes can be acquired.
Yet another embodiment of the present disclosure will be described. First, a description will be made about event data used in the trace information acquisition system according to the embodiment of the present disclosure.
The event data set regarding the power consumed for a product in a production process, in other words, the event data about the power consumption monitoring event for monitoring the power consumed for a product in a production process can be associated with the event data set about the production process of the product. Specifically, product (object) data 44a regarding a product to be sensed, personnel data 44b regarding a person, time data 44c regarding time, positional data 44d regarding a position (location), and status data 44e regarding a status included in a product production process event data set 43 are configured to associate with the measuring instrument data 42a, personnel data 42b, time data 42c, positional data 42d and status data 42e in the event data set 41. More specifically, with agreement between the personnel data 44b describing an operator and the personnel data 42b describing a data recorder, between the positional data 44d describing equipment and the positional data 42d describing equipment, and between the time data 44c describing time and the time data 42c describing time, the product data 44a in a production process of a product and the measuring instrument data 42a in the production process of the product can be associated with each other. Using the associated event data sets specifying the same person, the same location and the same time in the production processes of the product, trace information regarding the power consumption in the production processes of the product.
Referring back to the aforementioned
Referring back to
At first, data is captured from the sensing device (device) 25b through the device setting interface of the computer 24c (step S11 in
The event data master herein is used to associate the data of the event data with the contents of the event data. For example, personnel data is stored in the form of simple symbols, such as numerals and letters of alphabet. The personnel master in the event data master stores the association between the symbol and information, such as the name of an actual operator and the department the operator belongs to. The status master, positional master and measuring instrument master are also structured in the same manner. The table master is available for various databases. Note that the time data is represented simply by year, month, day and time and does not need to associate with other information, and therefore there is no master for time data.
The same method for storing data-transfer type event data with an existing system is adopted in this embodiment, and therefore the descriptions thereof will not be reiterated.
A method for acquiring trace information regarding power consumption in production processes of a product by using event data will be described.
Based on the extracted power consumption monitoring event data sets, the consumed power is calculated (S73). The consumed power can be obtained by, for example, subtracting the measuring instrument data in an event data with later time data from the measuring instrument data in an event data with earlier time data.
In the aforementioned manner, trace information about energy in production processes of a product, or trace information regarding electric power consumption in this description, is acquired from the event data sets (S74).
According to the trace information acquisition system, the event data sets about power consumption in production processes of a product are stored in a common data format at a plurality of stages, thereby enabling acquisition of trace information regarding the power consumption in the production processes of the product based on the stored event data sets. This allows the acquisition of trace information regarding the power consumption in the production processes of the product manufactured through the plurality of stages irrespective of infrastructures. For example, the acquisition of the trace information regarding the power consumption in the production processes of the product manufactured through the plurality of stages can take place without storing data required to associate the stages with one another. Even if, therefore, the product is manufactured in fields not sharing an infrastructure, trace information regarding power consumption in the production processes of the product can be acquired.
The method for acquiring trace information according to the disclosure is to acquire trace information regarding a product manufactured through a plurality of stages and includes a step of storing event data sets about energy in production processes of a product, the event data sets stored at the plurality of stages having a common data format, and a step of acquiring trace information about energy in the production processes of the product from the event data stored in the storing step.
A trace information acquisition apparatus according to the disclosure is to acquire trace information regarding a product manufactured through a plurality of stages and includes a storage section storing event data sets regarding energy in production processes of a product, the event data sets stored at the plurality of stages having a common data format, and an acquisition section acquiring trace information about energy in the production processes of the product from the event data sets stored by the storage section. The trace information acquisition apparatus corresponds to the server 22 in
A trace information acquisition program according to the disclosure causes a computer, in order to acquire trace information regarding a product manufacture through a plurality of stages, to function as storage unit storing event data sets regarding energy in production processes of a product, the event data sets stored at the plurality of stages having a common data format, and acquisition unit acquiring trace information regarding energy in the production processes of the product from the event data sets stored by the storage unit.
A recording medium according to the disclosure is a computer-readable recording medium storing the trace information acquisition program.
A description will be made about yet another embodiment of the trace information acquisition system according to the present disclosure.
Specifically, the “starting time” event with the trigger specifying “timer” stores measuring instrument data of “measuring instrument 5”, personnel data of “equipment supervisor A”, positional data of “installation machine 4”, time data of “9:00”, and status data of “100 KW” as an event data set. This means that the equipment supervisor A started operations with the installation machine 4 in which the measuring instrument 5 indicates 100 KW at 9:00. Similarly, the “ending time” event with the trigger specifying “timer” stores measuring instrument data of “measuring instrument 5”, personnel data of “equipment supervisor A”, positional data of “installation machine 4”, time data of “9:45”, and status data of “200 KW” as an event data set. This means that the equipment supervisor A finished the operations with the installation machine 4 in which the measuring instrument 5 indicates 200 KW at 9:45.
In addition, the operations for installing the product involve an “installation machine” event whose trigger specifies “start operations” and an “installation machine” event whose trigger specifies “finish operations”. As shown in
After the acquisition of the pieces of trace information, the trace information pieces related to power consumption in production processes of a product are associated with one another as shown by solid arrows in
The additional associations can be created using the event data sets of the production process of the product. Specifically, the event data sets involved in the power measurement are associated with the event data sets involved in the installation via “installation machine 4” of the positional data in
The trace information acquisition system can acquire trace information regarding energy in the production processes of the product manufactured through a plurality of stages irrespective of infrastructures. For example, the acquisition of the trace information regarding energy in the production processes of the product manufactured through the plurality of stages can take place without storing data required to associate the stages with one another. Even if, therefore, the product is manufactured in fields not sharing an infrastructure, trace information regarding energy in the production processes of the product can be acquired.
The method for acquiring trace information, the trace information acquisition apparatus, and the trace information acquisition program and recording medium can also acquire trace information regarding energy in production processes of a product manufactured through a plurality of stages irrespective of infrastructures. For example, the acquisition of the trace information regarding energy in the production processes of the product manufactured through the plurality of stages can take place without storing data required to associate the stages with one another. Even if, therefore, the product is manufactured in fields not sharing an infrastructure, trace information regarding energy in the production processes of the product can be acquired.
The above-described embodiment deals with electric power as energy; however, the present disclosure is not limited thereto and can be applied to cases using gas, thermal power, hydropower and so on.
The trace information is acquired from the event data and event activity data in the embodiments; however, the present disclosure is not limited thereto and can be configured to store only event data and acquire trace information from the stored event data.
The foregoing has described the embodiment of the present disclosure by referring to the drawings. However, the invention should not be limited to the illustrated embodiment. It should be appreciated that various modifications and changes can be made to the illustrated embodiment within the scope of the appended claims and their equivalents.
The trace information acquisition system, the method for acquiring trace information, the trace information acquisition apparatus, and the trace information acquisition program and recording medium according to the disclosure are effectively used to properly acquire trace information in environments not sharing an infrastructure.
Number | Date | Country | Kind |
---|---|---|---|
2008-263121 | Oct 2008 | JP | national |
2008-263122 | Oct 2008 | JP | national |
2008-263123 | Oct 2008 | JP | national |
This is a continuation application of PCT/JP2009/067072 filed Sep. 30, 2009, designating the United States of America, the disclosure of which, including the specification, drawings and claims, is incorporated by reference in its entirety. The disclosures of Japanese Patent Application Nos. 2008-263121 filed on Oct. 9, 2008; 2008-263122 filed on Oct. 9, 2008; and 2008-263123 filed on Oct. 9, 2008, including the specifications, drawings, and claims are expressly incorporated herein by reference in their entireties.
Number | Date | Country | |
---|---|---|---|
Parent | PCT/JP2009/067072 | Sep 2009 | US |
Child | 13076866 | US |