This application is the National Stage of PCT/CH2016/000028 filed on Feb. 10, 2016, which claims priority under 35 U.S.C. § 119 of European Application No. 15405012.4 filed on Feb. 18, 2015, the disclosure of which is incorporated by reference. The international application under POT article 21(2) was not published in English.
The present invention relates to tracer ammunition.
Tracer ammunition is often used in military exercises and operations in order to allow hit optimization for the shooter and/or the operations management. Generally, pyrotechnic combustible sets are used as tracers; most of these are toxic.
Tracer ammunition of the stated type, based on magnesium and strontium peroxide, is known from the U.S. Pat. No. 4,597,810.
Pyrotechnic mixtures are disadvantageous for numerous reasons: Their use often causes wildfires and/or severe injuries (burns); heavy metal additives in pyrotechnics furthermore cause lasting environmental damage; during transport, they are classified as hazardous goods and require special transport means; they are relatively complicated and costly in terms of their production; acquisition of the raw materials is cost-intensive. The significant change in the external ballistics of this type of projectiles as the result of burn-off of the pyrotechnic sets and the related changes in the center of gravity are particularly disadvantageous. As a result, the actual task of tracer ammunition is not fulfilled, namely an increase in the hit accuracy of the ordnance ammunition by means of supplementing it with tracer ammunition is lost, to a great extent.
Accordingly, numerous alternatives were used, with greater or lesser success, such as chemiluminescence (U.S. Pat. No. 6,497,181), battery-operated LEDs, light-emitting diodes (US-A1-2004/0099173), and HLA—hybrid luminescence from photoluminescence and/or triboluminescence materials (U.S. Pat. No. 8,402,896).
Infrared tracer ammunition is known from U.S. Pat. No. 8,007,608, which contains a pellet composed of a “tracer ignition composition,” which contains boron and potassium perchlorate as an oxygen carrier and a luminous “tracer composition.” The latter consists predominantly of magnesium and carbon-containing polymers, and serves as a combustible. Ammunition with oxygen carriers has the disadvantage mentioned initially, that this ammunition also continues to burn in the target until the integrated oxygen carrier has been used up, and this can lead to very severe injuries and is furthermore a general fire hazard.
Furthermore, a projectile having an axial bore is known from US H 489, which projectile serves for a simple spectral analysis, in that oxygen is supplied to a generously dimensioned pyrotechnic mixture through the longitudinal bore, into the rear region, and produces a correspondingly large flame there. This is supposed to make the presence of chlorine compounds, mustard gas, phosgene, tear gas, etc. detectable by means of color changes. This projectile also continues to burn when it hits the ground and/or an object.
It is the task of the invention to create tracer ammunition that guarantees reliable trajectory tracking (tracing) and nevertheless is less of a fire hazard. In particular, it is supposed to extinguish in the target when it hits, and is not supposed to cause any environmental damage caused by toxic components. The external ballistics of a projectile equipped with a “tracer” are not supposed to differ from a usual standard projectile, or only differ slightly. In this regard, no oxygen carriers or pyrotechnic mixtures are supposed to be used.
This is accomplished by means of the characteristics according to the invention. Surprisingly, a mixture of light metal or a light-metal alloy and at least one carbon-containing substrate ignites when a projectile according to the invention, filled into a cartridge, is fired. The oxygen required for combustion is supplied to the combustible mixture solely by means of a suitable design of the projectile, during its flight.
There is no oxygen-carrier contained in the combustible mixture inside the projectile. In particular, the oxygen needed to burn up the mixture of light metal or light metal alloy (in any sort of solid form), with at least one carbon containing substrate, enters the projectile with the outside air, due to the projectile's special layout.
Advantageous further developments of the object of the invention are discussed below.
Combustible mixtures according to an embodiment, on the basis of magnesium and titanium, were tested experimentally.
The carbon-containing substrate according to an embodiment increases the burning duration of the light-metal alloy and thereby allows pursuit of the trace of a projectile over its entire range of use.
The tear-off edge according to an embodiment leads to intensive eddy formation in the combustible region of the projectile and thereby supplies the combustion chamber with air oxygen.
Suitable embodiments configure the combustion chamber as a dead-end bore having a diameter of 2.0 to 9.0 mm and a length of 2.0 to 11.0, wherein the combustible mixture and the center of gravity of the projectile must be taken into consideration when selecting the dimensions.
The tracer ammunition according to an embodiment is aerodynamically advantageous, but relatively expensive in terms of its production.
The diffuser according to an embodiment acts as such in the supersonic range and allows an increase in the diameter of the central longitudinal bore, which increase is desirable for reasons of production technology.
A sleeve-shaped configuration of the combustible is advantageous, because in this way, its burn-off can be controlled within certain limits; this is particularly true if the combustible is concentrically layered in sandwich-like manner.
The dimensions according to an embodiment in which the longitudinal bore has a diameter of 0.7 mm to 3.0 mm, the turbulence bore has a diameter of 2.0 mm to 6.0 mm, and the combustion chamber has a diameter of 6.0 mm to 11.0 mm are coordinated with small-caliber ammunition.
Transverse bores according to further embodiments are suitable for projectiles that fly relatively slowly—up to about Mach 1.1.
Transverse bores that are offset from one another in pairs, by a few millimeters, increase the reliability of burn-off of the combustible mixture, because they compensate the effects of Taylor vortex flow.
The use of transverse bores is particularly advantageous in the case of medium-caliber ammunition.
In the following, exemplary embodiments of the invention will be explained using drawings.
These show:
In
The combustion chamber 5 has a sharp-edged bore that serves as a tear-off edge 7 and generates an eddy formation during flight, which supplies the combustible 5′ with air oxygen.
The projectile 1 is placed into a cartridge in usual manner; in a partial section, the cartridge 9 is shown with its shot charge (propellant charge) 10.
This embodiment has the great advantage that as compared with mass-produced ordnance ammunition, only minimal changes at the rear of the projectile are required, by means of installation of a combustion chamber with combustible 5′ and sealing disk 6.
Light metals such as magnesium or titanium serve as a combustible; in order to increase the surface area, they are inserted in the form of powder or chips, together with a carbon-containing substrate, such as cotton, graphite fibers or nitrocellulose. The light metal or its alloy can also be processed in the form of powder, foam or films, together with a substrate in the same or a different form, to produce a “combustible pill.” In order to achieve a sufficient lighting effect over a shot distance of 300 m, a filling amount of 30 mg magnesium and 30 mg carbon fibers, for example, is sufficient.
The typical pressure P produced when firing the charge (shot charge/propellant charge) in a small-caliber ammunition with caliber 8.5 mm amounts to 350 to 500 MPa. The gas temperature ranges from 2500° C. to 3000° C. The usual firing velocity amounts to 850 m/s to 950 m/s. Spin-stabilized small-caliber ammunition is known to rotate at speeds of rotation up to 250,000 l/min.
It is astonishing that the aforementioned relatively low physical values are sufficient for initiation of the combustible and that the combustible mixture burns during the entire flight of the projectile—without an inherent oxygen carrier—and provides sufficient light for target tracking.
In the subsequent figures, the same parts are provided with the same reference symbols.
In
The interior ventilation of the projectile according to
In
While the exemplary embodiments according to
The example according to
The exemplary embodiments described above show that numerous design embodiments are possible, which take optimization of the projectile ballistics and, in particular, the change in center of gravity of the projectile, which changes during flight, into account. It has been proven advantageous, in this connection, that the external supply of air oxygen requires only small amounts of combustible and that these amounts can fundamentally be introduced at the location of the center of gravity.
The object of the invention prevents severe burn injuries (wound ballistics!) by extinguishing the flames when oxygen is absent in the target, and this results in significant progress as compared with convention tracer sets.—Unfortunately, it has been found that ammunition with an integrated oxygen carrier, particularly pyrotechnics, continues to burn, even in the human body, until the oxygen is used up, and this leads to very severe injuries.
Number | Date | Country | Kind |
---|---|---|---|
15405012 | Feb 2015 | EP | regional |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/CH2016/000028 | 2/10/2016 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2016/131158 | 8/25/2016 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
581946 | Semple | May 1897 | A |
1301380 | Buckingham | Apr 1919 | A |
3088857 | Matusewicz | May 1963 | A |
3726495 | Gawlick | Apr 1973 | A |
3983818 | Ciccone | Oct 1976 | A |
4094711 | Ramnarace | Jun 1978 | A |
4130061 | Boggs | Dec 1978 | A |
4142466 | Ballreich | Mar 1979 | A |
4301732 | Van Sickle | Nov 1981 | A |
4528911 | DePhillipo | Jul 1985 | A |
4597810 | Trickel et al. | Jul 1986 | A |
5760329 | Baum | Jun 1998 | A |
6497181 | Manole et al. | Dec 2002 | B1 |
8007608 | Herbage et al. | Aug 2011 | B1 |
8402896 | Hollerman et al. | Mar 2013 | B1 |
9739584 | Chua | Aug 2017 | B2 |
20040099173 | Rector et al. | May 2004 | A1 |
20070017409 | Mansfield | Jan 2007 | A1 |
Number | Date | Country |
---|---|---|
45 152 | Oct 1909 | CH |
19 66 993 | Apr 1976 | DE |
102 32 441 | Feb 2004 | DE |
1 090 895 | Apr 2001 | EP |
Entry |
---|
International Search Report of PCT/CH2016/000028, dated May 30, 2017. |
United States Statutory Invention Registration H489, Brodman et al., Chemical Agent Detecting Projectile, Jul. 5, 1998. |
Number | Date | Country | |
---|---|---|---|
20180023932 A1 | Jan 2018 | US |