Track assembly

Information

  • Patent Grant
  • 11040638
  • Patent Number
    11,040,638
  • Date Filed
    Tuesday, April 30, 2019
    5 years ago
  • Date Issued
    Tuesday, June 22, 2021
    3 years ago
Abstract
A track assembly includes a track and a support member. The support member may include a slider and/or an electrical connector. The slider may be configured to move longitudinally to move the electrical connector between a first rotational position and/or a second rotational position. In the first position of the electrical connector, the electrical connector may be in electrical contact with the track. In the second position of the electrical connector, the electrical connector may not be in electrical contact with the track. The electrical connector may include a cam, and/or the cam may be configured to contact the slider. Longitudinal movement of the slider may rotate the cam to move the electrical connector between the first rotational position and/or the second rotational position. The slider may include a first ramped portion and/or a second ramped portion that may be configured to contact the slider.
Description
TECHNICAL FIELD

The present disclosure generally relates to track assemblies, including track assemblies that may be used in connection with vehicles and that may include electrical connectors.


BACKGROUND

This background description is set forth below for the purpose of providing context only. Therefore, any aspect of this background description, to the extent that it does not otherwise qualify as prior art, is neither expressly nor impliedly admitted as prior art against the instant disclosure.


Some track assemblies may be relatively complex to use and/or to assemble. For example, track assemblies may involve a complex process and may include many different steps and components. Some track assemblies may not be configured for removably connecting a component or seat to a track.


There is a desire for solutions/options that minimize or eliminate one or more challenges or shortcomings of track assemblies. The foregoing discussion is intended only to illustrate examples of the present field and should not be taken as a disavowal of scope.


SUMMARY

The foregoing and other aspects, features, details, utilities, and/or advantages of embodiments of the present disclosure will be apparent from reading the following description, and from reviewing the accompanying drawings.


In embodiments, a track assembly may include a track and/or a support member. The support member may include a slider and/or an electrical connector. The slider may be configured to move longitudinally to move the electrical connector between a first rotational position and/or a second rotational position. In the first position of the electrical connector, the electrical connector may be in electrical contact with the track. In the second position of the electrical connector, the electrical connector may not be in electrical contact with the track. The electrical connector may include a cam, and/or the cam may be configured to contact the slider. Longitudinal movement of the slider may rotate the cam to move the electrical connector between the first rotational position and/or the second rotational position. The slider may include a first ramped portion and/or a second ramped portion that may be configured to contact the slider.


With embodiments, the second ramped portion may be configured to rotate the cam in a first rotational direction when the slider may move in a first direction. The first ramped portion may be configured to rotate the cam in a second rotational direction when the slider may move in a second direction. The first ramped portion may be substantially curved; and/or the first ramped portion may be configured to rotate the cam at least 90 degrees in the second rotational direction. The second ramped portion may be configured to rotate the cam at least 90 degrees in the first rotational direction. In the first position of the electrical connector, the electrical connector may restrict, at least to some degree, vertical movement of the support member relative to the track. In the second position of the electrical connector, the electrical connector may not substantially restrict vertical movement of the support member relative to the track. The track may include a track conductor that may extend substantially longitudinally along the track. In the first position of the electrical connector, the electrical connector may be configured to electrically connect the support member to the track conductor. The electrical connector may include a body and/or a flange. The body may be substantially hollow, and/or the flange may include an aperture.


The electrical connector may include a contact that may be disposed at least partially in the aperture. The electrical connector may include a biasing member, and/or the biasing member may be configured to bias the contact away from the electrical connector. The support member may be configured to move in a longitudinal direction along the track. The contact may be configured to selectively electrically connect to a track conductor of the track.


A track assembly may include a track and/or a support member. The support member may be configured for selective connection with the track. The support member may include a slider and/or an electrical connector. Displacement of the slider may move the electrical connector between a first position and/or a second position. In the first position of the electrical connector, the electrical connector may be in electrical contact with the track. In the second position of the electrical connector, the electrical connector may not be in electrical contact with the track. The electrical connector may include a flange. The flange may be substantially parallel to a longitudinal direction of the track when the electrical connector is in the second position. The flange may be substantially perpendicular to the longitudinal direction of the track when the electrical connector is in the first position. In the first position of the electrical connector, the support member may be configured to move in the longitudinal direction along the track, and/or vertical movement of the support member may be restricted. In the second position of the electrical connector, the support member may be configured to move in the longitudinal direction along the track; and/or the electrical connector may not substantially restrict vertical movement of the support member. The support member may include a first lever and/or a second lever. Displacement of the slider may move the first lever between a first position and/or a second position. Displacement of the slider may move the second lever between a first position and/or a second position. The first lever may be configured to limit longitudinal movement of the support member along the track. The second lever may be configured to limit longitudinal movement and/or vertical movement of the support member along the track.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a perspective view of a portion of an embodiment of a support member of a track assembly according to teachings of the present disclosure.



FIG. 2 is a perspective view of a portion of an embodiment of a support member of a track assembly according to teachings of the present disclosure.



FIG. 3 is an exploded perspective view of an embodiment of an electrical connector according to teachings of the present disclosure.



FIG. 4 is a sectional view of an embodiment of a track according to teachings of the present disclosure.



FIGS. 5 and 6 are sectional views of embodiments of track assemblies according to teachings of the present disclosure.



FIG. 7 is a perspective view of embodiments of a track and a conductor according to teachings of the present disclosure.



FIG. 8 is a top sectional view of an embodiment of a support member including a slider according to teachings of the present disclosure.



FIGS. 9A and 9B are top views of embodiments of a channel and a second channel of a slider according to teachings of the present disclosure.



FIG. 10A is a perspective view of portions of an embodiment of a support member of a track assembly according to teachings of the present disclosure.



FIG. 10B is a perspective view of portions of an embodiment of a support member of the track assembly according to teachings of the present disclosure.



FIG. 10C is a perspective view of an embodiment of an electrical connector of a support member according to teachings of the present disclosure.



FIG. 11 is a sectional view of portions of an embodiment of a track assembly according to teachings of the present disclosure.





DETAILED DESCRIPTION

Reference will now be made in detail to embodiments of the present disclosure, examples of which are described herein and illustrated in the accompanying drawings. While the present disclosure will be described in conjunction with embodiments and/or examples, it will be understood that they are not intended to limit the present disclosure to these embodiments and/or examples. On the contrary, the present disclosure is intended to cover alternatives, modifications, and equivalents.


In embodiments, according to FIGS. 1 and 2, the track assembly 1 includes a support member 3 configured to be connected to and/or support a removable component 8 (e.g., a seat, a table, etc.) that may be disposed in a vehicle (see, e.g., FIG. 5). As generally illustrated in FIGS. 5 and 6, a track assembly 1 may include a track 2 that may be connected to a mounting surface 9 (e.g., the floor) of a vehicle. The track assembly 1 may include a support member 3 that may be configured to be selectively connected with a track 2 that may be disposed on the mounting surface 9 of a vehicle. The support member 3 may be configured to mechanically connect to the track 2 and/or electrically connect to the track 2. The track 2 may be configured to supply power to the support member 3 and/or a removable component 8 that may be connected to and/or supported by the support member 3.


With embodiments, a support member 3 may include an electrical connector 4. The electrical connector may be configured to selectively electrically connect and/or disconnect the support member 3 and/or the component 8 with the track 2. The track 2 may be connected, at least indirectly (e.g., via an electrical circuit/controller 44), to a power supply 43 (e.g., a battery and/or generator) of a vehicle, such as generally illustrated in FIG. 7.


In embodiments, such as generally illustrated in FIG. 2, the track assembly 1 may include a first lever 26a that may be movable between a first position and a second position. When the first lever 26a is in the first position, the first lever 26a may be configured to limit movement of the support member 3 in the longitudinal direction along the track 2. When the first lever 26a is in the second position, the first lever 26a may not substantially limit movement of the support member 3 in the longitudinal direction along the track 2.


With embodiments, such as generally illustrated in FIGS. 1 and 2, a track assembly 1 may include one or more second levers 26b that may be movable between a first position and a second position. When a second lever 26b is in the first position, the second lever 26b may be configured to limit vertical movement of the support member 3 in the vertical direction relative to the track 2. When the second lever 26b is in the second position, the second lever 26b may not substantially limit movement of the support member 3 in the vertical direction relative to the track 2. The first lever 26a may be configured to engage the track 2 in a first rotational direction, and/or the one or more second levers 26b may be configured to engage the track 2 in a second rotational direction. The first rotational direction may be opposite the second rotational direction. The support member 3 may include one or more windows 10, 14 (e.g., apertures) that the first lever 26a, the second lever 26b, and/or an electrical connector 4 may be configured to pass through when engaging and/or disengaging the first track 2 and/or the insert 42.


With embodiments, the support member 3 may include an upper portion 6 and/or a lower portion 7. The support member 3 may include one or more various materials. For example and without limitation, the support member 3 may include metal and/or plastic. The lower portion 7 may include apertures 7A that may at least partially receive the first lever 26a and/or the second lever 26b.


In embodiments, such as generally illustrated in FIGS. 3, 5, and 6, the support member 3 may include an electrical connector 4. The electrical connector 4 may include a body 11 that may include one or more of a variety of shapes, sizes, and/or configurations. For example, the body 11 may be substantially tubular, cylindrical, and/or hollow. The electrical connector 4 may include a flange 12 that may extend perpendicular to the body 11. The electrical connector 4 may be configured to rotate about an axis that may be substantially parallel to the Z-axis (e.g., substantially vertical). The 4A axis of the electrical connector 4 may be substantially fixed relative to the support member 3. The flange 12 may include a first side 15A and/or a second side 15B. The electrical connector 4 may include a contact 16 that may be configured to move along the first side 15A and/or the second side 15B in a direction substantially parallel to the flange 12. The electrical connector 4 may include a biasing member 17 (e.g., a spring) that may bias the contact 16 in a position where the contact 16 may protrude from an aperture 13 in the flange 12. The electrical connector 4 may include a spacer 18 that may be disposed between the biasing member 17 and the contact 16. The spacer 18 may contact the biasing member 17 and/or the contact 16. The contact 16 may be connected to a conductor 19 that may extend (e.g., substantially vertically) within and/or at least partially through the body 11 of the electrical connector 4. The conductor 19 may electrically connect the contact 16 to the support member 3 and/or a component 8 connected to the support member 3.


With embodiments, the electrical connector 4 may include a connection portion 21 that may connect the electrical connector 4 to a cam 50. The connection portion 21 may include one or more flexible legs that may be selectively connected to the cam 50. The connection portion 21 may include a planar surface 20 that may be at least partially connected the cam 50. The cam 50 may be connected at or about an end (e.g., an upper end) of the body 11 and/or may be connected to the connection portion 21, such as to retain the electrical connector 4 relative to the support member 3. In embodiments, the cam 50 may be formed with the body 11 as a monolithic component, such as a single, unitary component/piece (see, e.g., FIG. 10C).


With embodiments, such as generally illustrated in FIG. 4, the track 2 may include a bottom wall 30, two side walls 31, and/or two wings 32. The side walls 31 and/or the wings 32 may be disposed such that a gap 34 may be present between the side walls 31 and/or the wings 32. The track 2 may include one or more of a variety of materials. For example and without limitation, the track 2 may be formed of an extruded metal and/or composite metal. The wings 32 may each include a chamfered portion 35 that may be substantially ramp-shaped. At least one of the side walls 31 may include a groove 37 that may be configured to retain an insulator 38 and/or a track conductor 40. The insulator 38 may include one or more of a variety of materials. For example and without limitation, the insulator 38 may include a non-electrically conductive material (e.g., rubber, plastic, etc.). The track conductor 40 may include one or more of a variety of materials. For example and without limitation, the track conductor 40 may include any type of electrically conductive material (e.g., copper, stainless steel, etc.). The track conductor 40 may be connected to an electrical circuit 44 of the vehicle via a conductive wire 41 (see, e.g., FIG. 7). The track assembly 1 may include an insert 42 that may be configured to receive and/or engage with the first lever 26a, and/or may facilitate in limiting movement of the support member 3 in the longitudinal direction. For example and without limitation, in a first position of the first lever 26a, the first lever 26a may engage the insert 42 to restrict and/or substantially prevent longitudinal movement of the support member 3 relative to the track 2 and/or the insert 42.


In embodiments, such as generally illustrated in FIGS. 1, 2, 5, 6, and 8, the support member 3 may include a slider 22. The slider 22 may be configured to move the electrical connector 4, the first lever 26a, and/or the one or more second levers 26b. For example and without limitation, movement of the slider 22, such as in the X-direction, may move (e.g., rotate) the electrical connector 4, the first lever 26a, and/or the second levers 26b. The slider 22 may be configured to unlock and/or lock the first lever 26a, the second levers 26b, and/or the electrical connector 4 with respect to the track 2. The slider 22 may be configured to move the first lever 26a such that the first lever 26a may selectively limit movement of the support member 3 in the X-direction. The slider 22 may be configured to move the second lever 26b such that the second levers 26b may selectively limit movement of the support member 3 in the Z-direction (e.g., for removing the support member 3 from the track 2).


With embodiments, the slider 22 may be disposed at and/or connected to the upper portion 6 of the support member 3 (e.g., the slider 22 may be disposed on an upper face of the support member 3). The slider 22 may move in the X-direction relative to the support member 3. The slider 22 may include one or more hooks 23 that may be configured to engage an actuator (see, e.g., FIGS. 1, 2, 10A, and 10B). The actuator (e.g., a strap, cable, lever, etc.) may be configured to move the slider 22 in the X-direction.


In embodiments, such as generally illustrated in FIGS. 8, 10A, 10B, and 10C, the slider may include an aperture 24 that may be configured to receive at least a portion of the electrical connector 4. The aperture 24 may include one or more of a variety of shapes, sizes, and/or configurations. For example and without limitation, the aperture 24 may be substantially oval-shaped and/or oblong. The body 11 of the electrical connector 4 may be disposed at least partially in the aperture 24. The slider 22 may include a first ramped portion 5 and a second ramped portion 5′ that may extend from an edge of the slider 22. The ramped portions 5, 5′ may include one or more of a variety of shapes, sizes, and/or configurations. For example and without limitation, the first ramped portion 5 may be substantially curved and/or rounded; and/or the second ramped portion 5′ may be substantially planar. The ramped portions 5, 5′ may be configured to contact and/or rotate the cam 50 that may be connected to the electrical connector 4.


In embodiments, the electrical connector 4 may include a first/engaged position and a second/disengaged position. In the first position of the electrical connector 4, the flange 12 may be substantially perpendicular to the longitudinal direction of the track 2 (e.g., the flange 12 may extend substantially in the Y-direction). When the electrical connector 4 is in the first position, the flange 12 may extend transversely (e.g., in the Y-direction) from the lower portion 7 of the support member 3 and/or the flange 12 may extend through an aperture 7A of the lower portion 7 and may contact and/or engage the track conductor 40. In the first position of the electrical connector 4, at least a portion of the electrical connector 4 may be disposed below at least a portion of a wing 32 of the track 2 such that the electrical connector 4 may, at least to some degree, limit movement of the support member 3 in the Z-direction. In the second position of the electrical connector 4, the flange 12 may be substantially parallel to the longitudinal direction of the track 2. When the electrical connector 4 is in the second position, the flange 12 may not extend through the aperture 7A of the lower portion 7 of the support member 3, the electrical connector 4 may not engage and/or contact the track conductor 40, and/or the electrical connector may not substantially restrict movement of the support member 3 relative to the track 2. When moving between the first position and the second position, the electrical connector 4 may, for example and without limitation, move such that the flange 12 may rotate about 90 degrees or more or less.


With embodiments, if the slider 22 is moved in a first X-direction, the second ramped portion 5′ may contact the cam 50 which may rotate the electrical connector 4 in a first rotational direction, such as from the first position toward the second position. If the slider 22 is moved in a second X-direction, the first ramped portion 5 may contact the cam 50, which may rotate the electrical connector 4 in a second rotational direction, such as from the second position toward the first position. The slider 22 and/or the support member 3 may include a biasing member 52 that may bias the slider 22 toward the second X-direction, which may bias the cam 50 in the second rotational direction. If a force applied to move the slider 22 is greater than the force of the biasing member 52, the slider 22 may slide in the first X-direction, and the ramped portion 5 may rotate the cam 50 such that electrical connector 4 moves from the first position to the second position.


With embodiments, the slider 22 may be connected to and/or in contact with, at least in some positions, the first lever 26a, the second lever 26b, and/or the electrical connector 4. The first lever 26a and/or the second lever 26b may rotate about an axis 29 that may be aligned substantially in an X-direction. The first lever 26a may include a first protrusion 27a that may be configured to engage the slider 22, and/or the second lever 26b may include a second protrusion 27b that may be configured to engage the slider 22. The slider 22 may include a first channel 28a and/or a second channel 28b that may be configured to contact the first protrusion 27a and/or the second protrusion 27b, respectively. The first channel 28a and/or the second channel 28b may, for example and without limitation, include apertures, grooves, slots, and/or apertures. Movement of the slider 22 may cause contact between the first channel 28a and the first protrusion 27a, and/or the second channel 28b and the second protrusion 27b, which may rotate the first lever 26a and/or the second lever 26b. If the slider 22 is moved in the X-direction, the first channel 28a may contact the first protrusion 27a, which may cause the first lever 26a to rotate between a first rotational position (e.g., an engaged position) and a second rotational position (e.g. a disengaged position). If the slider 22 is moved in the longitudinal direction, the second channel 28b may contact the second protrusion 27b which may cause the second lever(s) 26b to rotate between a first rotational position (e.g., an engaged position) and a second rotational position (e.g., a disengaged position).


In embodiments, the slider 22 may include a first slider position, a second slider position, and/or a third slider position. If the slider 22 is in the first slider position, the first lever 26a may restrict movement of the support member 3 relative to the track 2 in the longitudinal direction (X-direction), and/or the second lever(s) 26b may restrict movement of the support member 3 in the vertical direction (Z-direction) relative to the track 2. If the slider 22 is in the second slider position, the first lever 26a may not substantially restrict movement of the support member 3 relative to the track 2 in the longitudinal direction (X-direction), and/or the second lever(s) 26b may restrict movement of the support member 3 in the vertical direction (Z-direction) relative to the track 2. If the slider 22 is in the third slider position, the first lever 26a may not substantially restrict movement of the support member 3 relative to the track 2 in the longitudinal direction (X-direction), and/or the second lever(s) 26b may not substantially restrict movement of the support member 3 in the vertical direction (Z-direction) relative to the track 2 (e.g., the support member 3 may be removed from the track 2).


With embodiments, if the slider 22 is in the first slider position, the electrical connector 4 may be in a first rotational position and/or may electrically connect the support member 3 to the track 2. If the slider 22 is in the second slider position and/or the third slider position, the electrical connector 4 may be in a second rotational position and/or may electrically connect the support member 3 to the track 2.


With embodiments, such as generally illustrated in FIGS. 8 and 9A, the first channel 28a may include a first portion 280a, a second portion 282a, and/or a third portion 281a. The first portion 280a and/or the third portion 281a may extend substantially in the longitudinal direction (X-direction). The first portion 280a and the third portion 281a may be connected via the second portion 282a. The second portion 282a may be disposed in an oblique angle relative to the first portion 280a and/or the third portion 281a. The first portion 280a may be offset from the third portion 281a in the X-direction and/or the Y-direction. The first channel 28a may be configured to contact the first protrusion 27a of the first lever 26a. The slider 22 may move from the first slider position to the second slider position, which may cause the second portion 282a of the first channel 28a to move the first lever 26a from the first rotational position to the second rotational position, which may move the first lever 26a from the first position to the second position (e.g., the first lever 26a may move from a position of limiting movement of the support member 3 in the X-direction to a position where the first lever 26a does not substantially limit movement of the support member 3 in the X-direction). Movement of the slider 22 between the second slider position and the third slider position may not cause rotation of the first lever 26a.


In embodiments, such as generally illustrated in FIGS. 8 and 9B, the second channel 28b may include a first portion 280b, a second portion 282b, and/or a third portion 281b. The first portion 280b and/or the third portion 281b may extend substantially in the longitudinal direction (X-direction). The first portion 280a and the third portion 281a may be connected via the second portion 282b. The second portion 282b may be disposed at an oblique angle relative to the first portion 280b and the second portion 282b. The first portion 280b may be offset from the third portion 281b in the X-direction and/or the Y-direction. The second channel 28b may be configured to contact the second protrusion 27b of the second lever 26b to selectively actuate/rotate the second lever 26b. The slider 22 may move from the first slider position to the second slider position, which may not cause movement of the second lever 26b. The slider 22 may move from the second slider position to the third slider position, which may cause the second portion 282a of the first channel 28a to move the second lever 26b from the first position to the second position (e.g., the second lever 26b may move from a position of limiting movement of the support member 3 in the Z-direction to a position where the second lever 26b does not substantially limit movement of the support member 3 in the Z-direction).


With embodiments, such as generally illustrated in FIGS. 9A and 9B, movement of the slider 22 between the first slider position and the second slider position may be represented by a first slider stroke C1. Movement of the slider 22 between the second slider position and the third slider position may be represented by a second slider stroke C2. Moving the slider 22 along the first slider stroke C1 may cause rotation of the first lever 26a and the electrical connector 4, such as without causing rotating of the second lever(s) 26b. Moving the slider 22 along the second stroke C2 may cause rotation of the second lever 26b, such as without causing rotation of the first lever 26a and/or the electrical connector 4.


With embodiments, such as generally shown in FIGS. 5 and 6, the support member 3 may selectively engage the track 2. When the slider 22 may be in the first slider position, the electrical connector 4 may be in the first position and/or engaged with the track 2 (see, e.g., FIG. 5). In the first position of the electrical connector 4, the flange 12 may extend substantially in the Y-direction and/or may be electrically connected to the track conductor 40. When the slider 22 is in the first slider position, the lower portion 7 of the support member may be disposed in the gap 34 of the track 2. The biasing member 17 may facilitate continuous connection at all points along the track conductor 40 despite possible dimensional dispersions of the track 2 and/or the track assembly 1. If the slider 22 is moved to the second slider position (or the third slider position), the first lever 26a may not substantially restrict longitudinal movement of the support member 3, and/or the support member 3 may move without substantial limitation in the longitudinal direction. Moving the slider 22 to the second slider position may rotate the electrical connector 4 and/or the first lever 26a out of engagement with the track 2. If the slider 22 is moved to the third slider position, the first lever 26a, the second lever(s) 26b, and/or the electrical connector 4 may not substantially restrict movement of the support member 3, and/or the support member 3 may move without substantial limitation in the Z-direction (or the X-direction) such that the support member 3 may be inserted into and/or removed from the track 2 (see, e.g., FIG. 6). Moving the slider 22 to the third slider position may rotate the second lever 26b out of engagement with the track 2. The lower portion 7 of the support member 3 may move vertically from the gap 34 when the second lever 26b is in the second position (e.g., the second lever 26b may not limit vertical movement of the support member 3 when in the second position).


In embodiments, the support member 3 may be inserted into the track 2 by moving the slider 22 to the third slider position. Once the support member 3 is inserted into the track 2, the slider 22 may be moved to the second slider position and/or to the first slider position to couple the support member 3 with the track 2. In moving the slider 22 from the third slider position to the first slider position, the second lever 26b engages the track 2 first, and then the first lever 26a and the electrical connector 4 may engage the track 2.


In embodiments, such as generally illustrated in FIG. 11, the electrical connector 4 may include a flange 12 and a second flange 12′. The second flange 12′ may include similar configuration as the flange 12, and/or the second flange 12′ may extend in a direction perpendicular to the body 11, such as in a direction opposite of the flange 12. The flanges 12, 12′ may extend from opposite sides of the body 11 of the electrical connector 4. For example and without limitation, the body 11 and the flanges 12, 12′ may form a substantially inverted T-shape. The track 2 may include a second groove 37′, a second insulator 38′, and/or a second track conductor 40′ that may be configured in the same or a similar manner as the groove 37, the first insulator 38, and/or the track conductor 40. The second groove 37′, the second insulator 38′, and/or the second track conductor 40′ may be disposed opposite (e.g., connected to and/or included with the other side wall 31) the groove 37, the second insulator 38, and/or the track conductor 40.


In embodiments, a vehicle may include one or more track assemblies 1. A component/seat 8 may be connected to the support member 3. A support member 3 may connect to more than one track 2, such as to a pair of tracks 2 that may be substantially parallel.


It should be understood that while embodiments of track assemblies 1 may be described herein in connection with vehicles and/or seats, track assemblies 1 may be utilized in connection with a wide variety of applications that may or may not include vehicles and/or seats.


Various embodiments are described herein for various apparatuses, systems, and/or methods. Numerous specific details are set forth to provide a thorough understanding of the overall structure, function, manufacture, and use of the embodiments as described in the specification and illustrated in the accompanying drawings. It will be understood by those skilled in the art, however, that the embodiments may be practiced without such specific details. In other instances, well-known operations, components, and elements have not been described in detail so as not to obscure the embodiments described in the specification. Those of ordinary skill in the art will understand that the embodiments described and illustrated herein are non-limiting examples, and thus it can be appreciated that the specific structural and functional details disclosed herein may be representative and do not necessarily limit the scope of the embodiments.


Reference throughout the specification to “various embodiments,” “with embodiments,” “in embodiments,” or “an embodiment,” or the like, means that a particular feature, structure, or characteristic described in connection with the embodiment is included in at least one embodiment. Thus, appearances of the phrases “in various embodiments,” “with embodiments,” “in embodiments,” or “an embodiment,” or the like, in places throughout the specification are not necessarily all referring to the same embodiment. Furthermore, the particular features, structures, or characteristics may be combined in any suitable manner in one or more embodiments. Thus, the particular features, structures, or characteristics illustrated or described in connection with one embodiment/example may be combined, in whole or in part, with the features, structures, functions, and/or characteristics of one or more other embodiments/examples without limitation given that such combination is not illogical or non-functional. Moreover, many modifications may be made to adapt a particular situation or material to the teachings of the present disclosure without departing from the scope thereof.


It should be understood that references to a single element are not necessarily so limited and may include one or more of such element. Any directional references (e.g., plus, minus, upper, lower, upward, downward, left, right, leftward, rightward, top, bottom, above, below, vertical, horizontal, clockwise, and counterclockwise) are only used for identification purposes to aid the reader's understanding of the present disclosure, and do not create limitations, particularly as to the position, orientation, or use of embodiments.


Joinder references (e.g., attached, coupled, connected, and the like) are to be construed broadly and may include intermediate members between a connection of elements and relative movement between elements. As such, joinder references do not necessarily imply that two elements are directly connected/coupled and in fixed relation to each other. The use of “e.g.” in the specification is to be construed broadly and is used to provide non-limiting examples of embodiments of the disclosure, and the disclosure is not limited to such examples. Uses of “and” and “or” are to be construed broadly (e.g., to be treated as “and/or”). For example and without limitation, uses of “and” do not necessarily require all elements or features listed, and uses of “or” are intended to be inclusive unless such a construction would be illogical.


While processes, systems, and methods may be described herein in connection with one or more steps in a particular sequence, it should be understood that such methods may be practiced with the steps in a different order, with certain steps performed simultaneously, with additional steps, and/or with certain described steps omitted.


It is intended that all matter contained in the above description or shown in the accompanying drawings shall be interpreted as illustrative only and not limiting. Changes in detail or structure may be made without departing from the present disclosure.

Claims
  • 1. A track assembly, comprising: a track; anda support member, including:a slider; andan electrical connector;wherein the slider is configured to move longitudinally to move the electrical connector between a first rotational position and a second rotational position;in the first position of the electrical connector, the electrical connector is in electrical contact with the track; andin the second position of the electrical connector the electrical connector is not in electrical contact with the track.
  • 2. The track assembly of claim 1, wherein the electrical connector includes a cam, and the cam is configured to contact the slider.
  • 3. The track assembly of claim 2, wherein longitudinal movement of the slider rotates the cam to move the electrical connector between the first rotational position and the second rotational position.
  • 4. The track assembly of claim 3, wherein the slider includes a first ramped portion and a second ramped portion configured to contact the slider.
  • 5. The track assembly of claim 4, wherein the second ramped portion is configured to rotate the cam in a first rotational direction when the slider moves in a first direction; and the first ramped portion is configured to rotate the cam in a second rotational direction when the slider moves in a second direction.
  • 6. The track assembly of claim 5, wherein the first ramped portion is substantially curved and the first ramped portion is configured to rotate the cam at least 90 degrees in the second rotational direction.
  • 7. The track assembly of claim 6, wherein the second ramped portion is configured to rotate the cam at least 90 degrees in the first rotational direction.
  • 8. The track assembly of claim 5, wherein in the first position of the electrical connector, the electrical connector restricts, at least to some degree, vertical movement of the support member relative to the track; and in the second position of the electrical connector, the electrical connector does not substantially restrict vertical movement of the support member relative to the track.
  • 9. The track assembly of claim 1, wherein the track includes a track conductor extending substantially longitudinally along the track.
  • 10. The track assembly of claim 9, wherein in the first position of the electrical connector, the electrical connector is configured to electrically connect the support member to the track conductor.
  • 11. The track assembly of claim 1, wherein the electrical connector includes a body and a flange; the body is substantially hollow; and the flange includes an aperture.
  • 12. The track assembly of claim 11, wherein the electrical connector includes a contact disposed at least partially in the aperture.
  • 13. The track assembly of claim 12, wherein the electrical connector includes a biasing member; and the biasing member is configured to bias the contact away from the electrical connector.
  • 14. The track assembly of claim 13, wherein the support member is configured to move in a longitudinal direction along the track; and the contact is configured to selectively electrically connect to a track conductor of the track.
  • 15. A track assembly, comprising: a track; anda support member configured for selective connection with the track, the support member including:a slider; andan electrical connector;wherein displacement of the slider in a longitudinal direction of the track moves the electrical connector between a first position and a second position;in the first position of the electrical connector, the electrical connector is in electrical contact with the track; andin the second position of the electrical connector, the electrical connector is not in electrical contact with the track.
  • 16. A track assembly, comprising: a track; anda support member configured for selective connection with the track, the support member including:a slider; andan electrical connector;wherein displacement of the slider moves the electrical connector between a first position and a second position;in the first position of the electrical connector, the electrical connector is in electrical contact with the track; andin the second position of the electrical connector, the electrical connector is not in electrical contact with the track;the electrical connector includes a flange;the flange is substantially parallel to a longitudinal direction of the track when the electrical connector is in the second position; andthe flange is substantially perpendicular to the longitudinal direction of the track when the electrical connector is in the first position.
  • 17. The track assembly of claim 16, wherein in the first position of the electrical connector, (i) the support member is configured to move in the longitudinal direction along the track, and (ii) vertical movement of the support member is restricted.
  • 18. The track assembly of claim 17, wherein in the second position of the electrical connector, the support member is configured to move in the longitudinal direction along the track and the electrical connector does not substantially restrict vertical movement of the support member.
  • 19. The track assembly of claim 15, wherein the support member includes a first lever and a second lever; displacement of the slider moves the first lever between a first lever first position and a first lever second position; and displacement of the slider moves the second lever between a second lever first position and a second lever second position.
  • 20. The track assembly of claim 19, wherein the first lever is configured to limit longitudinal movement of the support member along the track; and the second lever is configured to limit longitudinal movement and vertical movement of the support member along the track.
Priority Claims (4)
Number Date Country Kind
1853891 May 2018 FR national
1853892 May 2018 FR national
1853893 May 2018 FR national
1853894 May 2018 FR national
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation-in-part of U.S. patent application Ser. No. 16/131,360, filed Sep. 14, 2018, U.S. patent application Ser. No. 16/131,415, filed Sep. 14, 2018, U.S. patent application Ser. No. 16/131,404, filed Sep. 14, 2018, and U.S. patent application Ser. No. 16/131,614, filed Sep. 14, 2018, which is a continuation of U.S. patent application Ser. No. 16/131,384, filed Sep. 14, 2018, the disclosures of which are all hereby incorporated herein by reference in their entireties. This application claims the benefit of French Patent Application Serial No. 1853891, filed on May 4, 2018; French Patent Application Serial No. 1853892, filed on May 4, 2018; French Patent Application Serial No. 1853893, filed on May 4, 2018; and French Patent Application Serial No. 1853894, filed on May 4, 2018; the disclosures of which are all hereby incorporated herein by reference in their entireties.

US Referenced Citations (232)
Number Name Date Kind
2126143 McGregor Aug 1938 A
2263554 Brach Nov 1941 A
2480622 Warnock Aug 1949 A
2678082 Nathan May 1954 A
3181102 Fehr Apr 1965 A
3213403 Hermann Oct 1965 A
3268848 Adams Aug 1966 A
3603918 Woertz Sep 1971 A
3933403 Rubesamen et al. Jan 1976 A
3940182 Tamura Feb 1976 A
4020769 Keir May 1977 A
4198025 Lowe et al. Apr 1980 A
4243248 Scholz et al. Jan 1981 A
4282631 Uehara et al. Aug 1981 A
4511187 Rees Apr 1985 A
4575295 Rebentisch Mar 1986 A
4618808 Ish-Shalom et al. Oct 1986 A
4707030 Harding Nov 1987 A
4711589 Goodbred Dec 1987 A
4763360 Daniels et al. Aug 1988 A
4776809 Hall Oct 1988 A
4830531 Condit et al. May 1989 A
4853555 Wheat Aug 1989 A
4961559 Raymor Oct 1990 A
4969621 Munchow et al. Nov 1990 A
4987316 White et al. Jan 1991 A
5137331 Colozza Aug 1992 A
5167393 Hayakawa et al. Dec 1992 A
5192045 Yamada et al. Mar 1993 A
5222814 Boelryk Jun 1993 A
5322982 Leger et al. Jun 1994 A
5332290 Borlinghaus et al. Jul 1994 A
5348373 Stiennon Sep 1994 A
5362241 Matsuoka et al. Nov 1994 A
5446442 Swart et al. Aug 1995 A
5466892 Howard et al. Nov 1995 A
5489173 Hofle Feb 1996 A
5582381 Graf et al. Dec 1996 A
5599086 Dutta Feb 1997 A
5618192 Drury Apr 1997 A
5655816 Magnuson et al. Aug 1997 A
5676341 Tarusawa et al. Oct 1997 A
5696409 Handman et al. Dec 1997 A
5701037 Weber et al. Dec 1997 A
5796177 Werbelow et al. Aug 1998 A
5800015 Tsuchiya et al. Sep 1998 A
5899532 Paisley et al. May 1999 A
5918847 Couasnon Jul 1999 A
5921606 Moradell et al. Jul 1999 A
5964442 Wingblad et al. Oct 1999 A
5964815 Wallace et al. Oct 1999 A
6036157 Baroin et al. Mar 2000 A
6142718 Kroll Nov 2000 A
6150774 Mueller et al. Nov 2000 A
6166451 Pigott Dec 2000 A
6216995 Koester Apr 2001 B1
6227595 Hamelin et al. May 2001 B1
6290516 Gerber Sep 2001 B1
6296498 Ross Oct 2001 B1
6299230 Oettl Oct 2001 B1
6318802 Sjostrom et al. Nov 2001 B1
6325645 Schuite Dec 2001 B1
6357814 Boisset et al. Mar 2002 B1
6400259 Bourcart et al. Jun 2002 B1
6405988 Taylor et al. Jun 2002 B1
6422596 Fendt et al. Jul 2002 B1
6439531 Severini et al. Aug 2002 B1
6480144 Miller et al. Nov 2002 B1
6693368 Schumann et al. Feb 2004 B2
6710470 Bauer et al. Mar 2004 B2
6719350 Duchateau et al. Apr 2004 B2
6736458 Chabanne et al. May 2004 B2
6772056 Mattes et al. Aug 2004 B2
6805375 Enders et al. Oct 2004 B2
6851708 Kazmierczak Feb 2005 B2
6882162 Schirmer et al. Apr 2005 B2
6960993 Mattes et al. Nov 2005 B2
7042342 Luo et al. May 2006 B2
7083437 Mackness Aug 2006 B2
7086874 Mitchell et al. Aug 2006 B2
7113541 Lys et al. Sep 2006 B1
7159899 Nitschke et al. Jan 2007 B2
7170192 Kazmierczak Jan 2007 B2
7188805 Henley et al. Mar 2007 B2
7207541 Frohnhaus et al. Apr 2007 B2
7271501 Dukart et al. Sep 2007 B2
7288009 Lawrence et al. Oct 2007 B2
7293831 Greene Nov 2007 B2
7300091 Nihonmatsu et al. Nov 2007 B2
7322605 Ventura et al. Jan 2008 B2
7348687 Aichriedler et al. Mar 2008 B2
7363194 Schlick et al. Apr 2008 B2
7370831 Laib et al. May 2008 B2
7388466 Ghabra et al. Jun 2008 B2
7389960 Mitchell et al. Jun 2008 B2
7416042 Czaykowska et al. Aug 2008 B2
7434883 Deptolla Oct 2008 B2
7454170 Goossens et al. Nov 2008 B2
7455535 Insalaco et al. Nov 2008 B2
7503522 Henley et al. Mar 2009 B2
7505754 Kazmierczak et al. Mar 2009 B2
7523913 Mizuno et al. Apr 2009 B2
7556233 Gryp et al. Jul 2009 B2
7560827 Jacas-Miret et al. Jul 2009 B2
7633301 Steenwyk et al. Dec 2009 B2
7661637 Mejuhas et al. Feb 2010 B2
7665939 Cardona Feb 2010 B1
7739820 Frank Jun 2010 B2
7744386 Speidel et al. Jun 2010 B1
7980525 Kostin Jul 2011 B2
7980798 Kuehn et al. Jul 2011 B1
8010255 Darraba Aug 2011 B2
8146991 Stanz et al. Apr 2012 B2
8278840 Logiudice et al. Oct 2012 B2
8282326 Krostue et al. Oct 2012 B2
8376675 Schulze et al. Feb 2013 B2
8463501 Jousse Jun 2013 B2
8536928 Gagne et al. Sep 2013 B1
8648613 Ewerhart et al. Feb 2014 B2
8702170 Abraham et al. Apr 2014 B2
8757720 Hurst, III et al. Jun 2014 B2
8800949 Schebaum et al. Aug 2014 B2
8857778 Nonomiya Oct 2014 B2
8936526 Boutouil et al. Jan 2015 B2
8967719 Ngiau et al. Mar 2015 B2
RE45456 Sinclair et al. Apr 2015 E
9010712 Gray et al. Apr 2015 B2
9018869 Yuasa et al. Apr 2015 B2
9045061 Kostin et al. Jun 2015 B2
9162590 Nagura et al. Oct 2015 B2
9174604 Wellhoefer et al. Nov 2015 B2
9242580 Schebaum et al. Jan 2016 B2
9318922 Hall et al. Apr 2016 B2
9340125 Stutika et al. May 2016 B2
9346428 Bortolin May 2016 B2
9422058 Fischer et al. Aug 2016 B2
9561770 Sievers et al. Feb 2017 B2
9608392 Destro Mar 2017 B1
9610862 Bonk et al. Apr 2017 B2
9663232 Porter et al. May 2017 B1
9673583 Hudson et al. Jun 2017 B2
9701217 Eckenroth et al. Jul 2017 B2
9731628 Rao et al. Aug 2017 B1
9758061 Pluta et al. Sep 2017 B2
9789834 Rapp et al. Oct 2017 B2
9796304 Salter et al. Oct 2017 B2
9815425 Rao et al. Nov 2017 B2
9821681 Rao et al. Nov 2017 B2
9840220 Van Buskirk et al. Dec 2017 B2
9919624 Cziomer et al. Mar 2018 B2
9950682 Gramenos et al. Apr 2018 B1
10059232 Frye et al. Aug 2018 B2
10160351 Sugimoto et al. Dec 2018 B2
10479227 Nolte et al. Nov 2019 B2
10493243 Braham Dec 2019 B1
10547135 Sugiura Jan 2020 B2
10549659 Sullivan et al. Feb 2020 B2
10654378 Pons May 2020 B2
20050046367 Wevers et al. Mar 2005 A1
20050089367 Sempliner Apr 2005 A1
20050150705 Vincent et al. Jul 2005 A1
20050211835 Henley et al. Sep 2005 A1
20050215098 Muramatsu et al. Sep 2005 A1
20050230543 Laib et al. Oct 2005 A1
20050258676 Mitchell et al. Nov 2005 A1
20060131470 Yamada et al. Jun 2006 A1
20060208549 Hancock et al. Sep 2006 A1
20060220411 Pathak et al. Oct 2006 A1
20080021602 Kingham et al. Jan 2008 A1
20080084085 Mizuno et al. Apr 2008 A1
20080090432 Patterson et al. Apr 2008 A1
20090014584 Rudduck et al. Jan 2009 A1
20090129105 Kusu et al. May 2009 A1
20090251920 Kino et al. Oct 2009 A1
20090302665 Dowty Dec 2009 A1
20090319212 Cech et al. Dec 2009 A1
20100117275 Nakamura May 2010 A1
20110024595 Oi et al. Feb 2011 A1
20120112032 Kohen May 2012 A1
20130020459 Moriyama et al. Jan 2013 A1
20130035994 Pattan et al. Feb 2013 A1
20140263920 Anticuar et al. Sep 2014 A1
20140265479 Bennett Sep 2014 A1
20150048206 Deloubes Feb 2015 A1
20150069807 Kienke Mar 2015 A1
20150083882 Stutika et al. Mar 2015 A1
20150191106 Inoue et al. Jul 2015 A1
20150236462 Davidson, Jr. et al. Aug 2015 A1
20160039314 Anticuar et al. Feb 2016 A1
20160154170 Thompson et al. Jun 2016 A1
20160236613 Trier Aug 2016 A1
20170080825 Bonk et al. Mar 2017 A1
20170080826 Bonk et al. Mar 2017 A1
20170166093 Cziomer et al. Jun 2017 A1
20170261343 Lanter et al. Sep 2017 A1
20170291507 Hattori et al. Oct 2017 A1
20180017189 Wegner Jan 2018 A1
20180039917 Buttolo et al. Feb 2018 A1
20180086232 Kume Mar 2018 A1
20180105072 Pons Apr 2018 A1
20180148011 Zaugg et al. May 2018 A1
20180183623 Schoenfeld et al. Jun 2018 A1
20180275648 Ramalingam Sep 2018 A1
20190001846 Jackson et al. Jan 2019 A1
20190084453 Petit et al. Mar 2019 A1
20190126786 Dry May 2019 A1
20190337413 Romer Nov 2019 A1
20190337414 Condamin et al. Nov 2019 A1
20190337415 Condamin et al. Nov 2019 A1
20190337416 Condamin et al. Nov 2019 A1
20190337418 Condamin et al. Nov 2019 A1
20190337419 Condamin et al. Nov 2019 A1
20190337420 Condamin et al. Nov 2019 A1
20190337421 Condamin et al. Nov 2019 A1
20190337422 Condamin et al. Nov 2019 A1
20190337471 Brehm Nov 2019 A1
20190379187 Christensen et al. Dec 2019 A1
20190389336 Malinowski et al. Dec 2019 A1
20200009995 Sonar Jan 2020 A1
20200055423 Prozzi et al. Feb 2020 A1
20200079244 Carbone et al. Mar 2020 A1
20200180516 Moulin Jun 2020 A1
20200180517 Moulin Jun 2020 A1
20200189504 Ricart et al. Jun 2020 A1
20200189511 Ricart et al. Jun 2020 A1
20200194936 Ricart et al. Jun 2020 A1
20200194948 Lammers et al. Jun 2020 A1
20200207241 Moulin et al. Jul 2020 A1
20200262367 Fernandez Banares et al. Aug 2020 A1
20200269754 Ricart et al. Aug 2020 A1
20200282871 Ricart et al. Sep 2020 A1
20200282880 Jones et al. Sep 2020 A1
Foreign Referenced Citations (38)
Number Date Country
203190203 Sep 2013 CN
203799201 Aug 2014 CN
3710476 Oct 1987 DE
29712180 Sep 1997 DE
202005013714 Dec 2005 DE
102005007430 Mar 2006 DE
102006022032 Dec 2006 DE
102010017038 Feb 2011 DE
102010063615 Feb 2012 DE
102011056278 Feb 2013 DE
202014102336 Jun 2014 DE
102014217754 Mar 2015 DE
102015212100 Dec 2015 DE
112015000380 Oct 2016 DE
102016113409 Apr 2017 DE
0565973 Oct 1993 EP
0783990 Jul 1997 EP
1176047 Jan 2002 EP
1209024 May 2002 EP
1431104 Jun 2004 EP
2298609 Mar 2011 EP
1699661 Aug 2012 EP
3150426 Apr 2017 EP
2762814 Nov 1998 FR
2864481 Apr 2006 FR
2951329 Apr 2011 FR
2986751 Aug 2013 FR
3314591 Aug 2002 JP
2003227703 Aug 2003 JP
2005119518 May 2005 JP
2007112174 May 2007 JP
2008158578 Jul 2008 JP
4222262 Feb 2009 JP
2013230721 Nov 2013 JP
0187665 Nov 2001 WO
2003002256 Jan 2003 WO
2004098943 Nov 2004 WO
2005068247 Jul 2005 WO
Non-Patent Literature Citations (3)
Entry
Co-pending U.S. Appl. No. 16/597,187, filed Oct. 9, 2019.
Co-pending U.S. Appl. No. 16/672,989, filed Nov. 4, 2019.
Co-pending U.S. Appl. No. 16/711,661, filed Dec. 12, 2019.
Related Publications (1)
Number Date Country
20190337417 A1 Nov 2019 US
Continuations (1)
Number Date Country
Parent 16131384 Sep 2018 US
Child 16131614 US
Continuation in Parts (4)
Number Date Country
Parent 16131360 Sep 2018 US
Child 16399116 US
Parent 16131415 Sep 2018 US
Child 16131360 US
Parent 16131404 Sep 2018 US
Child 16131415 US
Parent 16131614 Sep 2018 US
Child 16131404 US