The present invention relates to tracked vehicles in general and in particular to improvements to tracked vehicles for reducing wear on the track. Specifically, the invention relates to methods for managing the drive mode of a tracked vehicle, systems for implementing those methods and individual components of such systems.
Tracked vehicles, such as heavy agricultural or construction equipment, that routinely operate in rough environments may suffer from rapid track wear. As a result of this track wear, the track must be replaced often which is expensive and significantly increases the cost of operation of the vehicle over time.
Tracks, especially elastomeric tracks are subjected in use to different wear patterns that depend largely on the intensity and the type of use of the vehicle. One specific point of failure of the elastomeric track is the drive lugs. The drive lugs are used to establish a positive drive connection between the track and the drive sprocket. Accordingly, when the track operates at high loading levels, a significant amount of stress is exerted on the drive lugs to impart movement to the track. Over time, this amount of stress can damage the drive lugs ultimately leading to drive lug separation from the track carcass.
As embodied and broadly described herein the invention provides a method for controlling a drive mode of a vehicle having an engine and a track to propel the vehicle on the ground, the track capable of being driven by the engine in a plurality of drive modes including a friction drive mode and a positive drive mode. The method includes:
As embodied and broadly described herein the invention also encompasses a vehicle, having:
As embodied and broadly described herein the invention further provides an endless track for a vehicle, having a body having an outer ground engaging side and an inner side opposite to the ground engaging side. The track also includes a sensor for sensing a magnitude of force applied by a drive wheel to the track to drive the track.
As embodied and broadly described herein, the invention yet provides a sprocket for driving a endless track of a vehicle, the sprocket including a sensor for sensing a magnitude of force applied by the sprocket to the track.
As embodied and broadly described herein, the invention also includes an undercarriage having an endless track, a sprocket for driving the endless track and a sensor for measuring a magnitude of force applied by the sprocket to the endless track when the sprocket drives the track.
As embodied and broadly described herein, the invention further provides a method for operating a vehicle having an engine and an undercarriage, the undercarriage including:
As embodied and broadly described herein, the invention yet provides a vehicle having an engine and an undercarriage, the undercarriage including:
As embodied and broadly described herein, the invention also provides a vehicle having an engine and an undercarriage, the undercarriage including:
A detailed description of examples of implementation of the present invention is provided hereinbelow with reference to the following drawings, in which:
In the drawings, embodiments of the invention are illustrated by way of example. It is to be expressly understood that the description and drawings are only for purposes of illustration and as an aid to understanding, and are not intended to be a definition of the limits of the invention.
The vehicle 10 has an undercarriage 12 including a set of wheels about which is tensioned a track 16. The set of wheels has a drive sprocket 30 and an idler wheel 32. In a variant, both wheels 30, 32 can be driven. The track 16 is mounted on the wheels 30, 32 such that as the wheels 30, 32 turn the track 16 is caused to move. The undercarriage 12 also includes a set of mid-rollers 40 which are mounted between the wheels 30, 32 in order to keep the run of the track 16 between the wheels 30, 32 in contact with the ground. The mid-rollers 40 are mounted on a suspension system 42 allowing the mid-rollers 40 to yield upwardly when the vehicle 10 rides over obstacles.
The undercarriage 12 further includes a tensioning system to tension the track 16. In a specific and non-limiting example of implementation the tensioning system operates hydraulically, however other possibilities exist without departing from the spirit of the invention. For instance, the tensioning system may be mechanical in nature and may use mechanical components, such as cables levers, pulleys or springs to vary the pressure on the track 16. The system can also be electrical and use electrical actuators to vary the track tension.
The tensioning system illustrated in the drawings operates hydraulically and includes a hydraulic ram 44 mounted between a fixed portion of the undercarriage and short arm 46 to which the wheel 32 is pivotally connected. As the piston 34 of the hydraulic ram 44 extends, this causes the short arm 46 to pivot clockwise and change the position of the wheel 32 with relation to the wheel 30. If the piston 34 is extended, the wheel 32 will thus move further away from the wheel 30, thus increasing the tension in the track 16. Conversely, if the piston 34 is retracted, the opposite effect takes place and the tension in the track 16 diminishes.
The undercarriage 10b includes the necessary mechanical components to run a track 12b. The track 12b has an outer ground engaging surface 14b and an opposite inner surface 16b. The width of the track 12b can vary according to the specific vehicle application.
The track 12b is supported by a series of wheels that define a generally triangular track path. That path has a lower run 18b which is a ground engaging run. When the vehicle is being driven it is supported on the ground engaging run 18b.
The series of wheels that support the track 12b include a drive sprocket 20b which is mounted on top, two generally opposite idler wheels 22b and a series of mid-rollers 24b mounted between the idler wheels 22b. The mid-rollers 24b engage the inner surface of the ground engaging run to maintain the ground engaging run 18b in contact with the ground during the operation of the vehicle and also to at least partially carry the vehicle weight. The mid-rollers 24b are mounted on a suspension system (not shown) allowing the mid-rollers 24b to yield upwardly when the vehicle rides over obstacles. Also, the undercarriage 10b is provided with a suitable track tensioning assembly that uses hydraulic pressure to maintain the desired tension in the track 12b. For convenience and clarity this track tensioning system has not been shown in
The drive sprocket 20b is coupled to an axle of the vehicle. The axle turns at a speed selected by the operator of the vehicle.
The sprocket 30 that is shown in
An alternative arrangement is shown in
The sprocket 60, 64 can transmit motion to the track 16 by two different mechanisms. The first is the friction drive mode and the second is the positive drive mode. In the case of the sprocket 64, during the friction drive mode, the friction developed between the peripheral surfaces of the discs 66, 68 and the flat inner surface of the track, which engages those peripheral surfaces can be is sufficient to drive the track. The tension which is built in the track 16 by operation of the hydraulic tensioning system can produce a significant amount of friction which is sufficient to drive the track 16 in certain conditions During the friction drive mode, the drive lugs 57 mesh with the sockets 58 but there is little strain applied on drive lugs 57.
Beyond a certain degree of power loading, the friction drive mode transitions to the positive drive mode. The reaction force acting on the track 16 as the vehicle 10 moves can overcome the friction between the track 16 and the peripheral surfaces of the discs 66, 68. This produces a small degree of slip between the peripheral surfaces of the discs 66, 68 until the drive lugs firmly engage the pins 62. At that point no further slip is possible and the driving force is communicated to the track mostly via the drive lugs 57.
A drive mode sensor can be used to determine when the track 16 transitions from the friction drive mode to the positive drive mode.
When the track 16 is in the friction drive mode there is no relative movement between the inner surface 402 of the track and the surface 400. Accordingly, as the sprocket 60, 64 turns, the sensing elements 404 repeatedly come in contact with the inner surface 402 but they are not subjected to any rotation, hence no signal is produced. However, if a slip occurs, which as indicated previously may indicate the transition to the positive drive mode, that slip will cause one or more of the sensing elements 404 to turn and produce a detectable output signal.
Advantageously, the signal is communicated over a wireless link to a receiver mounted on the undercarriage or at any other convenient location. The drive mode sensor may be provided with a suitable power source, such as a battery mounted on the sprocket to supply electrical energy to the individual sensing elements and to the wireless transmitter. Optionally, a slip ring can be used to communicate the signal generated by the drive mode sensor, when a hard wired system is deemed more appropriate.
In specific implementation, the drive mode sensor is designed such that each sensing element 404 reports to the receiver individually. In this fashion, the receiver can monitor the angular position of each sensing element 404 independently. This feature allows comparing the various readings from the sensing elements 404 to confirm that indeed a slip has occurred. Since at any given moment a series of sensing elements 404 engage the inner surface 402 of the track, if a slip occurs, that slip will register on each one of the sensing elements 404 that is in contact with the track 16. If an angular displacement is reported by a series of the sensing elements 404, and that angular displacement generally has the same magnitude, then the occurrence of a slip can be more conclusively established. On the other hand, if only one of the sensing elements 404 reports an angular displacement, but no other sensing element 404 reports an angular displacement, then a slip is unlikely to have occurred.
In addition to the occurrence of slippage between the peripheral surface 400 of the sprocket and the inner surface 402 of the track 16, the drive mode sensor can also measure the degree of slip which is related to the degree of angular displacement of the individual sensing elements 404.
In a possible variant, the drive mode sensor is a non-contact sensor. One possibility of implementing a non-contact sensor is shown in
Yet another possible variant of the drive mode sensor (not shown in the drawings) can also be considered, which uses an optical detector. This drive mode sensor variant uses marks on the track and on the sprocket 60, 64 that can be read optically, in order to determine of there is any slippage. Slippage is sensed when there is a phase shift between pulse trains output by the optical reader associated with the sprocket and the optical reader associated with the track. Specifically, the side edge of the track is provided with a series of marks which can be bars, dots or any other trace or impression which can be sensed when it passes by an optical reader. The reader can include an optical source, such as a laser beam and a receiver which senses the reflection of the beam over the surface of the track. Since the marks disturb the beam reflection, this disturbance can be used to detect the passage of individual marks. The same arrangement is provided on the sprocket, namely a series of marks on the surface of the sprocket which are read by an optical reader. When there is no slippage, each optical reader produces a pulse train and the pulse trains associated with the track and with the sprocket 60, 64 are in a generally static phase relationship. If slippage arises, the phase relationship will change.
Yet another possibility to determine the drive mode is to use a strain sensor in the individual drive lugs 57 or in any other suitable location of the track 16. Each drive lug 57 or only some of the drive lugs 57 can be provided with strain sensors to detect the force applied on the drive lugs 57 by the sprocket 60, 64. An example of a strain sensor is a load cell that can measure force applied to the drive lug 57. When the track is in the friction drive mode, little or no force will be applied on the drive lugs 57. In contrast, when the track 16 transitions to the positive drive mode, the force acting on the drive lugs 57 will substantially increase. The strain sensor can be any type of sensor suitable to provide a force reading when load is applied on one of the faces of the drive lug 57, the one that is engaged by a pin 62. Accordingly, as the pin 62 presses on the face of the drive lug 57, the force is sensed by the strain sensor and an output signal is generated.
Advantageously, when multiple strain sensors are provided on the track 16, each strain sensor being mounted to a respective drive lug, each strain sensor is uniquely identified such that its force reading can be distinguished from force readings of other strain sensors. Digitally encoding the force reported by the strain sensor and appending to the force value a unique identifier can accomplish this. In this fashion, the receiver and the data processing unit that performs the analysis of the force values reported by the strain sensors can associate received force values to respective drive lugs.
In an alternative embodiment shown in
An advantage of the drive mode sensor that senses strain to determine the drive mode over the drive mode sensor that detects slip is the ability to sense when the track transitions back from the positive drive mode to the friction drive mode or, more generally when the loading applied to the track is no longer sufficient to overcome the friction between the track and the sprocket.
A receiver (not shown) mounted on a suitable location on the vehicle 10 picks up the output of the drive mode sensor. The output is a signal reporting slip or force. The signal is processed by a data processing device that will determine the drive mode of the track and will then generate a control signal to perform a control function.
Yet another possible way of implementing a drive mode sensor is to use an indirect approach instead of a direct measuring technique. For example, a torque sensor can be provided in the power train that determines the amount of torque that is being applied on the sprocket 60, 64. Since the torque applied on the sprocket 60, 64 is directly related to the drive mode of the track 16, then by reading the torque it is possible to infer whether the track 16 is the friction drive mode or in the positive drive mode. Note that in this example, the drive mode determination is not being directly measured and it is based on a theoretical drive mode transition value at which the transition between the friction drive mode and the positive drive mode is known to occur.
A variant of the drive mode sensor which operates indirectly determines the drive mode by observing the operational condition of the engine of the vehicle 10 and derives the amount of power, hence torque that is being produced. In this method of implementation the drive mode sensor uses a computer implemented engine parameters map that correlate engine parameters to torque produced by the engine. Possible engine parameters include RPM, throttle opening percentage, intake manifold pressure, amount of fuel being injected, temperature and ignition timing among others. Accordingly, the system can infer the torque generated at any given moment by searching the map on the basis of the current engine parameters to identify the corresponding torque value. Once the torque produced by the engine is known, the torque value applied on the sprocket 60, 64 can be derived on the basis of the gear ratio that is being used to transmit the drive power from the engine to the sprocket 60, 64.
The machine-readable storage medium 604 is encoded with software that is executed by the CPU 602. The software performs the processing of the inputs signals and generates output control signals on the basis of a control strategy.
The input signals that are applied to the input/output interface 608, include:
The output signals that are released by the input/output interface 608 are as follows:
The information that is received by the various inputs of the data processing module 600, in particular the input from the operator console and the drive mode sensor is processed by software stored in the machine readable storage 604 in order to generate control signals that will manage the drive mode of the track 16. The logic built in the software determines the control strategy that will be implemented. Several different control strategies can be considered examples of which will be discussed below:
Maintaining the Track in the Friction Drive Mode
This particular control strategy can be implemented as a result of a command input by the operator which is conveyed by the control signal sent to the input/output interface 608 of the data processing module 600 or it may be triggered in any other way. The purpose of the control strategy is to regulate the operation of the track 16 such as to avoid that the track 16 transitions to the positive drive mode, or at least delay this transition.
Note that the output of the drive mode sensor may require preprocessing by the data processing module 600 before the system concludes that the track is in any particular drive mode or a transition between drive modes is occurring. For example, when several sensors are placed on the track or on the sprocket 60, 64, the pre-processing operation would correlate the readings of the different sensors for more accuracy. A slip sensor of the type illustrated at
Different types of information may be derived from the output produced by the drive mode sensor, depending on the nature of the sensor that is being used. If the drive mode sensor senses slip, the indication is generally unidirectional in the sense that the indication of slip shows a transition between the friction drive mode to the positive drive mode, but not the reverse. If the drive mode of the track 16 changes again and there is a transition back to the friction drive mode the slip sensor is not likely to detect it since the track 16 will not slip back on the sprocket 60, 64. In contrast, a drive mode sensor that senses force applied at the interface drive lug/sprocket will show the transition from the friction drive mode to the positive drive mode and also the transition between from the positive drive mode back to the friction drive mode.
Step 704 is executed after the logic has established the drive mode of the track. Step 704 is a conditional step and determines if a positive action is required in order to maintain the track in the friction drive mode. The conditional step will be answered in the negative if the drive mode sensor reports that the track is in the friction drive mode. In contrast, when the drive mode sensor reports that the track drive mode is in the positive drive mode the step 704 will be answered in the affirmative. Note that as long as the conditional step 704 is answered in the negative the processing returns back to step 702 where the drive mode of the track is observed again. The logic remains in this continuous loop as long as the track drive mode remains in the friction drive mode.
If eventually, the conditional step 704 is answered in the affirmative, then the processing moves to step 706 where a control action is performed. In this specific example of implementation, the purpose of the control action is to prevent the track 16 from transitioning to in any significant way to the positive drive mode. For instance, if a transition to the positive drive mode has momentarily occurred, the action will be such that the drive mode will revert to the friction drive mode. Several control actions can be implemented, either individually or in combination. Examples of those actions are described below:
Managing the Transition Between the Friction Drive Mode and the Positive Drive Mode
This particular control strategy does not try to keep the track 16 in the friction drive mode only; instead it manages the transition from the friction drive mode to the positive drive mode such that loading on the drive lugs 57 that occurs during the transition is controlled to some degree to avoid unnecessary “shocks” that may damage the drive lugs 57 over the long run. One possibility is to perform torque management, to control the rate of torque increase on the sprocket 60, 64 such that if the track transitions to the positive drive mode, the transition is made more gently thus limiting the strain “shock” acting on the drive lugs 57. In this example, the control action limits the torque increase over time to a certain rate which is considered to be acceptable or desirable. This maximal rate is a parameter that is programmable according to the specific vehicle and track used on the vehicle. The torque rate increase management is carried out according to the possibilities discussed earlier.
Maintaining the Track in the Positive Drive Mode.
This particular control strategy aims to maintain the track as much as possible in the positive drive mode, and uses the friction drive mode when the power loading on the track is significant in order to provide an assist function. This control strategy is implemented by regulating the track tension; the higher the tension the more significant the friction between the track and the sprocket is. In contrast, the lower the tension of the track the lower the friction.
During normal vehicle operation, when the power loading on the track does not exceed a certain threshold, the track tension is maintained sufficiently low such that the track operates as a practical matter in the positive drive mode. The track tension being maintained low has an advantage; the force acting on the various components of the undercarriage that support the track is reduced and as a consequence there is less wear on the system.
When an operational condition is reached at which the friction assist is to be invoked, data processing device 600 issues a control signal to direct the track tensioning system to increase pressure. In a specific example of implementation, the amount or degree of friction drive assist can be related to the power loading on the track. At a certain power loading threshold, the friction drive assist is invoked by initiating an increase in the tensioning system hydraulic pressure. If the power loading further increases, the friction drive assist is also increased by augmenting the hydraulic pressure further. This increase may continue up to the maximal hydraulic pressure the tensioning system can provide. The relationship between the power loading and the track tension can be linear or non-linear and that relationship may hold for power loading increases or power loading decreases as well. In other words, when the power loading on the track diminishes so does the track tension.
In a specific and non-limiting example of implementation, the hydraulic pressure can be varied in the range from about 1000 psi to about 25,000 psi, more preferably in the range from about 3000 psi to about 25,000 psi and most preferably in the range from about 6,000 psi to about 25,000 psi.
Yet another possible form of implementation of the friction drive assist function is to provide a sprocket arrangement that has a contact interface with the track with controllable friction characteristics. For instance the surfaces 66, 68 of the sprocket can be arranged such as to be in rolling contact with the inside of the track. This is achieved by constructing the surfaces as two concentric rings, where the outer ring can freely pivot over the inner ring. The track rests on the outer ring. Since the outer ring can freely pivot on the inner ring, the track is, for all practical purposes in rolling contact with that ring. This means the sprocket can only drive the track via the positive drive mode since the rolling contact precludes friction between the concentric rings arrangement and the inside surface of the track. By providing a suitable clutch system between the concentric rings, it is possible to control via the control signals discussed earlier the ability of the outer ring to freely turn on the inner ring. In this fashion, by engaging the clutches the outer ring is locked against rotation to the inner ring, thus precluding the rolling contact with the track. Accordingly, when the clutches are engaged, the outer surfaces 66, 68 provide a friction drive mode assist function.
The clutches are mounted to the sprocket and are actuated according to the desired friction characteristics. In a specific example the clutches have two friction surfaces mounted on respective rings; when the surfaces are disengaged the rings are free to rotate but when they are engaged the surfaces are no longer free to rotate and are locked to one another thus enabling the friction drive mode. The clutches can be actuated electrically and powered via a slip ring or any other suitable device. The reader will appreciate that instead of using clutches, other devices can be employed that can selectively lock the two rings to each other such as to preclude rotation.
The power loading on the track can be determined directly such as by reading the output of a strain sensor (in the track or in the sprocket) or by reading the output of a torque sensor. Also, the power loading can be determined indirectly on the basis of the specific set of operational conditions of the engine or even by reading the vehicle speed, vehicle weight and inclination (rate of grade that the vehicle is climbing) to compute the power loading that is being applied to the track.
The data processing device 600 which is used to manage the operation of the track 16 can also be used to collect data relating to the usage of the track 16. Referring back to
The data log can store the following information that is generated in the course of the operation of the data processing device 600;
The information stored in the data log 608 can be used as such to provide useful knowledge about the track usage history. For example, this information can be used by the track manufacturer to decide whether a warranty would apply in any particular case. The information can be made available to a user by channeling it through the input/output interface 608 for display on the operator console or to be loaded on a service device reader that connects temporarily to the input/output interface 608.
The data in the data log 608 can be processed by software to provide indications to the operator that can help with extending the life of the track 16 or more generally better manage the track operation. In one possible example, the software is designed to count the different events that the track 16 has encountered and to compare them to predetermined values in order to compute:
The information so computed can be displayed to the operator at his console either when that information is requested by the operator or automatically when certain events occur that may indicate the need for action, such as an indication of the need of an immediate inspection of when a drive lug may be failing.
The control actions discussed earlier may be performed concurrently on the both tracks of the vehicle or in a selective manner, such that the control action on one of the tracks is different from the control action acting on the other track.
The selective control action can be implemented by providing the vehicle with two independent control channels, where each control channel is associated with a respective track. Each control channel includes a dedicated data processing device 600 and associated sensors such as to handle the control function for each track independently. In this fashion, the vehicle has dual drive mode sensors one for each track, supplying information on the drive mode. The output of each drive mode sensor is processed independently and independent control signals are generated. For example, when the control strategy varies the track tension, the tension in each track is regulated independently. At any given moment, the tension in one track can be different from the tension in the other track. This approach allows a more precise control. For instance, if the control strategy is to maintain each track in the friction drive mode as much as possible, the tension in each track will be adjusted as per that particular track behavior.
Objectively, this approach would require two separate track tension mechanisms, where each mechanism can operate at a different hydraulic pressure. In addition, duplicate sensors would also be required. However, the overall effect is to provide the vehicle with a more precise track control system.
Note that some control strategies may not be fully independently implemented. For instance, a control strategy that regulates the power output of the engine would be the same for both tracks since a single engine drives both tracks. Independent control is possible at the drive line level, where the power application to each track can be individually adjusted. The driveline allows independent regulation of the power flow to each track, hence independent control strategies.
Note that the various sensors provided primarily to control the track drive mode can also be used for additional control functions. Referring in particular to the implementation that measures the strain at the interface drive lugs 57/bars 62, those outputs can be used to control the traction control system of the vehicle. This is illustrated in the flowchart of
Although various embodiments have been illustrated, this was for the purpose of describing, but not limiting, the invention. Various modifications will become apparent to those skilled in the art and are within the scope of this invention, which is defined more particularly by the attached claims.
This application is a continuation application of and claims priority to U.S. application Ser. No. 14/665,075 filed on Mar. 23, 2015 (now U.S. Pat. No. 9,975,554), which is a continuation application of U.S. application Ser. No. 13/326,010 filed on Dec. 14, 2011 (now U.S. Pat. No. 8,985,250), which claims the benefit under 35 USC 119(e) of U.S. Provisional Patent Application No. 61/422,949 filed on Dec. 14, 2010. Each application is hereby incorporated by reference herein.
Number | Name | Date | Kind |
---|---|---|---|
2040696 | Johnston | May 1936 | A |
2369130 | Benson | Feb 1945 | A |
2461150 | Flynn et al. | Feb 1949 | A |
2523182 | Battaglia | Sep 1950 | A |
2562264 | Ford | Jul 1951 | A |
2596919 | Smith | May 1952 | A |
2854294 | Bannister | Sep 1958 | A |
3019061 | Schomers | Jan 1962 | A |
3118709 | Case | Jan 1964 | A |
3464476 | Scheuba et al. | Sep 1969 | A |
3582154 | Russ, Sr. | Jan 1971 | A |
3612626 | Fuchs | Oct 1971 | A |
3747995 | Russ, Sr. | Jul 1973 | A |
3747996 | Huber | Jul 1973 | A |
3767275 | Russ, Sr. | Oct 1973 | A |
3781067 | Dodson et al. | Dec 1973 | A |
3858948 | Johnson et al. | Jan 1975 | A |
3887244 | Haslett et al. | Jun 1975 | A |
3914990 | Borg | Oct 1975 | A |
3944006 | Lassanske | Mar 1976 | A |
3981943 | Fujio et al. | Sep 1976 | A |
4059313 | Beyers et al. | Nov 1977 | A |
RE29718 | Reinsma et al. | Aug 1978 | E |
4150858 | Fox et al. | Apr 1979 | A |
4218101 | Thompson | Aug 1980 | A |
4279449 | Martin et al. | Jul 1981 | A |
4538860 | Edwards et al. | Sep 1985 | A |
4583791 | Nagata et al. | Apr 1986 | A |
4586757 | Bloechlinger | May 1986 | A |
4587280 | Guha et al. | May 1986 | A |
4607892 | Payne et al. | Aug 1986 | A |
4614508 | Kerivan | Sep 1986 | A |
4696520 | Henke et al. | Sep 1987 | A |
4721498 | Grob | Jan 1988 | A |
D298018 | Cartwright | Oct 1988 | S |
4843114 | Touchet et al. | Jun 1989 | A |
4844561 | Savage et al. | Jul 1989 | A |
4880283 | Savage et al. | Nov 1989 | A |
4953921 | Burns | Sep 1990 | A |
4981188 | Kadela | Jan 1991 | A |
5018591 | Price | May 1991 | A |
5050710 | Bargfrede | Sep 1991 | A |
5145242 | Togashi | Sep 1992 | A |
5190363 | Brittain et al. | Mar 1993 | A |
5299860 | Anderson | Apr 1994 | A |
5320585 | Kato | Jun 1994 | A |
5352029 | Nagorcka | Oct 1994 | A |
5362142 | Katoh | Nov 1994 | A |
5368115 | Crabb | Nov 1994 | A |
5380076 | Hori | Jan 1995 | A |
5447365 | Muramatsu et al. | Sep 1995 | A |
5482364 | Edwards et al. | Jan 1996 | A |
5498188 | Deahr | Mar 1996 | A |
5511869 | Edwards et al. | Apr 1996 | A |
5513683 | Causa et al. | May 1996 | A |
5529267 | Giras | Jun 1996 | A |
5540489 | Muramatsu et al. | Jul 1996 | A |
5632537 | Yoshimura et al. | May 1997 | A |
5707123 | Grob | Jan 1998 | A |
5722745 | Courtemanche et al. | Mar 1998 | A |
5813733 | Hori et al. | Sep 1998 | A |
5866265 | Reilly et al. | Feb 1999 | A |
5894900 | Yamamoto et al. | Apr 1999 | A |
5904217 | Yamamoto et al. | May 1999 | A |
5984438 | Tsunoda et al. | Nov 1999 | A |
5997109 | Kautsch | Dec 1999 | A |
6000766 | Takeuchi et al. | Dec 1999 | A |
6024183 | Dietz et al. | Feb 2000 | A |
6030057 | Fikse | Feb 2000 | A |
6056656 | Kitano et al. | May 2000 | A |
6065818 | Fischer | May 2000 | A |
6068354 | Akiyama et al. | May 2000 | A |
6074025 | Juncker et al. | Jun 2000 | A |
6079802 | Nishimura et al. | Jun 2000 | A |
6095275 | Shaw | Aug 2000 | A |
6120405 | Oertley et al. | Sep 2000 | A |
6129426 | Tucker | Oct 2000 | A |
6139121 | Muramatsu | Oct 2000 | A |
6153686 | Granatowicz et al. | Nov 2000 | A |
6170925 | Ono | Jan 2001 | B1 |
6176557 | Ono | Jan 2001 | B1 |
6186604 | Fikse | Feb 2001 | B1 |
6193335 | Edwards | Feb 2001 | B1 |
6206492 | Moser | Mar 2001 | B1 |
6224172 | Goodwin | May 2001 | B1 |
6241327 | Gleasman et al. | Jun 2001 | B1 |
6259361 | Robillard et al. | Jul 2001 | B1 |
6296329 | Rodgers et al. | Oct 2001 | B1 |
6299264 | Kautsch et al. | Oct 2001 | B1 |
6300396 | Tsunoda et al. | Oct 2001 | B1 |
6352320 | Bonko et al. | Mar 2002 | B1 |
6386652 | Bonko | May 2002 | B1 |
6386653 | Brandenburger | May 2002 | B1 |
6386654 | Singer et al. | May 2002 | B1 |
6416142 | Oertley | Jul 2002 | B1 |
6474756 | Hori et al. | Nov 2002 | B2 |
6494548 | Courtemanche | Dec 2002 | B2 |
6536852 | Katayama et al. | Mar 2003 | B2 |
6536853 | Katayama et al. | Mar 2003 | B2 |
6568769 | Watanabe et al. | May 2003 | B1 |
6581449 | Brown et al. | Jun 2003 | B1 |
D476599 | Whittington | Jul 2003 | S |
6588862 | Pringiers | Jul 2003 | B1 |
6637276 | Adderton et al. | Oct 2003 | B2 |
6652043 | Oertley | Nov 2003 | B2 |
6671609 | Nantz et al. | Dec 2003 | B2 |
6698850 | Ueno | Mar 2004 | B2 |
D488171 | Juncker et al. | Apr 2004 | S |
6716012 | Yovichin et al. | Apr 2004 | B2 |
6733091 | Deland et al. | May 2004 | B2 |
6733093 | Deland et al. | May 2004 | B2 |
6769746 | Rodgers et al. | Aug 2004 | B2 |
6800236 | Kurata et al. | Oct 2004 | B1 |
6848757 | Ueno | Feb 2005 | B2 |
6874586 | Ueno | Feb 2005 | B2 |
D505136 | Brazier | May 2005 | S |
6904986 | Brazier | Jun 2005 | B2 |
6913329 | Rodgers et al. | Jul 2005 | B1 |
6921197 | Aubel et al. | Jul 2005 | B2 |
6923515 | Konickson et al. | Aug 2005 | B2 |
6932442 | Hori | Aug 2005 | B2 |
6935708 | Courtemanche | Aug 2005 | B2 |
6948784 | Wodrich et al. | Sep 2005 | B2 |
6962222 | Kirihara | Nov 2005 | B2 |
6964462 | Katoh et al. | Nov 2005 | B2 |
6974196 | Gagne et al. | Dec 2005 | B2 |
7001294 | Fukuda | Feb 2006 | B2 |
7032636 | Salakari | Apr 2006 | B2 |
7077216 | Juncker | Jul 2006 | B2 |
D528133 | Brazier | Sep 2006 | S |
7114788 | Deland et al. | Oct 2006 | B2 |
7131508 | Brazier | Nov 2006 | B2 |
7137675 | Simula et al. | Nov 2006 | B1 |
7197922 | Rimkus et al. | Apr 2007 | B2 |
7202777 | Tsuji et al. | Apr 2007 | B2 |
7222924 | Christianson | May 2007 | B2 |
7229141 | Dandurand et al. | Jun 2007 | B2 |
7252348 | Gingras | Aug 2007 | B2 |
7293844 | Uchiyama | Nov 2007 | B2 |
D556791 | Brazier | Dec 2007 | S |
7316251 | Kogure et al. | Jan 2008 | B2 |
7325888 | Fujita et al. | Feb 2008 | B2 |
7367637 | Gleasman | May 2008 | B2 |
7407236 | Fukushima | Aug 2008 | B2 |
7413268 | Kato et al. | Aug 2008 | B2 |
7416266 | Soucy et al. | Aug 2008 | B2 |
7497530 | Bessette | Mar 2009 | B2 |
7567171 | Dufournier | Jul 2009 | B2 |
7597161 | Brazier | Oct 2009 | B2 |
D603880 | Brazier | Nov 2009 | S |
7625050 | Bair | Dec 2009 | B2 |
7676307 | Schmitt et al. | Mar 2010 | B2 |
7708092 | Despres | May 2010 | B2 |
7729823 | Ruoppolo | Jun 2010 | B2 |
7740094 | Pelletier | Jun 2010 | B2 |
7798260 | Albright et al. | Jun 2010 | B2 |
7778741 | Rao et al. | Aug 2010 | B2 |
7779947 | Stratton | Aug 2010 | B2 |
7784884 | Soucy et al. | Aug 2010 | B2 |
7823987 | Dandurand et al. | Nov 2010 | B2 |
7866766 | Berg | Jan 2011 | B2 |
7914088 | Bair | Mar 2011 | B2 |
7914089 | Bair | Mar 2011 | B2 |
D644670 | Barrelmeyer | Sep 2011 | S |
8122581 | Hurst et al. | Feb 2012 | B1 |
8327960 | Couture et al. | Dec 2012 | B2 |
8342257 | Rosenboom | Jan 2013 | B2 |
D680561 | Zuchoski et al. | Apr 2013 | S |
D681071 | Zuchoski et al. | Apr 2013 | S |
D683371 | Aube | May 2013 | S |
D683769 | Aube | Jun 2013 | S |
8567876 | Wellman | Oct 2013 | B2 |
8628152 | Delisle et al. | Jan 2014 | B2 |
8736147 | Wang | May 2014 | B1 |
D711928 | Brazier | Aug 2014 | S |
8985250 | Lussier et al. | Mar 2015 | B1 |
9033431 | Zuchoski et al. | May 2015 | B1 |
9067631 | Lussier et al. | Jun 2015 | B1 |
9334001 | Lussier et al. | May 2016 | B2 |
9855843 | Vik et al. | Jan 2018 | B2 |
9880075 | Finch et al. | Jan 2018 | B2 |
9975554 | Lussier et al. | May 2018 | B2 |
10006836 | Monty et al. | Jun 2018 | B2 |
10272959 | Zuchoski et al. | Apr 2019 | B2 |
10328982 | Lussier et al. | Jun 2019 | B2 |
20020070607 | Edwards | Jun 2002 | A1 |
20020140288 | Herberger et al. | Oct 2002 | A1 |
20020145335 | Soucy et al. | Oct 2002 | A1 |
20030019133 | Hori | Jan 2003 | A1 |
20030034189 | Lemke et al. | Feb 2003 | A1 |
20030034690 | Kazutoshi | Feb 2003 | A1 |
20030080618 | Krishnan et al. | May 2003 | A1 |
20030089534 | Kanzler et al. | May 2003 | A1 |
20040004395 | Soucy et al. | Jan 2004 | A1 |
20040070273 | Safe et al. | Apr 2004 | A1 |
20040084962 | Soucy et al. | May 2004 | A1 |
20040130212 | Ishibashi | Jul 2004 | A1 |
20040135433 | Inaoka et al. | Jul 2004 | A1 |
20050035654 | Tamaru et al. | Feb 2005 | A1 |
20050056468 | Tucker | Mar 2005 | A1 |
20050103540 | Lavoie | May 2005 | A1 |
20050104449 | Lavoie et al. | May 2005 | A1 |
20050104450 | Gagne et al. | May 2005 | A1 |
20050168069 | Ueno | Aug 2005 | A1 |
20060060395 | Boivin et al. | Mar 2006 | A1 |
20060090558 | Raskas | May 2006 | A1 |
20060103236 | Soucy et al. | May 2006 | A1 |
20060124366 | LeMasne De Chermont | Jun 2006 | A1 |
20060144480 | Takayama | Jul 2006 | A1 |
20060175108 | Kubota | Aug 2006 | A1 |
20060220456 | Sugahara | Oct 2006 | A1 |
20060248484 | Baumgartner et al. | Nov 2006 | A1 |
20060273660 | Dandurand et al. | Dec 2006 | A1 |
20070046100 | McGilvrey et al. | Mar 2007 | A1 |
20070075456 | Feldmann | Apr 2007 | A1 |
20070126286 | Feldmann et al. | Jun 2007 | A1 |
20070159004 | St-Amant | Jul 2007 | A1 |
20070251621 | Prost | Nov 2007 | A1 |
20070252433 | Fujita | Nov 2007 | A1 |
20080007118 | Fujita | Jan 2008 | A1 |
20080073971 | Paradis et al. | Mar 2008 | A1 |
20080084111 | Rainer | Apr 2008 | A1 |
20080100134 | Soucy et al. | May 2008 | A1 |
20080136255 | Feldmann et al. | Jun 2008 | A1 |
20080169147 | Brazier | Jul 2008 | A1 |
20080179124 | Stratton | Jul 2008 | A1 |
20080203813 | Doyle | Aug 2008 | A1 |
20080211300 | Matsuo et al. | Sep 2008 | A1 |
20080211301 | Jee et al. | Sep 2008 | A1 |
20090085398 | Maltais | Apr 2009 | A1 |
20090102283 | Choi | Apr 2009 | A1 |
20090166101 | Wenger et al. | Jul 2009 | A1 |
20090195062 | Uchida | Aug 2009 | A1 |
20090302676 | Brazier | Dec 2009 | A1 |
20090302677 | Sugihara | Dec 2009 | A1 |
20090309415 | Shimozono | Dec 2009 | A1 |
20090326109 | Kameda et al. | Dec 2009 | A1 |
20100012399 | Hansen | Jan 2010 | A1 |
20100033010 | Shimozono | Feb 2010 | A1 |
20100079238 | Gravelle | Apr 2010 | A1 |
20100095506 | Bair | Apr 2010 | A1 |
20100096915 | Hagio | Apr 2010 | A1 |
20100096917 | Bair | Apr 2010 | A1 |
20100121644 | Wellman | May 2010 | A1 |
20100133019 | Muemken | Jun 2010 | A1 |
20100139994 | Hansen | Jun 2010 | A1 |
20100191417 | Murahashi et al. | Jul 2010 | A1 |
20100194553 | Mizutani et al. | Aug 2010 | A1 |
20100230185 | Mallette et al. | Sep 2010 | A1 |
20100253138 | Despres | Oct 2010 | A1 |
20100256946 | Carresjö et al. | Oct 2010 | A1 |
20100283317 | Soucy et al. | Nov 2010 | A1 |
20110068620 | Delisle et al. | Mar 2011 | A1 |
20110121644 | Wellman | May 2011 | A1 |
20110148189 | Courtemanche et al. | Jun 2011 | A1 |
20110301825 | Grajkowski et al. | Dec 2011 | A1 |
20110315459 | Zuchoski et al. | Dec 2011 | A1 |
20120001478 | Zuchoski et al. | Jan 2012 | A1 |
20120056473 | Hashimoto et al. | Mar 2012 | A1 |
20120104840 | Zuchoski et al. | May 2012 | A1 |
20120242142 | Kautsch et al. | Sep 2012 | A1 |
20120242143 | Feldmann | Sep 2012 | A1 |
20120253590 | Fink | Oct 2012 | A1 |
20120306916 | Marumoto | Dec 2012 | A1 |
20130033271 | Woodard | Feb 2013 | A1 |
20130073157 | Person et al. | Mar 2013 | A1 |
20130082846 | McKinley et al. | Apr 2013 | A1 |
20130126196 | Rosenboom | May 2013 | A1 |
20130134772 | Dandurand et al. | May 2013 | A1 |
20130134773 | Dandurand et al. | May 2013 | A1 |
20130162016 | Lajoie et al. | Jun 2013 | A1 |
20130245911 | Nakajima et al. | Sep 2013 | A1 |
20130255354 | Hawkins et al. | Oct 2013 | A1 |
20130325266 | Padilla et al. | Dec 2013 | A1 |
20140105481 | Hasselbusch et al. | Apr 2014 | A1 |
20140125117 | Weeks et al. | May 2014 | A1 |
20140180534 | Son | Jun 2014 | A1 |
20140182960 | Bedard et al. | Jul 2014 | A1 |
20140288763 | Bennett et al. | Sep 2014 | A1 |
20140324301 | Rebinsky | Oct 2014 | A1 |
20150042152 | Lussier et al. | Feb 2015 | A1 |
20150042153 | Lussier et al. | Feb 2015 | A1 |
20150107975 | Chen | Apr 2015 | A1 |
20150191173 | Lussier et al. | Jul 2015 | A1 |
20160059779 | Vandendriessche | Mar 2016 | A1 |
20160121945 | Rust et al. | May 2016 | A1 |
20160332682 | Lussier et al. | Nov 2016 | A1 |
20170087987 | Vik et al. | Mar 2017 | A1 |
20170174277 | Zuchoski et al. | Jun 2017 | A1 |
20170177011 | Garvin et al. | Jun 2017 | A1 |
20180043949 | Boily | Feb 2018 | A1 |
20180093724 | Boily | Apr 2018 | A1 |
20180172556 | Piovan et al. | Jun 2018 | A1 |
20181900450 | Richard et al. | Jul 2018 | |
20180265145 | Todd | Sep 2018 | A1 |
20180364744 | Garvin et al. | Dec 2018 | A1 |
20190351957 | Zuchoski et al. | Nov 2019 | A1 |
Number | Date | Country |
---|---|---|
2606039 | Apr 2009 | CA |
2838935 | Jan 2013 | CA |
2947575 | May 2017 | CA |
20207342 | Aug 2002 | DE |
0578504 | Jan 1994 | EP |
1008509 | Jun 2000 | EP |
1211169 | May 2002 | EP |
1260429 | Nov 2002 | EP |
1273504 | Jan 2003 | EP |
1283152 | Feb 2003 | EP |
1325820 | Sep 2004 | EP |
1506913 | Feb 2005 | EP |
1882627 | Jan 2008 | EP |
1953070 | Aug 2008 | EP |
2014542 | Jan 2009 | EP |
2119620 | Nov 2009 | EP |
3313717 | Aug 2018 | EP |
2229410 | Sep 1990 | GB |
02074476 | Mar 1990 | JP |
11129946 | May 1999 | JP |
2000053037 | Feb 2000 | JP |
2003011860 | Jan 2003 | JP |
2003089366 | Mar 2003 | JP |
2004330830 | Nov 2004 | JP |
2006103482 | Apr 2006 | JP |
2007022304 | Feb 2007 | JP |
2009061829 | Mar 2009 | JP |
2009248924 | Oct 2009 | JP |
2010018091 | Jan 2010 | JP |
2010047040 | Mar 2010 | JP |
2010089729 | Apr 2010 | JP |
20120055071 | May 2012 | KR |
01446017 | Dec 1988 | SU |
2008108439 | Sep 2008 | WO |
2009105892 | Sep 2009 | WO |
2009106617 | Sep 2009 | WO |
WO2013002781 | Jan 2013 | WO |
2014056089 | Apr 2014 | WO |
WO2014168851 | Oct 2014 | WO |
2016138592 | Sep 2016 | WO |
2017000068 | Jan 2018 | WO |
WO2019109191 | Jun 2019 | WO |
WO2020041897 | Mar 2020 | WO |
WO2020041899 | Mar 2020 | WO |
Entry |
---|
U.S. Appl. No. 13/495,823, filed Jun. 2012, Kautsch. |
U.S. Appl. No. 61/808,148, filed Apr. 2013, de Boe et al. |
International Search Report & Written Opinion dated Sep. 29, 2016 in connection with PCT/CA2016/050760, 8 pages. |
Restriction Requirement dated Jan. 27, 2014 in connection with U.S. Appl. No. 13/326,010, 5 pages. |
Non-Final Office Action dated Jun. 2, 2014 in connection with U.S. Appl. No. 13/326,010, 6 pages. |
Notice of Allowance dated Nov. 14, 2014 in connection with U.S. Appl. No. 13/326,010, 7 pages. |
Office Action dated Apr. 5, 2016 in connection with U.S. Appl. No. 14/665,075, 5 pages. |
Office Action dated Jan. 12, 2017 in connection with U.S. Appl. No. 14/665,075, 11 pages. |
Office Action dated Jun. 12, 2017 in connection with U.S. Appl. No. 14/665,075, 9 pages. |
Office Action dated Oct. 11, 2017 in connection with U.S. Appl. No. 14/665,075, 6 pages. |
Restriction Requirement dated Jun. 9, 2014 in connection with U.S. Appl. No. 13/326,278, 7 pages. |
Non-Final Office Action dated Mar. 6, 2015 in connection with U.S. Appl. No. 13/326,278, 16 pages. |
Final Office Action dated Jun. 26, 2015 in connection with U.S. Appl. No. 13/326,278, 15 pages. |
Notice of Allowance dated Jan. 11, 2016 in connection with U.S. Appl. No. 13/326,278, 7 pages. |
Examiner's Report dated Jan. 11, 2018 in connection with Canadian Patent Application No. 2,978,482, 3 pages. |
Examiner's Report dated Feb. 1, 2018 in connection with Canadian Patent Application No. 2,991,072, 3 pages. |
Non-Final Office Action dated Dec. 1, 2016 in connection with U.S. Appl. No. 15/139,572, 5 pages. |
Final Office Action dated Sep. 8, 2017 in connection with U.S. Appl. No. 15/139,572, 14 pages. |
Non-Final Office Action dated May 17, 2018 in connection with U.S. Appl. No. 15/454,881, 8 pages. |
Notice of Allowance dated May 30, 2018 in connection with U.S. Appl. No. 15/139,572, 10 pages. |
Examiner's report dated Aug. 28, 2018 in connection with Canadian Patent application No. 2,991,072, 4 pages. |
Office Action dated Sep. 11, 2018 in connection with U.S. Appl. No. 15/139,572, 7 pages. |
Final Office Action dated Aug. 24, 2018 in connection with U.S. Appl. No. 15/454,881, 30 pages. |
Interview Summary dated Nov. 2, 2018 in connection with U.S. Appl. No. 15/454,881, 3 pages. |
Notice of Allowance dated Dec. 17, 2018 in connection with U.S. Appl. No. 15/454,881, 5 pages. |
Interview Summary dated Dec. 10, 2018 in connection with U.S. Appl. No. 15/139,572, 3 pages. |
Supplementary Search Report dated Jan. 2, 2019 in connection with the European Patent Application No. 16816886, 1 page. |
Non-Final Office Action dated Apr. 9, 2019 in connection with U.S. Appl. No. 15/724,733, 56 pages. |
Communication pursuant to Article 94 (3) EPC dated Aug. 22, 2019 in connection with European Patent Application No. 16816886.2-1013, 4 pages. |
Final Office Action dated Aug. 19, 2019 in connection with U.S. Appl. No. 15/724,733, 18 pages. |
International Search Report and Written Opinion dated Oct. 29, 2019 in connection with International PCT Application No. PCT/CA2019/051219, 9 pages. |
International Search Report and Written Opinion dated Nov. 12, 2019 in connection with International PCT Application No. PCT/CA2019/051217, 8 pages. |
Non-Final Office Action dated Dec. 30, 2019 in connection with U.S. Appl. No. 15/740,976, 16 pages. |
Non-Final Office Action dated Mar. 20, 2018 in connection with U.S. Appl. No. 15/139,572, 7 pages. |
Restriction Requirement dated Oct. 25, 2019 in connection with U.S. Appl. No. 15/555,148, 7 pages. |
Office Action dated Jan. 24, 2020 in connection with U.S. Appl. No. 15/555,148, 57 pages. |
Communication under Rule 71(3) EPC dated Mar. 16, 2020 in connection with European Patent Application 16758408.5, 7 pages. |
Communication under Rule 71(3) EPC dated May 5, 2020 in connection with European Patent Application No. 16816886.2, 113 pages. |
Ex Parte Quayle dated Sep. 11, 2018, in connection with U.S. Appl. No. 15/139,572, 7 pages. |
Notice of Allowance dated May 20, 2020 in connection with U.S. Appl. No. 15/740,976, 12 pages. |
Final Office Action dated Jul. 6, 2020, in connection with U.S. Appl. No. 15/555,148, 20 pages. |
Notice of Allowance dated Apr. 2, 2020 in connection with U.S. Appl. No. 15/724,733, 5 pages. |
Bair Products, Inc. “Larry Lugs—Patented Bolt-On-Replacement Drive Lugs”, http://www.bairproductsinc.com/products/larry_lugs.html, Jan. 1, 2011, 2 pages. |
Bridgestone Industrial Products America Inc. “Stay on the Right Track. New Generation Features Rubber Tracks for Excavators”, Brochure 2009, 12 pages. |
Bridgestone Industrial Products America Inc., “Stay on the Right Track. Rubber Tracks for Track Loaders”, Brochure 2009, 6 pages. |
Camoplast Inc. “ATV/UTV Track Systems”, 2009-2010 Catalog, 8 pages. |
CAN-AM BRP, “Parts & Accessories—Track Systems”, Parts, Accessories & Riding Gear Catalogue, p. 66 (2011). |
Red Roo Solutions Pty Ltd—World Class Solutions for the Earth Moving Industry, “Save thousands of dollars and add thousands of hours to your tracks with Larry Lugs”, http://www.redroosolutions.com.au/larrylugs.html, Jun. 8, 2009, 3 pages. |
Story by Staff, BRP upgrades Apache ATV track system for Outlander—Apache system features larger footprint and power steering mode, atv.com, http://www.atc.com/news/brp-upgrades-apache-atv-track-system-for-outlander-1481.html 2 pages (Nov. 24, 2009). |
Examiner's report dated Jan. 16, 2019 in connection with Canadian Patent Application No. 2,991,072, 3 pages. |
Extended European Search Report dated Jan. 9, 2019 in connection with European Patent Application No. 16816886.2, 7 pages. |
Extended European Search Report and Written Opinion dated Sep. 13, 2013 in connection, with European Patent Application No. 10835318.6, 8 pages. |
Extended European Search Report dated Mar. 20, 2019 in connection with European Patent Application No. 16758408.5, 8 pages. |
Final Office Action dated Mar. 5, 2015 in connection with U.S. Appl. No. 13/325,796, 33 pages. |
International Search Report dated Mar. 5, 2019 in connection with International PCT application No. PCT/CA2018/051567, 4 pages. |
Interview Summary Report dated Sep. 12, 2015 in connection with U.S. Appl. No. 13/326,278, 3 pages. |
Non-Final Office Action dated Feb. 21, 2017 in connection with U.S. Appl. No. 14/721,326, 12 pages. |
Non-Final Office Action dated Jan. 11, 2017 in connection with U.S. Appl. No. 14/886,327, 11 pages. |
Non-Final Office Action dated Jul. 10, 2014 in connection with U.S. Appl. No. 13/424,459, 11 pages. |
Non-Final Office Action dated Jul. 14, 2014 in connection with U.S. Appl. No. 13/112,840, 16 pages. |
Non-Final Office Action dated Sep. 22, 2014 in connection with U.S. Appl. No. 13/325,796, 25 pages. |
Non-Final Office Action dated Sep. 29, 2014 in connection with U.S. Appl. No. 13/325,783, 27 pages. |
Notice of Allowance dated Feb. 15, 2019 in connection with U.S. Appl. No. 15/139,572, 1 pages. |
Notice of Allowance dated Jan. 19, 2018 in connection with U.S. Appl. No. 14/665,075, 8 pages. |
Notice of Allowance dated Mar. 4, 2015 in connection with U.S. Appl. No. 13/325,783, 13 pages. |
Office Action dated Nov. 9, 2012, in connection with U.S. Appl. No. 29/405,414, 9 pages. |
Office Action dated Nov. 9, 2012, in connection with U.S. Appl. No. 29/405,416, 9 pages. |
Office Action dated Nov. 9, 2012, in connection with U.S. Appl. No. 29/405,417, 10 pages. |
Restriction Requirement dated Sep. 26, 2013 in connection with U.S. Appl. No. 13/326,010, 6 pages. |
Written Opinion dated Mar. 5, 2019 in connection with International PCT application No. PCT/CA2018/051567, 6 pages. |
Communication pursuant to Rule 63(1) EPC dated Nov. 8, 2018 in connection with European Patent Application No. 16758408.5, 4 pages. |
Final Office Action dated Dec. 23, 2014 in connection with U.S. Appl. No. 13/326,132, 15 pages. |
Final Office Action dated Dec. 31, 2015 in connection with U.S. Appl. No. 13/326,132, 15 pages. |
Final Office Action dated Mar. 27, 2014 in connection with U.S. Appl. No. 13/170,753, 16 pages. |
Non-Final Office Action dated Jul. 10, 2014 in connection with U.S. Appl. No. 13/326,110, 16 pages. |
Non-Final Office Action dated Jun. 24, 2015 in connection with U.S. Appl. No. 13/326,132, 17 pages. |
Non-Final Office Action dated Oct. 2, 2013 in connection with U.S. Appl. No. 13/170,753, 15 pages. |
Notice of Allowance dated Jan. 21, 2015 in connection with U.S. Appl. No. 13/326,110, 6 pages. |
Notice of Allowance dated Oct. 24, 2014 in connection with U.S. Appl. No. 13/170,753, 5 pages. |
Number | Date | Country | |
---|---|---|---|
20180237020 A1 | Aug 2018 | US |
Number | Date | Country | |
---|---|---|---|
61422949 | Dec 2010 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14665075 | Mar 2015 | US |
Child | 15958156 | US | |
Parent | 13326010 | Dec 2011 | US |
Child | 14665075 | US |