Track system with a support member

Information

  • Patent Grant
  • 11506272
  • Patent Number
    11,506,272
  • Date Filed
    Thursday, February 18, 2021
    3 years ago
  • Date Issued
    Tuesday, November 22, 2022
    a year ago
Abstract
A support member may be connectable in a removable and adjustable manner to a track assembly. The support member may include an electrical connector, a contact, and a biasing member. The electrical connector may be adjustable to a first position and a second position. The contact may be connected to the electrical connector and configured to engage a conductor of said track assembly. The contact may be engageable with said conductor when the electrical connector is in the first position. The contact may not be engageable with said conductor when the electrical connector is in the second position. The biasing member may be configured to bias the contact into engagement with said conductor when the electrical connector is in the first position.
Description
TECHNICAL FIELD

The present disclosure generally relates to a track system and/or support members configured for connection with and removal from tracks, including support members and tracks that may, for example, be utilized in connection with vehicle seats.


BACKGROUND

This background description is set forth below for the purpose of providing context only. Therefore, any aspect of this background description, to the extent that it does not otherwise qualify as prior art, is neither expressly nor impliedly admitted as prior art against the instant disclosure.


Some track systems may have support members that may not provide sufficient functionality, may be complex to operate and/or assemble, and/or may not operate efficiently. For example, some support members may not provide a sufficient connection between an electrical contact and a corresponding conductor of a track.


There is a desire for solutions/options that minimize or eliminate one or more challenges or shortcomings of support members configured for connection with and removal from tracks. The foregoing discussion is intended only to illustrate examples of the present field and is not a disavowal of scope.


SUMMARY

In embodiments, a support member may be connectable in a removable and adjustable manner to a track assembly. The support member may include an electrical connector, a contact, and a biasing member. The electrical connector may be adjustable to a first position and a second position. The contact may be connected to the electrical connector and configured to engage a conductor of said track assembly. The contact may be engageable with said conductor when the electrical connector is in the first position. The contact may not be engageable with said conductor when the electrical connector is in the second position. The biasing member may be configured to bias the contact into engagement with said conductor when the electrical connector is in the first position.


In embodiments, a track system may include a track assembly and a support assembly. The track assembly may include a conductor. The support assembly may include a support member connectable in a removable and adjustable manner to the track assembly. The support member may include an electrical connector, a contact, and a biasing member. The electrical connector may be adjustable to a first position and a second position. The contact may be connected to the electrical connector and configured to engage the conductor of the track assembly. The contact and the conductor may be engageable with one another when the electrical connector is in the first position. The contact and the conductor may not be engageable with one another when the electrical connector is in the second position. The biasing member may be configured to bias the contact into engagement with the conductor when the electrical connector is in the first position.


In embodiments, a track system may include a track assembly and a support assembly. The track assembly may include a plurality of conductors. The support assembly may include a support member connectable in a removable and adjustable manner to the track assembly. The support member may include an electrical connector, a plurality of contacts, and a plurality of biasing members. The electrical connector may be adjustable to a first position and a second position. The plurality of contacts may be connected to the electrical connector and may be configured to engage a corresponding conductor of the plurality of conductors. The plurality of contacts and the plurality of conductors may be engageable with one another when the electrical connector is in the first position. The plurality of contacts and the plurality of conductors may not be engageable with one another when the electrical connector is in the second position. The plurality of biasing members may be configured to bias a corresponding contact of the plurality of contacts into engagement with the corresponding conductor when the electrical connector is in the first position.


The foregoing and other potential aspects, features, details, utilities, and/or advantages of examples/embodiments of the present disclosure will be apparent from reading the following description, and from reviewing the accompanying drawings.





BRIEF DESCRIPTION OF THE DRAWINGS

While the claims are not limited to a specific illustration, an appreciation of various aspects may be gained through a discussion of various examples. The drawings are not necessarily to scale, and certain features may be exaggerated or hidden to better illustrate and explain an innovative aspect of an example. Further, the exemplary illustrations described herein are not exhaustive or otherwise limiting, and are not restricted to the precise form and configuration shown in the drawings or disclosed in the following detailed description. Exemplary illustrations are described in detail by referring to the drawings as follows:



FIG. 1 is a cross sectional view generally illustrating an embodiment of a track system according to teachings of the present disclosure.



FIG. 2 is a cross-sectional view generally illustrating an embodiment of a track according to teachings of the present disclosure.



FIG. 3 is a perspective view generally illustrating an embodiment of a conductor according to teachings of the present disclosure.



FIG. 4 is a perspective view generally illustrating an embodiment of an insulator according to teachings of the present disclosure.



FIG. 5 is a cross sectional view generally illustrating an embodiment of an electrical connector in a first position according to teachings of the present disclosure.



FIG. 6A is a cross sectional front view generally illustrating an embodiment of an electrical connector in a first position according to teachings of the present disclosure.



FIG. 6B is a side view generally illustrating the embodiment of an electrical connector of FIG. 6A.



FIG. 6C is a perspective view generally illustrating the embodiment of the electrical connector of FIG. 6A connected to a support member.



FIGS. 7 and 8 are top views generally illustrating embodiments of electrical contacts according to teachings of the present disclosure.



FIGS. 9A and 9B generally illustrate embodiments of an electrical contact in a first rotational position and a second rotational position, respectively, according to teachings of the present disclosure.



FIGS. 10A and 10B generally illustrate embodiments of an electrical contact in a first rotational position and a second rotational position, respectively, according to teachings of the present disclosure.



FIG. 11 generally illustrate an orientation of an embodiment of an electrical contact in a first rotational position and a second rotational position according to teachings of the present disclosure.



FIG. 12 is a view generally illustrating an embodiment of an electrical connector and a conductor when the electrical connector is in a second position according to teachings of the present disclosure.



FIG. 13 is a view generally illustrating the electrical connector and the conductor of FIG. 12 when the electrical connector is rotating from a second position toward a first position according to teachings of the present disclosure.



FIGS. 14A-14C are views generally illustrating the electrical connector and the conductor of FIG. 12 when the electrical connector is in a first position according to teachings of the present disclosure.



FIG. 15A is a view generally illustrating an embodiment of an electrical connector and electrical contacts when the electrical connector is between a first position and a second position.



FIGS. 15B and 15C are views generally illustrating an embodiment of an electrical connector and electrical contacts when the electrical connector is in a second position according to teachings of the present disclosure.



FIGS. 16A-16C are views generally illustrating embodiments of an electrical connector and electrical contracts when the electrical connector is in a first position according to teachings of the present disclosure.



FIG. 17A is a perspective view generally illustrating an embodiment of an electrical contact engaged with a conductor according to teachings of the present disclosure.



FIG. 17B is a perspective view generally illustrating an embodiment of a plurality of electrical contacts engaged with respective conductors according to teachings of the present disclosure.



FIG. 18A is a side view generally illustrating rotational movement of an embodiment of an electrical contact according to teachings of the present disclosure.



FIG. 18B is a perspective view generally illustrating an embodiment of an electrical connector with a plurality of electrical contacts and embodiments of conductors according to teachings of the present disclosure.



FIG. 19 is a view generally illustrating an embodiment of an electrical connector including an adjustment portion according to teachings of the present disclosure.



FIG. 20A is a view generally illustrating an embodiment of support member according to teachings of the present disclosure.



FIG. 20B is a view generally illustrating an embodiment of a slider according to teachings of the present disclosure.



FIGS. 21A and 21B are views generally illustrating an embodiment of an electrical connector including an adjustment portion in a second position according to teachings of the present disclosure.



FIGS. 22 and 23 are views generally illustrating an embodiment of an electrical connector including an adjustment portion between a second position and a first position according to teachings of the present disclosure.



FIG. 24 is a view generally illustrating an embodiment of an electrical connector including an adjustment portion in a first position according to teachings of the present disclosure.





DETAILED DESCRIPTION

Reference will now be made in detail to embodiments of the present disclosure, examples of which are described herein and illustrated in the accompanying drawings. While the present disclosure will be described in conjunction with embodiments and/or examples, they do not limit the present disclosure to these embodiments and/or examples. On the contrary, the present disclosure covers alternatives, modifications, and equivalents.


In embodiments, such as generally illustrated in FIG. 1, a track system 100 may include a support assembly 102 and/or a track/rail assembly 104. A track assembly 104 may be connected to and/or disposed in a mounting surface 106 (e.g., a floor of a vehicle 108) and may facilitate selective connection of one or more support assemblies to the mounting surface 106. A track assembly 104 may facilitate adjustment of one or more support assemblies 102, such as relative to the mounting surface 106 and/or within a vehicle 108. A support assembly 102 and/or a track assembly 104 may include and/or be connected to an electrical system 110 (e.g., of a vehicle 108), which may include a controller 112 and/or a power source 114.


In embodiments, such as generally illustrated in FIG. 1, a track assembly 104 may include one or more tracks/rails 120 to which a support assembly 102 may be connectable and adjustable (e.g., slidable). A track 120 may include one or more metal and/or conductive materials (e.g., steel, aluminum, etc.). A track assembly 104 may include one or more track sets 122, each including one or more tracks 120 that may be configured to engage a corresponding portion of a support assembly 102. Several tracks 120 and/or track sets 122 may be connected to a portion of the mounting surface 106 (e.g., a floor, wall, ceiling, etc.) and disposed adjacent to one another and/or may extend parallel to one another. One or more tracks 120, 120′ may be structured identically to one other and/or differently from one another. Tracks 120, 120′ may, for example, be offset from each other in a lateral/transverse direction (e.g., a Y-direction) such that the tracks 120, 120′ may be generally aligned with respective outer sides of the support assembly 102.


With embodiments, such as generally illustrated in FIG. 2, a track 120 may be an elongated member extending in the X-direction. A track 120 may have a track base portion 124 and two track wall portions (e.g., a first track wall portion 126 and a second track wall portion 128) protruding from the track base portion 124 to form a generally U shaped cross-section in a Y-Z plane (e.g., in a plane perpendicular to an X-direction). The U-shaped cross section may define a track receptacle 130 configured to receive and at least temporarily retain a portion of a support assembly 102. A first track lip 132 and a second track lip 134 may project toward one another from the first track wall portion 126 and the second track wall portion 128, respectively. A track opening 136 may be defined between the two track lips 132, 134. A portion of a support assembly 102 may be inserted into the track opening 136 and selectively retained within the track receptacle 130. A track 120 may include an insulator receptacle 138 configured to receive and retain an insulator 170. An insulator receptacle 138 may open substantially in a Y-direction. An insulator receptacle 138, 138′ may be defined by a track wall portion 126, 128, a track lip 132, 134, and/or one or more track projections 140A, 140B, 140C extending from a track wall portion 126, 128. Additionally and/or alternatively, an insulator receptacle 138 may be defined by a track wall portion 126, 128, a track lip 132, 134, and/or a track base portion 124.


In embodiments, such as generally illustrated in FIGS. 1 and 3, a track 120 may include one or more electrical conductors 150 (e.g., bus bars). A conductor 150 may be operatively connected to a controller 112 and/or a power source 114. A conductor 150 may be connected to a first track wall portion 126 and/or a second track wall portion 128 of a track 120, and/or any other portion of a track 120. A conductor 150 may be disposed and connected to a track 120 such that the conductor 150 is able to make contact with (e.g., electrically connect with) a corresponding electrical contact 220 of a support assembly 102. With examples, a conductor 150 may be an elongated member extending in the X-direction. A conductor 150 may have a conductor base portion 152 and two conductor wall portions (e.g., a conductor top portion 154 and a conductor bottom portion 156) protruding from the conductor base portion 152 to form a generally U-shaped cross-section in a Y-Z plane that opens substantially in the Y-direction. In examples, such as generally illustrated in FIG. 17B, a conductor 150 may have a singular, curved wall portion 158 and/or may generally have a C-shaped cross-section. When engaged by an electrical contact 220, a curved wall portion 158 and/or a C-shaped cross-section of a conductor 150 may guide and/or bias the electrical contact 220 toward a centralized position, in which a contact surface area between the electrical contact 220 and the conductor 160 may be greatest, and/or may facilitate alignment of the electrical contact 220 relative to a Y-direction and/or a Z-direction.


With embodiments, such as generally illustrated in FIGS. 1, 15B, 16A, 16B, and/or 17B, a track 120 may include a plurality of conductors 150, such as a first conductor 150A, a second conductor 150B, and/or a third conductor 150C. The first, second, and third conductors 150A, 150B, 150C may be arranged in a stacked configuration such that they are substantially aligned when viewed from a Z-direction and/or extend parallel to one another in the X-direction.


With embodiments, such as generally illustrated in FIGS. 1 and 4, a track 120 may include an insulator 170, that may, for example, include electrically insulative material. An insulator 170 may include a body/structure configured to receive and/or retain one or more conductors 150. An insulator 170 may be electrically insulative and/or may be configured to electrically insulate/isolate a conductor 150 from other portions of the track 120 and/or track assembly 104. An insulator 170 may be an elongated body that may extend in the X-direction. An insulator 170 may include one or more insulator recesses 172 configured to receive one or more conductors 150. A conductor 150 may slide and/or snap, for example, into an insulator recess 172. An insulator recess 172 may open in a Y-direction and/or may include a tapered opening 174 configured to engage one or more alignment protrusions 282 and/or electrical contacts 220 of an electrical connector 210, such as to guide the electrical contacts 220 into engagement, contact, and/or abutment with a corresponding conductor 150 and/or to facilitate proper alignment of an electrical connector 210 and/or the electrical contact 220 in the Z-direction. The insulator 170 may be disposed within the track receptacle 130 and/or may be connected to the first track wall portion 126 and/or the second track wall portion 128, and/or another portion of the track 120. The insulator 170 may be slid and/or snapped into an insulator receptacle 138 of a track 120.


With embodiments, such as generally illustrated in FIGS. 4, 15B, 16A, 16B, and/or 17B, an insulator 170 may include a plurality of insulator recesses 172 and/or a plurality of tapered openings 174, such as a first insulator recess 172A, a second insulator recess 172B, and/or a third insulator recess 172C that may each have a respective tapered opening 174A, 174B, 174C. The first insulator recess 172A, the second insulator recess 172B, and the third insulator recess 172C may be configured to receive and/or retain a first conductor 150A, a second conductor 150B, and/or a third conductor 150C, respectively. The first, second, and third insulator recesses 172A, 172B, 172C may be arranged in a stacked configuration such that they are substantially aligned when viewed from a Z-direction and/or extend parallel to one another in the X-direction.


In embodiments, such as generally illustrated in FIG. 1, a track assembly 104 may include a track set 122 including a first track 120 and a second track 120′. The first track 120 may include a track base portion 124, a first track wall portion 126, a second track wall portion 128, a first track lip 132, a second track lip 134, a track receptacle 130, a track opening 136, an insulator receptacle 138, and/or a plurality of track projections 140A, 140B, 140C. The first track 120 may include an insulator 170 with a plurality of insulator recesses 172A, 172B, 172C and/or a plurality of electrical conductors 150A, 150B, 150C. The second track 120′ may include a track base portion 124′, a first track wall portion 126′, a second track wall portion 128′, a first track lip 132′, a second track lip 134′, a track receptacle 130′, a track opening 136′, and/or a plurality of track projections 140A′, 140B′, 140C′, some or all of which may be configured in the same or similar manner as corresponding features of the first track 120. The second track 120′ may include an insulator receptacle 138′ defined by a track wall portion 126′ and track projections 140A′, 140B′. The second track 120′ may include an insulator 170′ with a single insulator recess 172′, a single tapered opening 174′, and a single conductor 150′. In other examples, the first track 120 and/or the insulator 170 may include the same or a similar configuration (e.g., a mirrored configuration) as the second track 120′ and/or the insulator 170′, or vice versa.


With embodiments, such as generally illustrated in FIG. 1, a support assembly 102 may include a support member 200. A support assembly 102 and/or a support member 200 may be adjusted and/or moved along a track 120 and/or the track assembly 104 (e.g., in an X-direction) manually and/or via an actuator (e.g., an electric motor operatively connected to the support assembly 102 and/or the track assembly 104). A support member 200 may be configured for connection with and removal (e.g., in a Z-direction) from a track assembly 104, such as in a plurality of locations along the track assembly 104. A support member 200 may, for example and without limitation, include, be connected to, and/or support a seat, such as a vehicle seat, and/or one or more other components (e.g., consoles, cargo, cargo racks, etc.). The support member 200 and/or one or more components connected thereto may include one or more electrical components 202 (e.g., controllers, power sources, seat heaters, airbags, air bladders, fans, etc.). A support member 200 may be configured as a base, a leg, and/or a support structure, for example.


With embodiments, such as generally illustrated in FIG. 1, a support member 200 may include one or more electrical connectors 210 that may be configured for selective connection with a track 120 of a track assembly 104. An electrical connector 210 may be configured to selectively electrically connect with a track assembly 104, such as with a conductor 150 (e.g., a bus bar) of the track assembly 104. Electrical connection between an electrical connector 210 and a conductor 150 may permit electrical power and/or one or more signals (e.g., control signals, sensor data signals, etc.) to be provided to and/or received from the support member 200 (e.g., an electrical component 202), such as via wires 204. An electrical connector 210 (and/or a housing thereof) may, for example, include an electrically insulative material (e.g., plastic, polymer, etc.).


In embodiments, such as generally illustrated in FIGS. 5, 6A, 6B, and/or 6C, an electrical connector 210 may include a first connector section 212 and/or a second connector section 214. A first connector section 212 may be connected to and extend from the support member 200, such as downward in a Z-direction. A second connector section 214 may be connected to the first connector section 212 and/or may extend obliquely or perpendicularly relative to the first connector section 212. The first connector section 212 and/or the second connector section 214 may, for example, include an electrically insulating material (e.g., a plastic). A first connector section 212 and/or a second connector section 214 may be configured to engage a track 120, such as via being inserted into a track receptacle 130 through a track opening 136. At least a portion of an electrical connector 210 (e.g., a first connector section 212) may engage and/or may be disposed in a recess 206 of a support member 200 (see, e.g., FIG. 6C). When engaged with a recess 206, an electrical connector 210 may be moveable (e.g., adjustable, slidable, etc.), at least to an extent, generally in a Z-direction to facilitate alignment of an electrical contact 220 and a conductor 150. Removal of an electrical connector 210 from a recess 206 (e.g., generally in a Z-direction) may be restricted and/or prevented by one or more portions of the electrical connector 210 (e.g., an adjustment portion 284) and/or by one or more portions of the support member 200, such as a protrusion, a flange, a stop, and/or a guide member/portion 208 for example.


With embodiments, such as generally illustrated in FIGS. 1 and/or 12-18B, an electrical connector 210 may be adjustable to a first position in which one or more electrical contacts 220 of the support assembly 102 are engaged within (e.g., in electrical contact with) a corresponding conductor 150 of the track assembly 104 (see, e.g., FIGS. 1, 14A-14C, 16A-16C, 17A, and 17B) and a second position in which the electrical contact(s) 220 is/are not engaged with the corresponding conductor 150 of the track assembly 104 (see, e.g., FIGS. 12, 15A-15C, 18A, and 18B). An electrical connector 210 may rotate to the first position and/or to the second position, such as about a connector rotational axis 216 (see, e.g., FIG. 13). The electrical connector 210 may, for example and without limitation, be rotated via an actuator of the support member 200, such as an electrical motor, a lever, and/or a slider 288. A slider 288 may slide in the X-direction relative to the support member 200 and the electrical connector 210, such as to engage/rotate the electrical connector 210.


In embodiments, a connector rotational axis 216 may extend substantially parallel to a Z-direction and/or may be a central longitudinal axis of the first connector section 212. When in the first position, the first connector section 212 may extend in a direction substantially parallel to a Z-direction, the second connector section 214 may extend in a direction substantially parallel to a Y-direction, and/or the electrical connector 210 may, at least to some degree, restrict removal of the support member 200 from the track assembly 104 generally in a Z-direction (e.g., the second connector section 214 may overlap with a portion of the track 120, such as the lip 132, in the Z-direction). When in the second position, the first connector section 212 may extend in a direction substantially parallel to a Z-direction, the second connector section 214 may extend in a direction substantially parallel to a X-direction, and/or the electrical connector 210 may not substantially restrict removal of the support member 200 from the track assembly 104.


With embodiments, such as generally illustrated in FIGS. 1, 5, 6A, 6B, and/or 12-18B, an electrical connector 210 may include one or more electrical contacts 220 configured to contact/engage a corresponding conductor 150 of a track 120. An electrical contact 220 may, for example, include one or more electrically conductive materials, such as aluminum, copper, and/or an alloy, among others. An electrical contact 220 may be electrically connected, at least indirectly (e.g., via wires/cables 204), to an electrical component 202 of the support member 200. When the support assembly 102 is disposed on the track assembly 104, adjustment (e.g., rotation) of an electrical connector 210 may adjust a position of the electrical contact 220 to (i) engage an electrical contact 220 and a corresponding conductor 150 to establish an electrical connection and/or (ii) disengage the electrical contact 220 and the corresponding conductor 150 to disconnect and/or break the electrical connection. An electrical contact 220 may maintain and/or remain in contact with a conductor 150 when a support member 200 is moved along a track 120, which may cause one or more portions of an electrical contact 220 configured to contact a conductor 150 (e.g., a third surface 244 and/or a sixth surface 250) to experience wear over time (e.g., approximately 0.5 mm of wear). As such, one or more portions of an electrical contact 220 may be configured to offset potential wear, such as by including extra material and/or being structured as a curved bulge (see, e.g., third surface 244 and/or sixth surface 250).


With embodiments, such as generally illustrated in FIGS. 5, 7, and/or 8, an electrical contact 220 may have a base end 222 and a distal end 224 disposed opposite the base end 222. The distal end 224 of an electrical contact 220 may be disposed at least partially outside of an electrical connector 210 and/or may project out of an electrical connector 210 (e.g., a first connector section 212 and/or a second connector section 214). A distal end 224 of the electrical contact 220 may be configured to engage, contact, and/or be received within a conductor 150. A distal end 224 of an electrical contact 220 may be curved/rounded and/or may be tapered to form a tip/point 226 (e.g., taper toward a contact rotational axis 228), which may facilitate insertion of the electrical contact 220 into a conductor 150 (see, e.g., FIG. 7). A distal end 224 of an electrical contact 220 may, additionally and/or alternatively, include one or more lateral and/or radial protrusions/wings 230A, 230B (see, e.g., FIG. 8). A base end 222 of an electrical contact 220 may be movably connected to an electrical connector 210 directly and/or indirectly. A base end 222 of an electrical contact 220 may be disposed at least partially within an electrical connector 210 (e.g., a first connector section 212 and/or a second connector section 214).


With embodiments, such as generally illustrated in FIGS. 1, 7, 8, and/or 12-16C, an electrical contact 220 may be adjustable, such as rotatable about a contact rotational axis 228. The contact rotational axis 228 may extend substantially parallel to the Y-direction when the electrical connector 210 is in the first position and substantially parallel to the X-direction when the electrical connector 210 is in the second position. The contact rotational axis 228 may extend obliquely or perpendicularly to the connector rotational axis 216.


With embodiments, such as generally illustrated in FIGS. 1, 6A, and/or 16A, an electrical contact 220 may move relative to the electrical connector 210 about the contact rotational axis 228 and/or may, with some configurations, not move/tilt to a substantially degree in a Z-direction relative to the electrical connector 210 (see, e.g., electrical contact 220B). Alternatively, a contact 220 may be configured to facilitate Z-direction alignment of itself and/or other electrical contacts 220 with a corresponding conductor 150 of the track 120 (see, e.g., electrical contacts 220A, 220C). For example and without limitation, an electrical contact 220A, 220C may be connected to the electrical connector 210 via a ball joint connection 232, which may permit the electrical contact 220 to (i) move parallel to and/or along the contact rotational axis 228 relative to the electrical connector 210 to compensate for Y-direction misalignment (e.g., approximately 1 mm), (ii) rotate about a Z-alignment rotational axis 234 relative to the electrical connector 210 to compensate for Z-direction misalignment (e.g., may move approximately 1 mm or less, such as approximately 0.6 mm, in a Z-direction), and/or (iii) rotate about the contact rotational axis 228 to engage a conductor 150 (e.g., rotate approximately 10° or less, such as approximately 8.5°, and/or move approximately 0.5 mm or less in the Z-direction). An electrical contact 220 may, additionally and/or alternatively, be adjustable (e.g., moveable, slidable, etc.) relative to a support member 200 and/or another electrical contact 220 generally in a Z-direction and/or a Y-direction. In examples, such as generally illustrated in FIG. 17B, each of the electrical contacts 220A, 220B, 220C may be adjustable independently of one another generally in a Z-direction and/or a Y-direction. Additionally and/or alternatively, Z-direction alignment of an electrical contact 220 may be facilitated via movement of an electrical connector 210 and/or a support member 200 generally in a Z-direction and/or a Y-direction. For example, an electrical connector 210 may be connected to the support member 200 (e.g., via a recess 206) such that the electrical connector 210 may move or float (e.g., approximately 3 mm or less, such as approximately 2.6 mm) relative to the support member 200 generally in a Z-direction. In some embodiments, such as those where an electrical contact 220 is connected to the electrical connector 210 via a ball joint connection 232, the electrical connector 210 may be substantially fixed relative to the support member 200 in a Z-direction (e.g., the electrical contacts 220 may be configured to sufficiently compensate Z-direction misalignment).


With embodiments, such as generally illustrated in at least one of FIGS. 9A-11, an electrical contact 220 may include a plurality of external surfaces, such as a first surface 240, a second surface 242, a third surface 244, a fourth surface 246, a fifth surface 248, and/or a sixth surface 250. A first surface 240 may be substantially flat (e.g., a first flat surface) and/or may extend between and connect a second surface 242 and a sixth surface 250. A second surface 242 (e.g., a first transition surface) may extend between and connect a first surface 240 and a third surface 244 and/or may define a transition 252 therebetween. A second surface 242 may extend substantially radially relative to the contact rotational axis 228 such that the transition 252 is a stepped transition. A third surface 244 may be curved (e.g., a first curved surface) and/or may extend between and connect a second surface 242 and a fourth surface 246. At least a portion of the third surface 244 (e.g., a portion in a region of the transition 252) may be disposed radially further from the contact rotational axis 228 than the first surface 240. A fourth surface 246 (e.g., a second flat surface) may be substantially flat and/or may extend between and connect a third surface 244 and a fifth surface 248. A fifth surface 248 (e.g., a second transition surface) may extend between and connect a fourth surface 246 and a sixth surface 250 and/or may define a second transition 254 therebetween. A fifth surface 248 may extend substantially radially relative to the contact rotational axis 228 such that the second transition 254 is a second stepped transition. A sixth surface 250 may be curved (e.g., a second curved surface) and/or may extend between and connect a fifth surface 248 and a first surface 240. At least a portion of the sixth surface 250 (e.g., a portion in a region of the second transition 254) may be disposed radially further from the contact rotational axis 228 than the fourth surface 246.


With embodiments, such as generally illustrated in at least one of FIGS. 9A-11, a first surface 240, a second surface 242, and/or a third surface 244 may be disposed opposite a fourth surface 246, a fifth surface 248, and/or a sixth surface 250. A first surface 240 and a fourth surface 246 may extend substantially parallel to the contact rotational axis 228 and/or to one another. In examples, a first surface 240 and a third surface 244 may be connected directly to one another and/or a fourth surface 246 and a sixth surface 250 may be connected directly to one another such that an electrical contact 220 does not include a second surface 242, a stepped transition 252, a fifth surface 248, and/or a second stepped transition 254 (see, e.g., FIG. 18A). Examples of potential orientations of an electrical contact 220 when an electrical connector 210 is in the first position are generally illustrated in FIGS. 9A and 10A. Examples of potential orientations of an electrical contact 220 when an electrical connector 210 is in the second position are generally depicted in FIGS. 9B and 10B. A potential orientation of an electrical contact 220 when an electrical connector 210 is in the first position (solid line profile) and when an electrical connector 210 is in the second position (dashed line profile) are shown in FIG. 11. As generally depicted in FIGS. 17A-18B, an electrical contact 220 may, for example, have one or more external surfaces forming an elongated profile with rounded ends, an oval-shaped profile, and/or any other desired shape.


With embodiments, such as generally illustrated in FIGS. 1, 6A, 6B, 15A-16C, and/or 17B, an electrical connector 210 may include a plurality of electrical contacts 220, such as a first electrical contact 220A, a second electrical contact 220B, and/or a third electrical contact 220C. One or more of the electrical contacts 220A, 220B, 220C may be configured the same as and/or differently from at least one other electrical contact 220A, 220B, 220C. A first electrical contact 220A, a second electrical contact 220B, and a third electrical contact 220C may be disposed in a stacked configuration such that the electrical contacts 220A, 220B, 220C are substantially aligned when viewed from a Z-direction. A first electrical contact 220A, a second electrical contact 220B, and a third electrical contact 220C may each be rotatable about a respective contact rotational axis 228A, 228B, 228C, such as via respective biasing members 276A, 276B, 276C.


In embodiments, such as generally illustrated in FIGS. 1, 5, 6A, 7 and/or 8, an electrical contact 220 may include a stabilizer portion 258. A stabilizer portion 258 include an elongated member, for example, and/or may be configured to facilitate connection of an electrical contact 220 to the electrical connector 210 and/or to stabilize, at least to some degree, an electrical contact 220. A stabilizer portion 258 may be movably connected to an electrical connector 210 and/or may be disposed at least partially within an electrical connector 210 (e.g., a first connector section 212 and/or a second connector section 214). A stabilizer portion 258 may be connected to and extend from a base end 222 of the electrical contact 220 (e.g., along the contact rotational axis 228) and/or may movably connect an electrical contact 220 to an electrical connector 210. A stabilizer portion 258 may be configured to move (e.g., along the contact rotational axis 228) and/or rotate (e.g., about the contact rotational axis 228 and/or the Z-alignment rotational axis 234) in conjunction with the electrical contact 220.


In embodiments, such as generally illustrated in FIGS. 1, 8, and/or 17B, an electrical contact 220 and/or a stabilizer portion 258 may include an aperture 260 through which one or more wires/cables 204 may pass through/into. A first wire 204A may be connected (e.g., electrically) to a first electrical contact 220A and/or may extend into a first aperture 260A of the first electrical contact 220A. A second wire 204B may be connected to a second electrical contact 220B, may pass through the first aperture 260A of the first electrical contact 220A (e.g., disposed above the second electrical contact 220B), and/or may extend into a second aperture 260B of the second electrical contact 220B. A third wire 204C may be connected to a third electrical contact 220C (e.g., disposed below the first and second electrical contacts 220A, 220B), may extend through the first aperture 260A in the first electrical contact 220A, may extend through the second aperture 260B in the second electrical contact 220B, and/or may extend into a third aperture 260C of the third electrical contact 220C. In examples, a first aperture 260A of a first electrical contact 220A, a second aperture 260B of a second electrical contact 220B, and a third aperture 260C of a third electrical contact 220C may be substantially aligned with one another when viewed from a Z-direction.


In embodiments, such as generally illustrated in FIGS. 1, 5, 6A, 7, 8, and/or 16A, an electrical contact 220 may include a connection portion 264. A connection portion 264 may be connected to and/or an integral part of the stabilizer portion 258. An electrical contact 220 and/or a stabilizer portion 258 may be connected to an electrical connector 210 via a connection portion 264.


With embodiments, such as generally illustrated in FIGS. 1, 6A, 8, and 16A, a connection portion 264 may include a ball joint portion 266, which may connect an electrical contact 220 to an electrical connector 210 via a ball joint connection 232. A ball joint portion 266 and/or a ball joint connection 232 may permit an electrical contact 220 to (i) move parallel to and/or along the contact rotational axis 228 relative to the electrical connector 210 to compensate for Y-direction misalignment, (ii) rotate about a Z-alignment rotational axis 234 relative to the electrical connector 210 to compensate for Z-direction misalignment, and/or (iii) rotate about the contact rotational axis 228 to engage a conductor 150. A Z-alignment rotational axis 234 may extend (i) through a ball joint portion 266, (ii) substantially perpendicular to the contact rotational axis 228, (iii) substantially parallel to a X-direction when the electrical connector 210 is in the first position and/or (iv) substantially parallel to a Y-direction when the electrical connector 210 is in the second position.


With embodiments, such as generally illustrated in FIGS. 1, 5, 6A, 7, and 16A, a connection portion 264 may include a mount portion 268, which may restrict and/or substantially prevent rotation of an electrical contact 220 in a Z-direction (e.g., about a Z-alignment rotational axis 234) relative to an electrical connector 210. A mount portion 268 may, additionally and/or alternatively, permit movement of an electrical contact 220 parallel to and/or along the contact rotational axis 228 relative to an electrical connector 210.


In embodiments, such as generally illustrated in FIGS. 8, 10A, 10B, and 16A, an electrical contact 220 may include a support protrusion 272 configured to support and/or connect with a biasing member 276. A support protrusion 272 may be connected to and/or an integral part of an electrical contact 220 and/or a stabilizer portion 258. A support protrusion 272 may extend away from a stabilizer portion 258 (e.g., radially away from a contact rotational axis 228) and/or may extend obliquely or perpendicularly relative to a stabilizer portion 258 (e.g., the stabilizer portion 258 may extend in a Y-direction and the support protrusion 272 may extend in an X-direction when the electrical connector 210 is in the first position).


In embodiments, such as generally illustrated in FIGS. 8, 10A, 10B, and 16A, an electrical contact 220 may include an engagement protrusion 274 configured to engage a biasing member 276 and/or to restrict movement of a biasing member 276 relative to an electrical contact 220 (e.g., a support protrusion 272). An engagement protrusion 274, for example, may be configured to be received at least partially within a biasing member 276 (e.g., a helical spring). An engagement protrusion 274 may be connected to and/or an integral part of an electrical contact 220, a stabilizer portion 258, and/or a support protrusion 272. An engagement protrusion 274 may be disposed on and/or project from a support protrusion 272. An engagement protrusion 274 may extend obliquely or perpendicularly relative to a support protrusion 272 and/or a stabilizer portion 258 (e.g., the stabilizer portion 258 may extending in a Y-direction, the support protrusion 272 may extend in an X-direction, and the engagement protrusion 274 may extend in a Z-direction when the electrical connector 210 is in the first position).


With embodiments, such as generally illustrated in FIGS. 1, 5, 6A, 9A-10B, 12-14C, and/or 16A, an electrical connector 210 may include a biasing member 276 (e.g., a spring) configured to bias an electrical contact 220 into engagement and/or abutment with a conductor 150, such as to maintain an electrical connection between an electrical contact 220 and a corresponding conductor 150 of a track 120. A biasing member 276 may be disposed at least partially within an electrical connector 210 and/or may extend substantially parallel to a Z-direction and/or a connector rotational axis 216. A biasing member 276 may be configured to apply a force to an electrical contact 220, such as in a direction substantially parallel to the Z-direction. A biasing member 276 may be disposed offset from a contact rotational axis 228, at least in the X-direction for example, which may bias an electrical contact 220 about the contact rotational axis 228. For example, a biasing member 276 may bias an electrical contact 220 about a contact rotational axis 228 in a first rotational direction (e.g., counterclockwise in FIGS. 9A-12, and 16A) or in a second rotational direction (e.g., clockwise with respect to the electrical contact 220 in FIG. 18A).


With embodiments, such as generally illustrated in FIGS. 1, 5, 6A, 9A-10B, 12-14C, and/or 16A, a biasing member 276 may be disposed on and supported by an electrical contact 220. A biasing member 276 may be disposed directly on a surface of the electrical contact 220 (e.g., a first surface 240; see, e.g., FIGS. 9A, 9B). Additionally and/or alternatively, a biasing member 276 may be disposed on a support protrusion 272 of an electrical contact 220 (see, e.g., FIGS. 10A, 10B, and/or 16A). A biasing member 276 may be configured to engage and/or receive an engagement protrusion 274 of an electrical contact 220 to, for example, facilitate a connection between the biasing member 276 and the electrical contact 220. Engagement between the biasing member 276 and the engagement protrusion 274 may restrict, at least to some extent, movement of the biasing member 276 relative to the support protrusion 272. For example and without limitation, an engagement protrusion 274 may restrict/prevent the biasing member 276 from sliding off of the support protrusion 272 during rotation of the electrical contact 220 about the contact rotational axis 228 (see, e.g., FIGS. 10A, 10B). A biasing member 276 may disposed on and/or connected to a biasing member support 278 of an electrical connector 210 (see, e.g., FIGS. 9A-10B), which may support an end of the biasing member 276 opposite the electrical contact 220 (e.g., a biasing member 276 may be disposed substantially between an electrical contact 220 and a biasing member support 278). A biasing member support 278 may be configured similar to a support protrusion 272 and/or an engagement protrusion 274, and may be fixed relative to the electrical connector 210.


With embodiments, such as generally illustrated in FIGS. 1, 14A-14C, 16A-16C, 17A, and/or 17B, when an electrical connector 210 is in the first position, a biasing member 276 may bias an electrical contact 220 into engagement and/or physical contact with a conductor 150, such as to facilitate an electrical connection therebetween. The biasing member 276 may bias a first portion of an electrical contact 220 (e.g., a third surface 244, 244A, 244B, 244C) into abutment with a portion of a conductor 150 (e.g., an inner surface of a conductor top portion 154, 154A, 154B, 154C) and bias a second portion of the electrical contact 220 (e.g., a sixth surface 250, 250A, 250B, 250C) into physical contact with another portion of the conductor 150 (e.g., an inner surface of a conductor bottom portion 156, 156A, 156B, 156C; see, e.g., FIGS. 14B and 16A). With such a configuration, for example, a contact 220 may be electrically connected with the same conductor 150 in two different locations.


In embodiments, when the electrical connector 210 is in the first position, a portion and/or a surface of an electrical contact 220 (e.g., a first surface 240; see, e.g., FIGS. 9A, 11, and 14B) and/or a surface of a support protrusion 272 (see, e.g., FIGS. 10A and 16A) may be disposed at an angle 280A relative to an X-Y plane (e.g., a horizontal plane). During insertion of an electrical contact 220 into a conductor 150 (e.g., via rotation of an electrical connector 210 as shown in FIG. 13), engagement between the electrical contact 220 and the conductor 150 may cause the electrical contact 220 to rotate, at least to some degree, against the force of the biasing member 276. When an electrical connector 210 is in a second position, a surface of an electrical contact 220 (e.g., a first surface 240; see, e.g., FIGS. 9B, 11, and 12) and/or a surface of a support protrusion 272 (see, e.g., FIG. 10B) may be disposed at an angle 280B (e.g., 15°), which may be larger than the angle 280A, relative to an X-Y plane (e.g., a horizontal plane). When an electrical connector 210 is in a second position, a portion and/or a surface of a biasing member 276 may be disposed spaced apart from a surface of an electrical contact 220 (e.g., a first surface 240) and/or a surface of a support protrusion 272, which may allow rotational movement of the electrical contact 220 about the contact rotational axis 228, at least to some extent. In examples, when the electrical connector 210 is in a first position, a surface of the biasing member 276 may be disposed substantially flush with a surface of an electrical contact 220 (e.g., a first surface 240) and/or a surface of a support protrusion 272 (see, e.g., FIG. 14B). Additionally and/or alternatively, when an electrical connector 210 is in a first and/or a second position, a portion and/or a surface of a biasing member 276 may contact and/or abut a surface of an electrical contact 220 (e.g., a first surface 240) and/or a surface of a support protrusion 272 such that an angle, which may be the same as or different from an angle 280A, 280B, is defined therebetween.


In embodiments, such as generally illustrated in FIGS. 1, 5-6B, and/or 12-16C, an electrical connector 210 may include an alignment protrusion 282 that may be configured to facilitate alignment of the electrical connector 210 and/or electrical contacts 220 with the track 120 and/or conductors 150. An alignment protrusion 282 may be disposed on and/or connected to an electrical connector 210, and/or may extend from the electrical connector 210 (e.g., obliquely, substantially perpendicularly, etc.). In examples, a second connector section 214 of an electrical connector 210 may be configured as an alignment protrusion 282 and/or an alignment protrusion 282 may define a second connector section 214 of an electrical connector 210. An alignment protrusion 282 may be configured to engage an insulator 170 and/or be at least partially received in an insulator 170 (e.g., in a tapered opening 174 of a recess 172). For example and without limitation, as the electrical connector 210 rotates toward the first position, the alignment protrusion 282 may engage and/or interact with the track 120 (e.g., a tapered opening 174), which may move the electrical connector 210 generally upward in a Z-direction relative to the track 120 and/or the support member 200, rotate one or more electrical contacts 220 about a respective Z-alignment rotational axis 234 (e.g., via ball joint connections 232), and/or align one or more electrical contacts 220 with a corresponding conductor 150 in a Z-direction.


In embodiments, such as generally illustrated in FIGS. 6B, 15A-15C, 16B, and/or 16C, an alignment protrusion 282 may include one or more of a variety of shapes, sizes, and/or configurations. For example and without limitation, the alignment protrusion 282 may include a fin configuration that may extend in substantially the same direction as the electrical contacts 220 and/or that may have a height (e.g., in the Z-direction) that tapers/decreases in a radially outward direction and/or in a circumferential direction relative to the connector rotational axis 216. The height of an alignment protrusion 282 may taper in a circumferential direction around the connector rotational axis 216 such that the height is smallest proximate a portion of the alignment protrusion 282 that engages the track 120 and/or the insulator 170 first and increases such that further engagement of the alignment protrusion 282 with the track 120 and/or the insulator 170 may move the electrical connector 210 in a Z-direction, which may move an electrical contact 220 into Z-direction alignment with a corresponding conductor 150.


With embodiments, such as generally illustrated in FIGS. 1, 5, 6A, and/or 15A-16C, a first, a second, and/or a third electrical contact 220A, 220B, 220C may include a respective stabilizer portion 258A 258B, 258C, a respective connection portion 264A, 264B, 264C, a respective support protrusion 272A, 272B, 272C, and/or a respective engagement protrusion 274A, 274B, 274C. The support protrusions 272A, 272B, 272C of the electrical contacts 220A, 220B, 220C may be disposed offset from one another in a direction parallel to the contact rotational axes 228A, 228B, 228C, which may allow a plurality of biasing members 276A, 276B, 276C to be arranged adjacent to one another and extend substantially parallel to one another in a Z-direction. The biasing members 276A, 276B, 276C may each be associated with a corresponding electrical contact 220A, 220B, 220C and contact a corresponding biasing member support 278A, 278B, 278C.


With embodiments, an electrical connector 210 may include an alignment protrusion 282 disposed adjacent to the second electrical contact 220B, which may be disposed between electrical contacts 220A, 220C. The alignment protrusion 282 may facilitate Z-direction alignment of at least the second electrical contact 220B and the second conductor 150B, such as by adjusting the electrical connector 210 (e.g., within a recess 206) generally in a Z-direction and/or a Y-direction relative to a support member 200 and/or a track 120. The first and/or third electrical contact 220A, 220C may include a respective ball joint portion 266A, 266C and/or may be connected to the electrical connector 210 via a respective ball joint connection 232A, 232C. In some circumstances (e.g., as a result of manufacturing differences/tolerances), after the alignment protrusion 282 aligns the second contact 220B and the second conductor 150B in a Z-direction, electrical contacts 220A, 220C may not be directly aligned with first and third conductors 150A, 150C in the Z-direction (e.g., if they remain parallel with a Y-direction). In such circumstances, electrical contacts 220A, 220C may rotate about axes 234A, 234C to compensate for the Z-direction misalignment and facilitate insertion of electrical contacts 220A, 220C into conductors 150A, 150C. Such rotation of the electrical contacts 220A, 220C may result in at least one of the electrical contacts 220A, 220C being disposed at an angle relative to an X-Y plane (e.g., a horizontal plane). One or more of the electrical contacts 220A, 220B, 220C may, additionally and/or alternatively, be adjusted, moved, slid, etc. along the respective contact rotational axis 228A, 228B, 228C to compensate for any Y-direction misalignment between the electrical contacts 220A, 220B, 220C and the conductors 150A, 150B, 150C.


With embodiments, such as generally illustrated in FIG. 1, a support member 200 may include a first electrical connector 210 and a second electrical connector 210′, which may each be rotatable about a respective connector rotational axis 216, 216′. A second electrical connector 210′ and components thereof may be configured the same, similar, and/or differently from the first electrical connector 210 and the corresponding components thereof, or vice versa. For example, a second electrical connector 210′ may include a first connector section 212′, a second connector section 214′, an electrical contact 220′ rotatable about a contact rotational axis 228′, a wire 204′, a stabilizer portion 258′, a connection portion 264′, a mount portion 268′, and/or an alignment protrusion 282′, some or all of which may be configured in the same or similar manner as corresponding features of an electrical connector 210.


With embodiments, such as generally illustrated in FIGS. 19 and 21-24, an electrical connector 210 may include an adjustment portion 284 configured to facilitate adjustment (e.g., rotation) of the electrical connector 210 to a first position and/or to a second position. An adjustment portion 284 may be connected to and/or integrally formed as part of an electrical connector 210 (e.g., a first connector section 212). An adjustment portion 284 may include a first adjustment section 284A and a second adjustment section 284B, which may project from an adjustment body 284C and/or may be disposed opposite one another. An adjustment body 284C may extend generally in a Y-direction, for example, at least when the electrical connector 210 is in a first position. A first adjustment section 284A and/or a second adjustment section 284B may extend obliquely or perpendicularly relative to an adjustment body 284C and/or a Y-direction, for example, at least when the electrical connector 210 is in a first position.


With embodiments, such as generally illustrated in FIGS. 20A-24, a support member 200 may include a slider 288 configured to facilitate adjustment (e.g., rotation) of an electrical connector 210 to a first position and/or to a second position. A slider 288 may be configured to engage an adjustment portion 284 of an electrical connector 210. A slider 288 may include a slider protrusion 290, which may extend generally in a Y-direction. A slider 288 may include a slider receptacle 292, which may extend and/or protrude into the slider 288, such as generally in a Y-direction. A slider receptacle 292 may be configured to engage and/or receive a portion of an adjustment portion 284 (e.g., a first adjustment section 284A). A slider 288 may include a guide surface 294 configured to engage, contact, and/or abut an adjustment portion 284 (e.g., a first adjustment section 284A and/or a second adjustment section 284B). A slider 288 and/or a guide surface 294 may extend generally in an X-direction. A guide surface 294 may include a first section 294A and/or a second section 294B, which may be at least partially define a slider protrusion 290. A third section 294C may extend from the first section 294A, such as generally in an X-direction. A fourth section 294D may extend from the second section 294B, such as generally in an X-direction, such as in an opposite direction of the third section 294C.


With embodiments, such as generally illustrated in FIGS. 21A, 21B and/or 24, when an electrical connector 210 is in a second position, a first adjustment section 284A may disposed adjacent to and/or in contact with a third section 294C of the guide surface 294, a first connector section 212 may be disposed adjacent to and/or in contact with a first section 294A of the guide surface 294, and/or a second adjustment section 284B may be disposed adjacent to and/or in contact with a fourth section 294D of the guide surface 294 (see, e.g., FIGS. 21A and 21B). When the electrical connector 210 is in a first position (see, e.g., FIG. 24), a first adjustment section 284A may be disposed at least partially in and/or engage a slider receptacle 292 of the slider 288, and/or a second adjustment section 284B may be disposed spaced apart from a guide surface 294 such that, for example, the adjustment portion 284 extends at least partially across a track opening 136 of the track 120.


With embodiments, such as generally illustrated in FIGS. 21A-24, a slider 288 and/or an electrical connector 210 may be adjusted, moved, slid, etc. (e.g., generally in the X-direction), which may cause the adjustment portion 284 to interact with the guide surface 294, which may cause the electrical connector 210 to adjust (e.g., rotate) toward a first position and/or a second position. When moving the slider 288 and/or the electrical connector 210 to adjust the electrical connector 210 toward a first position, for example from a second position (see, e.g., FIGS. 21A and 21B), a first adjustment section 284A may slide along the third section 294C of the guide surface 294 and into engagement with a slider receptacle 292, and/or the second adjustment section 284B may slide along the fourth section 294D of the guide surface 294 into engagement with the slider protrusion 290 (see, e.g., FIG. 22). Continued adjustment of the slider 288 and/or the electrical connector 210 may cause the second adjustment section 284B to slide along the second section 294B of the guide surface 294 (see, e.g., FIG. 23), which may cause the adjustment portion 284 and/or the electrical connector 210 to rotate (e.g., around a Z-direction axis) toward a first position (see, e.g., FIG. 24), which may facilitate or cause the first adjustment section 284A to engage the slider receptacle 292 such that further movement of the slider 288 causes further rotation of the electrical connector 210 via the first adjustment section 284A. The slider 288 and/or the electrical connector 210 may be adjusted/moved, in an opposite direction for example, to adjust the electrical connector 210 toward a second position, which may involve the above described process being conducted in reverse.


In embodiments, a slider 288 may be actuated/moved in one or more of a variety of ways. For example, a user may move the slider 288 directly and/or via a handle/lever/linkage. Additionally or alternatively, the slider 288 may, for example, be actuated via an actuation shaft 298 and/or a pinion 300 connected thereto that may be engaged with teeth 296 of the slider 288 (e.g., the slider 288 may include a gear rack portion). The actuation shaft 298 may be actuated manually and/or via a powered actuator (e.g., an electric motor), for example.


Various examples/embodiments are described herein for various apparatuses, systems, and/or methods. Numerous specific details are set forth to provide a thorough understanding of the overall structure, function, manufacture, and use of the examples/embodiments as described in the specification and illustrated in the accompanying drawings. It will be understood by those skilled in the art, however, that the examples/embodiments may be practiced without such specific details. In other instances, well-known operations, components, and elements have not been described in detail so as not to obscure the examples/embodiments described in the specification. Those of ordinary skill in the art will understand that the examples/embodiments described and illustrated herein are non-limiting examples, and thus it can be appreciated that the specific structural and functional details disclosed herein may be representative and do not necessarily limit the scope of the embodiments.


Reference throughout the specification to “examples, “in examples,” “with examples,” “various embodiments,” “with embodiments,” “in embodiments,” or “an embodiment,” or the like, means that a particular feature, structure, or characteristic described in connection with the example/embodiment is included in at least one embodiment. Thus, appearances of the phrases “examples, “in examples,” “with examples,” “in various embodiments,” “with embodiments,” “in embodiments,” or “an embodiment,” or the like, in places throughout the specification are not necessarily all referring to the same embodiment. Furthermore, the particular features, structures, or characteristics may be combined in any suitable manner in one or more examples/embodiments. Thus, the particular features, structures, or characteristics illustrated or described in connection with one embodiment/example may be combined, in whole or in part, with the features, structures, functions, and/or characteristics of one or more other embodiments/examples without limitation given that such combination is not illogical or non-functional. Moreover, many modifications may be made to adapt a particular situation or material to the teachings of the present disclosure without departing from the scope thereof.


It should be understood that references to a single element are not necessarily so limited and may include one or more of such element. Any directional references (e.g., plus, minus, upper, lower, upward, downward, left, right, leftward, rightward, top, bottom, above, below, vertical, horizontal, clockwise, and counterclockwise) are only used for identification purposes to aid the reader's understanding of the present disclosure, and do not create limitations, particularly as to the position, orientation, or use of examples/embodiments.


Joinder references (e.g., attached, coupled, connected, and the like) are to be construed broadly and may include intermediate members between a connection of elements, relative movement between elements, direct connections, indirect connections, fixed connections, movable connections, operative connections, indirect contact, and/or direct contact. As such, joinder references do not necessarily imply that two elements are directly connected/coupled and in fixed relation to each other. Connections of electrical components, if any, may include mechanical connections, electrical connections, wired connections, and/or wireless connections, among others. The use of “e.g.” in the specification is to be construed broadly and is used to provide non-limiting examples of embodiments of the disclosure, and the disclosure is not limited to such examples. Uses of “and” and “or” are to be construed broadly (e.g., to be treated as “and/or”). For example and without limitation, uses of “and” do not necessarily require all elements or features listed, and uses of “or” are inclusive unless such a construction would be illogical.


While processes, systems, and methods may be described herein in connection with one or more steps in a particular sequence, it should be understood that such methods may be practiced with the steps in a different order, with certain steps performed simultaneously, with additional steps, and/or with certain described steps omitted.


All matter contained in the above description or shown in the accompanying drawings shall be interpreted as illustrative only and not limiting. Changes in detail or structure may be made without departing from the present disclosure.

Claims
  • 1. A support member connectable to a track assembly to be removable and adjustable, the support member comprising: an electrical connector adjustable to a first position and a second position, the electrical connector including:a first contact configured to engage a first conductor of said track assembly; anda biasing member;wherein the first contact is engageable with said first conductor when the electrical connector is in the first position;the first contact is disposed at a distance from said first conductor when the electrical connector is in the second position;the biasing member is configured to rotationally bias the first contact into engagement with said first conductor when the electrical connector is in the first position; andthe electrical connector has a connector rotational axis;the first contact protrudes from the electrical connector;the first contact has a contact rotational axis that is oblique or perpendicular to the connector rotational axis; andthe first contact is rotatable about the contact rotational axis.
  • 2. The support member of claim 1, wherein: the first contact includes a first surface, a second surface, and a third surface; andthe second surface extends between and connects the first surface and the third surface such that a transition is defined between the first surface and the third surface.
  • 3. The support member of claim 2, wherein: the first contact includes a fourth surface, a fifth surface, and a sixth surface;the third surface extends between and connects the second surface and the fourth surface;the fifth surface extends between and connects the fourth surface and the sixth surface such that a second transition is defined between the fourth surface and the sixth surface; andthe sixth surface extends between and connects the fifth surface and the first surface.
  • 4. The support member of claim 3, wherein: the first surface and the fourth surface are substantially flat;the third surface and the sixth surface are curved;in a region of the transition, the third surface is disposed radially farther from an axis of the first contact than the first surface; andin a region of the second transition, the sixth surface is disposed radially farther from the axis of the first contact than the fourth surface.
  • 5. The support member of claim 1, wherein: the electrical connector includes a second contact, a second biasing member, and an alignment protrusion;the second contact is configured to engage a second conductor of said track assembly when the electrical connector is in the first position;the alignment protrusion is disposed adjacent to the second contact and is configured to engage said track assembly to facilitate alignment of the second contact with said second conductor;the electrical connector is rotatable about and adjustable along the connector rotational axis such that, when the electrical connector is rotated from the second position toward the first position, the electrical connector is adjusted along the connector rotational axis via engagement of the alignment protrusion and said track assembly to substantially align the second contact with said second conductor; andthe first contact is rotatable about the contact rotational axis to compensate for misalignment of the first contact with said first conductor.
  • 6. The support member of claim 1, wherein the electrical connector is adjustable to the first position and the second position via rotating about the connector rotational axis.
  • 7. A track system, comprising: the support member of claim 1; andsaid track assembly;the track assembly includes a track and an insulator; andthe first conductor is connected to the track via the insulator.
  • 8. The track system of claim 7, wherein: the first contact includes a first flat surface, a first transition surface, a first curved surface, a second flat surface, a second transition surface, and a second curved surface;the first flat surface extends between and connects the second curved surface and the first transition surface;the first transition surface extends between and connects the first flat surface and the first curved surface such that a transition is defined between the first flat surface and the first curved surface;the first curved surface extends between and connects the first transition surface and the second flat surface;the second flat surface extends between and connects the first curved surface and the second transition surface;the second transition surface extends between and connects the second flat surface and the second curved surface such that a second transition is defined between the second flat surface and the second curved surface; andthe second curved surface extends between and connects the second transition surface and the first flat surface.
  • 9. The track system of claim 8, wherein: the first conductor has a substantially U-shaped profile; andthe first contact has a first contact rotational axis and is rotationally biased about the first contact rotational axis via the biasing member such that, when the electrical connector is in the first position, (i) the first contact is disposed within the first conductor and (ii) the first curved surface and the second curved surface of the first contact are biased into contact with opposing surfaces of the first conductor.
  • 10. The track system of claim 7, wherein: the track assembly includes a second conductor;the electrical connector includes a second contact and a second biasing member;the second contact is configured to engage the second conductor when the electrical connector is in the first position; andthe first contact is configured to rotate about a plurality of axes to facilitate engagement between the first contact and the first conductor.
  • 11. The track system of claim 10, wherein: the electrical connector includes an alignment protrusion;the alignment protrusion is configured to engage the insulator such that, when the electrical connector is adjusted from the second position toward the first position, the second contact and the second conductor are substantially aligned with one another via engagement of the alignment protrusion and the insulator; andthe first contact is connected with the electrical connector via a ball joint connection such that the first contact is (i) rotatable about a first axis of the plurality of axes to contact the first conductor, and (ii) rotatable about a second axis of the plurality of axes to compensate for misalignment of the first contact and the first conductor.
  • 12. A support member connectable to a track assembly to be removable and adjustable, the support member comprising: an electrical connector adjustable to a first position and a second position, the electrical connector including a first contact configured to engage a first conductor of said track assembly;wherein the first contact is engageable with said first conductor when the electrical connector is in the first position;the first contact is disposed at a distance from said first conductor when the electrical connector is in the second position; andthe first contact includes a ball joint portion, a first rotational axis, and a second rotational axis.
  • 13. A track system, comprising: a track assembly;a support member connectable to the track assembly to be removable and adjustable, the support member comprising: an electrical connector adjustable to a first position and a second position, the electrical connector including: a first contact configured to engage a first conductor of the track assembly; anda biasing member; andwherein the first contact is engageable with said first conductor when the electrical connector is in the first position;the first contact is disposed at a distance from said first conductor when the electrical connector is in the second position;the biasing member is configured to rotationally bias the first contact into engagement with said first conductor when the electrical connector is in the first position; andwhen the first contact is engaged with the first conductor, the biasing member biases (i) a first portion of the first contact toward a top inner surface of the first conductor and (ii) a second portion of the first contact toward a lower inner surface of the first conductor.
  • 14. The track system of claim 13, wherein: the electrical connector has a connector rotational axis;the first contact protrudes from the electrical connector;the first contact has a contact rotational axis that is substantially perpendicular to the connector rotational axis; andthe first contact is rotatable about the contact rotational axis.
  • 15. The track system of claim 14, wherein, when the electrical connector is in the first position: the contact rotational axis extends substantially in a transverse direction of the support member; andthe biasing member is offset from the contact rotational axis in a longitudinal direction of the support member.
  • 16. The track system of claim 15, wherein the biasing member is configured to apply a force to the first contact in a substantially vertical direction such that the first contact is rotationally biased into engagement with said first conductor when the electrical connector is in the first position.
  • 17. The support member of claim 14, wherein: the biasing member includes a spring;the first contact includes a stabilizer portion, a support protrusion connected to the stabilizer portion, and an engagement protrusion extending from the support protrusion; andthe engagement protrusion is engaged with the spring to restrict movement of the spring relative to the support protrusion.
  • 18. The track system of claim 13, wherein the track assembly includes a track and an insulator; the first conductor is connected to the track via the insulator; andthe first conductor is received and retained within a recess of the insulator.
  • 19. The track system of claim 18, wherein: the electrical connector includes an alignment protrusion; andthe recess of the insulator includes a tapered opening configured to engage the alignment protrusion such that, when the electrical connector is adjusted from the second position toward the first position, the first contact and the first conductor are substantially aligned with one another via engagement of the tapered opening and the alignment protrusion.
  • 20. The track system of claim 18, wherein: the first conductor has a U-shaped profile open in a transverse direction and is configured to at least partially receive the first contact; andthe insulator extends beyond the first conductor such that the first contact is guidable into the first conductor via a tapered opening of the recess of the insulator when the electrical connector is adjusted toward the first position.
CROSS-REFERENCE TO RELATED APPLICATION

This application claims the benefit of U.S. Provisional Patent Application Ser. No. 62/979,812, filed on Feb. 21, 2020, the disclosure of which is hereby incorporated by reference in its entirety as though fully set forth herein.

US Referenced Citations (280)
Number Name Date Kind
1962789 Simpson Jun 1934 A
2126143 McGregor Aug 1938 A
2263554 Brach Nov 1941 A
2480622 Warnock Aug 1949 A
2678082 Nathan May 1954 A
3096066 Granet et al. Jul 1963 A
3181102 Fehr Apr 1965 A
3213403 Hermann Oct 1965 A
3268848 Adams Aug 1966 A
3603918 Woertz Sep 1971 A
3933403 Rubesamen et al. Jan 1976 A
3940182 Tamura Feb 1976 A
4020769 Keir May 1977 A
4154422 Muhr May 1979 A
4198025 Lowe et al. Apr 1980 A
4238099 Hunwicks Dec 1980 A
4243248 Scholz et al. Jan 1981 A
4282631 Uehara et al. Aug 1981 A
4511187 Rees Apr 1985 A
4575295 Rebentisch Mar 1986 A
4618808 Ish-Shalom et al. Oct 1986 A
4707030 Harding Nov 1987 A
4711589 Goodbred Dec 1987 A
4763360 Daniels et al. Aug 1988 A
4776809 Hall Oct 1988 A
4804229 Nishino Feb 1989 A
4830531 Condit et al. May 1989 A
4853555 Wheat Aug 1989 A
4941636 Fujiwara et al. Jul 1990 A
4961559 Raymor Oct 1990 A
4969621 Munchow et al. Nov 1990 A
4987316 White et al. Jan 1991 A
5106144 Hayakawa et al. Apr 1992 A
5137331 Colozza Aug 1992 A
5167393 Hayakawa et al. Dec 1992 A
5192045 Yamada et al. Mar 1993 A
5222814 Boelryk Jun 1993 A
5302065 Vogg et al. Apr 1994 A
5322982 Leger et al. Jun 1994 A
5332290 Borlinghaus et al. Jul 1994 A
5348373 Stiennon Sep 1994 A
5362241 Matsuoka et al. Nov 1994 A
5446442 Swart et al. Aug 1995 A
5466892 Howard et al. Nov 1995 A
5489173 Hofle Feb 1996 A
5524504 Brandoli et al. Jun 1996 A
5582381 Graf et al. Dec 1996 A
5599086 Dutta Feb 1997 A
5618192 Drury Apr 1997 A
5655816 Magnuson et al. Aug 1997 A
5676341 Tarusawa et al. Oct 1997 A
5696409 Handman et al. Dec 1997 A
5701037 Weber et al. Dec 1997 A
5785387 Hernandez et al. Jul 1998 A
5796177 Werbelow et al. Aug 1998 A
5800015 Tsuchiya et al. Sep 1998 A
5893545 Lyons et al. Apr 1999 A
5899532 Paisley et al. May 1999 A
5918847 Couasnon Jul 1999 A
5921606 Moradell et al. Jul 1999 A
5964442 Wingblad et al. Oct 1999 A
5964815 Wallace et al. Oct 1999 A
6008547 Dobler et al. Dec 1999 A
6036157 Baroin et al. Mar 2000 A
6081044 Anthofer et al. Jun 2000 A
6142718 Kroll Nov 2000 A
6150774 Mueller et al. Nov 2000 A
6166451 Pigott Dec 2000 A
6216995 Koester Apr 2001 B1
6227595 Hamelin et al. May 2001 B1
6260813 Whitcomb Jul 2001 B1
6290516 Gerber Sep 2001 B1
6296498 Ross Oct 2001 B1
6299230 Oettl Oct 2001 B1
6318802 Sjostrom et al. Nov 2001 B1
6325645 Schuite Dec 2001 B1
6357814 Boisset et al. Mar 2002 B1
6364272 Schuler et al. Apr 2002 B1
6400259 Bourcart et al. Jun 2002 B1
6405988 Taylor et al. Jun 2002 B1
6422596 Fendt et al. Jul 2002 B1
6439531 Severini et al. Aug 2002 B1
6480144 Miller et al. Nov 2002 B1
6565119 Fogle, Jr. May 2003 B2
6566765 Nitschke et al. May 2003 B1
6588722 Eguchi et al. Jul 2003 B2
6693368 Schumann et al. Feb 2004 B2
6710470 Bauer et al. Mar 2004 B2
6719350 Duchateau et al. Apr 2004 B2
6736458 Chabanne et al. May 2004 B2
6772056 Mattes et al. Aug 2004 B2
6805375 Enders et al. Oct 2004 B2
6851708 Kazmierczak Feb 2005 B2
6869057 Matsumoto et al. Mar 2005 B2
6882162 Schirmer et al. Apr 2005 B2
6960993 Mattes et al. Nov 2005 B2
7042342 Luo et al. May 2006 B2
7083437 Mackness Aug 2006 B2
7086874 Mitchell et al. Aug 2006 B2
7113541 Lys et al. Sep 2006 B1
7156463 Taubmann et al. Jan 2007 B2
7159899 Nitschke et al. Jan 2007 B2
7170192 Kazmierczak Jan 2007 B2
7188805 Henley et al. Mar 2007 B2
7207541 Frohnhaus et al. Apr 2007 B2
7271501 Dukart et al. Sep 2007 B2
7288009 Lawrence et al. Oct 2007 B2
7293831 Greene Nov 2007 B2
7300091 Nihonmatsu et al. Nov 2007 B2
7322605 Ventura et al. Jan 2008 B2
7348687 Aichriedler et al. Mar 2008 B2
7363194 Schlick et al. Apr 2008 B2
7370831 Laib et al. May 2008 B2
7388466 Ghabra et al. Jun 2008 B2
7389960 Mitchell et al. Jun 2008 B2
7416042 Czaykowska et al. Aug 2008 B2
7434883 Deptolla Oct 2008 B2
7454170 Goossens et al. Nov 2008 B2
7455535 Insalaco et al. Nov 2008 B2
7503522 Henley et al. Mar 2009 B2
7505754 Kazmierczak et al. Mar 2009 B2
7523913 Mizuno et al. Apr 2009 B2
7556233 Gryp et al. Jul 2009 B2
7560827 Jacas-Miret et al. Jul 2009 B2
7633301 Steenwyk et al. Dec 2009 B2
7661637 Mejuhas et al. Feb 2010 B2
7665939 Cardona Feb 2010 B1
7739820 Frank Jun 2010 B2
7744386 Speidel et al. Jun 2010 B1
7980525 Kostin Jul 2011 B2
7980798 Kuehn et al. Jul 2011 B1
8010255 Darraba Aug 2011 B2
8146991 Stanz et al. Apr 2012 B2
8278840 Logiudice et al. Oct 2012 B2
8282326 Krostue et al. Oct 2012 B2
8376675 Schulze et al. Feb 2013 B2
8408631 Sandmann et al. Apr 2013 B2
8463501 Jousse Jun 2013 B2
8536928 Gagne et al. Sep 2013 B1
8648613 Ewerhart et al. Feb 2014 B2
8702170 Abraham et al. Apr 2014 B2
8757578 Kitamura et al. Jun 2014 B2
8757720 Hurst, III et al. Jun 2014 B2
8800949 Schebaum et al. Aug 2014 B2
8857778 Nonomiya Oct 2014 B2
8936526 Boutouil et al. Jan 2015 B2
8967719 Ngiau et al. Mar 2015 B2
RE45456 Sinclair et al. Apr 2015 E
9010712 Gray et al. Apr 2015 B2
9018869 Yuasa et al. Apr 2015 B2
9045061 Kostin et al. Jun 2015 B2
9162590 Nagura et al. Oct 2015 B2
9174604 Wellhoefer et al. Nov 2015 B2
9242580 Schebaum et al. Jan 2016 B2
9318922 Hall et al. Apr 2016 B2
9340125 Stutika et al. May 2016 B2
9346428 Bortolin May 2016 B2
9399412 Kanai Jul 2016 B2
9422058 Fischer et al. Aug 2016 B2
9561770 Sievers et al. Feb 2017 B2
9608392 Destro Mar 2017 B1
9610862 Bonk et al. Apr 2017 B2
9663232 Porter et al. May 2017 B1
9673583 Hudson et al. Jun 2017 B2
9701217 Eckenroth et al. Jul 2017 B2
9731628 Rao et al. Aug 2017 B1
9758061 Pluta et al. Sep 2017 B2
9789834 Rapp et al. Oct 2017 B2
9796304 Salter et al. Oct 2017 B2
9815425 Rao et al. Nov 2017 B2
9821681 Rao et al. Nov 2017 B2
9840220 Van Buskirk et al. Dec 2017 B2
9879458 Gabriel et al. Jan 2018 B2
9919624 Cziomer et al. Mar 2018 B2
9950682 Gramenos et al. Apr 2018 B1
10059232 Frye et al. Aug 2018 B2
10160351 Sugimoto et al. Dec 2018 B2
10479227 Nolte et al. Nov 2019 B2
10493243 Braham Dec 2019 B1
10547135 Sugiura Jan 2020 B2
10549659 Sullivan et al. Feb 2020 B2
10654378 Pons May 2020 B2
20050046367 Wevers et al. Mar 2005 A1
20050089367 Sempliner Apr 2005 A1
20050150705 Vincent et al. Jul 2005 A1
20050211835 Henley et al. Sep 2005 A1
20050215098 Muramatsu et al. Sep 2005 A1
20050230543 Laib et al. Oct 2005 A1
20050236899 Kazmierczak Oct 2005 A1
20050258676 Mitchell et al. Nov 2005 A1
20060131470 Yamada et al. Jun 2006 A1
20060208549 Hancock et al. Sep 2006 A1
20060220411 Pathak et al. Oct 2006 A1
20080021602 Kingham et al. Jan 2008 A1
20080084085 Mizuno et al. Apr 2008 A1
20080090432 Patterson et al. Apr 2008 A1
20090014584 Rudduck et al. Jan 2009 A1
20090129105 Kusu et al. May 2009 A1
20090251920 Kino et al. Oct 2009 A1
20090302665 Dowty Dec 2009 A1
20090319212 Cech et al. Dec 2009 A1
20100117275 Nakamura May 2010 A1
20110024595 Oi et al. Feb 2011 A1
20110225773 Hearn et al. Sep 2011 A1
20120112032 Kohen May 2012 A1
20130020459 Moriyama et al. Jan 2013 A1
20130035994 Pattan et al. Feb 2013 A1
20130153735 Ruthman et al. Jun 2013 A1
20130341479 Yamada et al. Dec 2013 A1
20140110554 Oya et al. Apr 2014 A1
20140224954 Oh et al. Aug 2014 A1
20140263920 Anticuar et al. Sep 2014 A1
20140265479 Bennett Sep 2014 A1
20150048206 Deloubes Feb 2015 A1
20150052819 Lee Feb 2015 A1
20150069807 Kienke Mar 2015 A1
20150083882 Stutika et al. Mar 2015 A1
20150191106 Inoue et al. Jul 2015 A1
20150236462 Davidson, Jr. et al. Aug 2015 A1
20150298580 Kanai Oct 2015 A1
20160039314 Anticuar et al. Feb 2016 A1
20160154170 Thompson et al. Jun 2016 A1
20160236613 Trier Aug 2016 A1
20170080825 Bonk et al. Mar 2017 A1
20170080826 Bonk et al. Mar 2017 A1
20170166093 Cziomer et al. Jun 2017 A1
20170261343 Lanter et al. Sep 2017 A1
20170291507 Hattori et al. Oct 2017 A1
20180017189 Wegner Jan 2018 A1
20180039917 Buttolo et al. Feb 2018 A1
20180058122 Lang Mar 2018 A1
20180072188 Yamada Mar 2018 A1
20180086230 Kume et al. Mar 2018 A1
20180086232 Kume Mar 2018 A1
20180105072 Pons Apr 2018 A1
20180126875 Kume et al. May 2018 A1
20180148011 Zaugg et al. May 2018 A1
20180154799 Lota Jun 2018 A1
20180183623 Schoenfeld et al. Jun 2018 A1
20180244175 Tan Aug 2018 A1
20180275648 Ramalingam Sep 2018 A1
20190001846 Jackson et al. Jan 2019 A1
20190084453 Petit et al. Mar 2019 A1
20190126786 Dry et al. May 2019 A1
20190337413 Romer Nov 2019 A1
20190337414 Condamin et al. Nov 2019 A1
20190337415 Condamin et al. Nov 2019 A1
20190337416 Condamin et al. Nov 2019 A1
20190337417 Condamin et al. Nov 2019 A1
20190337418 Condamin et al. Nov 2019 A1
20190337419 Condamin et al. Nov 2019 A1
20190337420 Condamin et al. Nov 2019 A1
20190337421 Condamin et al. Nov 2019 A1
20190337422 Condamin et al. Nov 2019 A1
20190337471 Brehm Nov 2019 A1
20190379187 Christensen et al. Dec 2019 A1
20190389336 Malinowski et al. Dec 2019 A1
20200009995 Sonar Jan 2020 A1
20200010001 Pinkelman et al. Jan 2020 A1
20200047641 D'Eramo et al. Feb 2020 A1
20200055423 Prozzi et al. Feb 2020 A1
20200079244 Carbone et al. Mar 2020 A1
20200180516 Moulin Jun 2020 A1
20200180517 Moulin Jun 2020 A1
20200189504 Ricart et al. Jun 2020 A1
20200189511 Ricart et al. Jun 2020 A1
20200194936 Ricart et al. Jun 2020 A1
20200194948 Lammers et al. Jun 2020 A1
20200207241 Moulin et al. Jul 2020 A1
20200247275 Yetukur et al. Aug 2020 A1
20200262367 Fernandez Banares et al. Aug 2020 A1
20200269754 Ricart et al. Aug 2020 A1
20200282871 Ricart et al. Sep 2020 A1
20200282880 Jones et al. Sep 2020 A1
20210101562 Ricart et al. Apr 2021 A1
20210105011 Ricart et al. Apr 2021 A1
20210105012 Ricart et al. Apr 2021 A1
20210107419 Ricart et al. Apr 2021 A1
20210129710 Petit et al. May 2021 A1
20210129778 Fernandez Banares et al. May 2021 A1
Foreign Referenced Citations (46)
Number Date Country
203190203 Sep 2013 CN
203799201 Aug 2014 CN
104648190 May 2015 CN
106994917 Aug 2017 CN
107706680 Feb 2018 CN
19509344 Sep 1996 DE
19602250 Jul 1997 DE
10143721 Mar 2003 DE
60100054 Jul 2003 DE
202005013714 Dec 2005 DE
102005007430 Mar 2006 DE
102006022032 Dec 2006 DE
102009059126 Jul 2010 DE
102010017038 Feb 2011 DE
102011002656 Sep 2011 DE
102011056278 Feb 2013 DE
202014102336 Jun 2014 DE
102015212100 Dec 2015 DE
102016113409 Apr 2017 DE
102015221077 May 2017 DE
102017210396 Dec 2017 DE
102019206304 Nov 2019 DE
102019206411 Nov 2019 DE
102020128572 May 2021 DE
102019135631 Jun 2021 DE
0090235 Oct 1983 EP
0783990 Jul 1997 EP
1176047 Jan 2002 EP
2298609 Mar 2011 EP
3150426 Apr 2017 EP
3456579 Mar 2019 EP
2762814 Nov 1998 FR
2951329 Apr 2011 FR
2986751 Aug 2013 FR
2001500307 Sep 2001 JP
3314591 Aug 2002 JP
2003227703 Aug 2003 JP
2005119518 May 2005 JP
2007112174 May 2007 JP
2008158578 Jul 2008 JP
4222262 Feb 2009 JP
2009200023 Sep 2009 JP
2013230721 Nov 2013 JP
0187665 Nov 2001 WO
2003002256 Jan 2003 WO
2005068247 Jul 2005 WO
Non-Patent Literature Citations (8)
Entry
Co-Pending U.S. Appl. No. 16/711,661, filed Dec. 12, 2019.
Co-Pending U.S. Appl. No. 17/078,706, filed Oct. 23, 2020.
Co-Pending U.S. Appl. No. 17/116,959, filed Dec. 9, 2020.
Co-Pending U.S. Appl. No. 17/179,147, filed Feb. 18, 2021.
Co-Pending U.S. Appl. No. 17/179,159, filed Feb. 18, 2021.
Co-Pending U.S. Appl. No. 17/179,166, filed Feb. 18, 2021.
Co-Pending U.S. Appl. No. 17/179,170, filed Feb. 18, 2021.
Co-Pending U.S. Appl. No. 17/179,176, filed Feb. 18, 2021.
Related Publications (1)
Number Date Country
20210265776 A1 Aug 2021 US
Provisional Applications (1)
Number Date Country
62979812 Feb 2020 US