The present disclosure relates to a trackable biopsy needle.
This section provides background information related to the present disclosure which is not necessarily prior art.
A biopsy is a medical test involving the removal of cells or tissues with a biopsy needle for examination. Due to the surgeon's viewing angle and/or surrounding tissue, it can be difficult for a surgeon to direct the biopsy needle to the area of interest. Surgical navigation systems can track the location of a biopsy needle handle or proximal region, which is opposite to a distal region including a needle tip, but if the tip moves or is moved relative to the handle and/or proximal region, then tracking the tip can become difficult.
This section provides a general summary of the disclosure, and is not a comprehensive disclosure of its full scope or all of its features.
The present teachings provide for a trackable biopsy needle assembly including an inner tube of an outer cannula, an inner dielectric layer, a first coil, a second coil, a third coil, an outer dielectric layer, and an outer tube of the outer cannula. The inner tube defines a bore. The inner dielectric layer is secured onto an outer surface of the inner tube. The first, second, and third coils are wound over the inner dielectric layer. The outer dielectric layer is secured onto the first coil, the second coil, and the third coil. The outer tube is fastened to the outer dielectric layer.
The present teachings further provide for a trackable biopsy needle assembly including an outer cannula, a tip, and an inner cannula. The outer cannula includes an outer cannula hub, an outer tube extending from the outer cannula hub and defining a first outer layer, an inner tube affixed to the outer tube and defining a bore and a first inner diameter, and a plurality of conductive coils between the inner tube and the outer tube for tracking a position of the biopsy needle assembly within a magnetic field. The tip extends from a distal end of the outer cannula. The tip defines an outer biopsy window, a tip cavity aligned with the bore, a second outer diameter that is substantially the same as the first outer diameter, and a second inner diameter that is substantially the same as the first inner diameter. The inner cannula includes an inner cannula hub, an inner cannula shaft extending from the inner cannula hub, and an inner biopsy window defined by the inner cannula shaft proximate to an inner cannula shaft tip. The inner cannula shaft is sized to be received by the bore of the outer cannula and the tip cavity of the tip such that the inner biopsy window aligns with the outer biopsy window.
The present teachings also provide for a system for tracking a position of a trackable biopsy needle in a patient space. The system includes an outer cannula of the biopsy needle including a first coil, a second coil, and a third coil, each of which are between inner and outer tubes of the outer cannula and are angled relative to a longitudinal axis of the outer cannula; an electromagnetic tracking system including a localizer to generate an electromagnetic field for use in navigating the biopsy needle; an imaging system that images a patient to provide image data; and a navigation controller for receiving tracked information from the electromagnetic tracking system and the image data from the imaging system, where the navigation controller is configured to display the position of the biopsy needle on the image data.
Further areas of applicability will become apparent from the description provided herein. The description and specific examples in this summary are intended for purposes of illustration only and are not intended to limit the scope of the present disclosure.
The drawings described herein are for illustrative purposes only of selected embodiments and not all possible implementations, and are not intended to limit the scope of the present disclosure.
Corresponding reference numerals indicate corresponding parts throughout the several views of the drawings.
Example embodiments will now be described more fully with reference to the accompanying drawings.
The navigation system 10 can identify and track the position of the biopsy needle assembly 110, including a distal end or tip thereof, as described further herein. The navigation system 10 generally includes an imaging system 12, a navigation controller 14, and an electromagnetic tracking system 16. The imaging system 12 includes a suitable imaging device, such as a digital or CCD camera 18 supported by a C-Arm mount 20 or an O-Arm mount, and an image device controller 22. Image data can be stored in the image device controller 22 and sent to the navigation controller 14. Description regarding the O-Arm imaging system or other appropriate imaging systems can be found in U.S. Pat. Nos. 7,188,998, 7,108,421, 7,106,825, 7,001,045 and 6,940,941, each of which is incorporated herein by reference.
The navigation controller 14 includes a computer 24 with a user interface 26 and a display 28 for displaying image data. The navigation controller 14 can also include or be connected to an image processor, navigation processor, and a memory to store instructions and data. The controller 14 can further include an optimization processor that assists with a navigated procedure. The image data need not be retained in the computer 24, but may also be directly transmitted to the navigation controller 14. Moreover, processing for the navigation controller 14 can all be done with single or multiple processors all of which may or may not be included in the navigation controller 14.
The navigation controller 14 provides facilities for displaying image data 30 as an image on the display 28, saving the image data 30, digitally manipulating the image data 30, or printing a hard copy of the image data 30. The user interface 26, which may be a keyboard, mouse, touch pen, touch screen or other suitable device, allows a physician or user 32 to provide inputs to control the imaging system 12, via the image device controller 22, or adjust the display settings of the display 28.
The EM tracking system 16 generally includes a localizer, such as a first localizing coil assembly or array 40 and/or a second localizing coil assembly or array 42, a coil array controller 44, a navigation probe interface 46, and the biopsy needle assembly 110. The biopsy needle assembly 110 can include an instrument tracking device or devices, such as electromagnetic coils, as will be discussed herein. The electromagnetic coils sense an electromagnetic field generated by the first and the second localizing coil arrays 40 and 42 and provide information to the navigation system 10 to determine a location of a needle tip or distal end of the needle assembly 110 to assist with navigation of the needle tip relative to a patient 50 within a surrounding patient space. The discussion of the EM tracking system 16 can be understood to relate to any appropriate tracking system. Exemplary electromagnetic systems are set forth in U.S. Pat. No. 5,913,820, entitled “Position Location System,” issued Jun. 22, 1999 and U.S. Pat. No. 5,592,939, entitled “Method and System for Navigating a Catheter Probe,” issued Jan. 14, 1997, each of which are hereby incorporated by reference.
With reference to
The outer cannula 116 includes an outer cannula hub 120 near the overall proximal end 112, an outer cannula tip 122 at the overall distal end 114, and a sensor assembly 124 (
With additional reference to
The inner tube 134 of the sensor assembly 124 includes an inner surface 150 (
The outer surface 152 of the inner tube 134 is covered with the inner dielectric 136. The inner dielectric 136 is a sleeve sized to fit over the inner tube 134. The inner dielectric 136 can be any suitable dielectric, such as a heat shrink tube. Any suitable heat shrink tube can be used, including part number 080100CST from Vention Medical of Salem, N.H., formerly Advanced Polymers. To secure the inner dielectric 136 to the outer surface 152, heat is applied to inner dielectric 136 to shrink the inner dielectric 136 onto the outer surface 152 of the inner tube 134.
The first, second, and third coils 138, 140, and 142 are wound onto the inner dielectric 136. The first coil 138 is closest (and more proximal) to the outer cannula hub 120, the third coil 142 is closest (or more distal) to the outer cannula tip 122, and the second coil 140 is between the first coil 138 and the third coil 142. Each of the first, second, and third coils 138, 140, and 142 are wound to provide two layers with 340 winds per layer. The first, second, and third coils 138, 140, and 142 are wound such that they each are angled or slanted at about 55° relative to a longitudinal axis A of the sensor assembly 124 (
Each of the first, second, and third coils 138, 140, and 142 are clocked or rotated about the longitudinal axis A at about 120° relative to each other. For example and with reference to
The sensor assembly further includes a first flexible printed circuit board or flex circuit 160, a second flexible printed circuit board or flex circuit 162, and a third flexible printed circuit board or flex circuit 164, each of which are mounted to the inner dielectric 136 with a suitable adhesive or any other suitable manner, such as disclosed in, for example, U.S. Patent Publication No. 2010/0234724 (Ser. No. 12/400,951), filed on Mar. 10, 2009, which is incorporated herein by reference. The first flex circuit 160 is mounted between the first coil 138 and the outer cannula hub 120. The second flex circuit 162 is mounted between the first coil 138 and the second coil 140. The third flex circuit 164 is mounted between the second coil 140 and the third coil 142. The first, second, and third flex circuits 160, 162, and 164 can be aligned with each other or rotated at various angles relative to each other, such as 120° relative to each other as illustrated in
Ends of the first coil 138 are electrically connected to the first pair of conductors 166 of the first flex circuit 160 with a pair of first coil leads 172. Current is conducted between the first flex circuit 160 and the coil array controller 44 of the EM tracking system 16 with a pair of first cable leads 174, which extend between the first pair of conductors 166 and the coil array controller 44. Ends of the second coil 140 are electrically connected to the second pair of conductors 168 of the second flex circuit 162 with a pair of second coil leads 176. Current is conducted between the second flex circuit 162 and the coil array controller 44 of the EM tracking system 16 with a pair of second cable leads 178, which extend between the second pair of conductors 168 and the coil array controller 44. Ends of the third coil 142 are electrically connected to the third pair of conductors 170 of the third flex circuit 164 with a pair of third coil leads 180. Current is conducted between the third flex circuit 164 and the coil array controller 44 of the EM tracking system 16 with a pair of third cable leads 182, which extend between the third pair of conductors 170 and the coil array controller 44.
The first, second, and third coils 138, 140, and 142; the first, second, and third conductors 166, 168, and 170; and the associated leads are all covered with the outer dielectric 144. The outer dielectric 144 is positioned such that it covers and extends slightly beyond the third coil 142 toward the distal end 156, but terminates prior to the distal end of the inner tube 134. The outer dielectric 144 can be any suitable dielectric, such as a heat shrink tube. Any suitable heat shrink tube can be used, including part number 105100CST from Vention Medical of Salem, N.H., formerly Advanced Polymers. Heat is applied to the outer dielectric 144 to shrink it and secure the outer dielectric 144 in position.
A suitable adhesive 146 (
With additional reference to
The outer cannula tip 122 is positioned with respect to the sensor assembly 124 such that the proximal tip end 192 is seated within the gap 186 defined between the outer dielectric 144 and the outer tube 148. The outer tube 148 is thus over and generally surrounds the outer recessed surface 200, and the inner recessed surface 202 is over and generally surrounds outer surface 152 of the inner tube at the distal end 156 of the inner tube 134. An inner surface or diameter 204 of the outer cannula tip 122 distal to the inner recessed surface 202 is generally flush with the inner surface or diameter 150 of the inner tube 134 to provide a smooth surface for the inner cannula 118 to move along. Further, the outer tube 148 defines an outer diameter 206 that is generally flush with an outer diameter 208 of the outer cannula tip 122 (
The outer cannula tip 122 can be made of any suitable material, such as a suitable metallic or polymeric material, as illustrated. When the outer cannula tip 122 is made of a polymer, it may be over molded onto the sensor assembly 124. The outer cannula tip 122 can be secured to the sensor assembly 124 in any other suitable manner as well, such as with a suitable adhesive 208 or weld.
As illustrated in
From the distal opening 216 of the inner cannula hub 210 extends elongated inner cannula shaft 230, which terminates at a shaft tip 232. The inner cannula shaft 230 has a length that is approximately equal to the combined length of the sensor assembly 124 and the outer cannula tip 122. Proximate to the shaft tip 232, is an inner cannula window 234 defined by the inner cannula shaft 230. When the outer window 194 is aligned with the inner cannula window 234, the biopsy sample of interest can be collected therethrough. The biopsy sample is collected by rotating the inner cannula window 234, which is provided with a sharp edge, relative to the outer window 194.
Tracking the position of the biopsy needle assembly 110, particularly the overall distal end 114 thereof, will now be described. The EM tracking system 16 drives current through the first coil array 40 and optionally the second coil array 42 to generate an electromagnetic navigation field. The first, second, and third coils 138, 140, and 142 are each operable to sense the electromagnetic field and generate an output to the EM tracking system 16. Alternatively, the first, second, and third coils 138, 140, and 142 are each operable to generate the electromagnetic field that can then be received by the first and the second coil arrays 40 and 42.
Because every point in the navigation field is associated with a unique field strength, the electromagnetic tracking system 16 can determine the position of the instrument biopsy needle assembly 110 by measuring the field strength at each of the first, second, and third coils 138, 140, and 142. The coil array controller 44 can receive information regarding the field strength and transmit location information including x, y, and z position and roll, pitch, and yaw orientation information, of the tracked biopsy needle assembly 110. Accordingly, six degree of freedom information can be determined with the navigation system 10. Because the first, second, and third coils 138, 140, and 142 are arranged as described above, such as proximate to the overall distal end 114, the position of the overall distal end 114 can be more accurately determined.
The foregoing description of the embodiments has been provided for purposes of illustration and description. It is not intended to be exhaustive or to limit the disclosure. Individual elements or features of a particular embodiment are generally not limited to that particular embodiment, but, where applicable, are interchangeable and can be used in a selected embodiment, even if not specifically shown or described. The same may also be varied in many ways. Such variations are not to be regarded as a departure from the disclosure, and all such modifications are intended to be included within the scope of the disclosure.
Number | Name | Date | Kind |
---|---|---|---|
4188979 | Nakamura et al. | Feb 1980 | A |
4788987 | Nickel | Dec 1988 | A |
4806182 | Rydell et al. | Feb 1989 | A |
5005592 | Cartmell | Apr 1991 | A |
5226423 | Tenerz et al. | Jul 1993 | A |
5538511 | Van Antwerp | Jul 1996 | A |
5591141 | Nettekoven | Jan 1997 | A |
5592939 | Martinelli | Jan 1997 | A |
5762637 | Berg et al. | Jun 1998 | A |
5840024 | Taniguchi et al. | Nov 1998 | A |
5913820 | Bladen et al. | Jun 1999 | A |
5938602 | Lloyd | Aug 1999 | A |
5963120 | Zaviska | Oct 1999 | A |
5983126 | Wittkampf | Nov 1999 | A |
6106486 | Tenerz et al. | Aug 2000 | A |
6201387 | Govari | Mar 2001 | B1 |
6235038 | Hunter et al. | May 2001 | B1 |
6253770 | Acker et al. | Jul 2001 | B1 |
6254600 | Willink et al. | Jul 2001 | B1 |
6336906 | Hammarstrom et al. | Jan 2002 | B1 |
6348058 | Melkent et al. | Feb 2002 | B1 |
6427079 | Schneider et al. | Jul 2002 | B1 |
6474341 | Hunter et al. | Nov 2002 | B1 |
6556857 | Estes et al. | Apr 2003 | B1 |
6610066 | Dinger et al. | Aug 2003 | B2 |
6615155 | Gilboa | Sep 2003 | B2 |
6616651 | Stevens | Sep 2003 | B1 |
6687531 | Ferre et al. | Feb 2004 | B1 |
6689049 | Miyagi et al. | Feb 2004 | B1 |
6695764 | Silverman et al. | Feb 2004 | B2 |
6747539 | Martinelli | Jun 2004 | B1 |
6796988 | Melkent et al. | Sep 2004 | B2 |
6833814 | Gilboa et al. | Dec 2004 | B2 |
6926674 | Tenerz et al. | Aug 2005 | B2 |
6940941 | Gregerson et al. | Sep 2005 | B2 |
6977575 | Bernier | Dec 2005 | B2 |
6980849 | Sasso | Dec 2005 | B2 |
6993374 | Sasso | Jan 2006 | B2 |
7001045 | Gregerson et al. | Feb 2006 | B2 |
7106825 | Gregerson et al. | Sep 2006 | B2 |
7108421 | Gregerson et al. | Sep 2006 | B2 |
7118378 | Karapetyan | Oct 2006 | B1 |
7188998 | Gregerson et al. | Mar 2007 | B2 |
7366562 | Dukesherer et al. | Apr 2008 | B2 |
7410480 | Muni et al. | Aug 2008 | B2 |
7462175 | Chang et al. | Dec 2008 | B2 |
7500971 | Chang et al. | Mar 2009 | B2 |
7537594 | Sartor | May 2009 | B2 |
7559137 | Beer et al. | Jul 2009 | B2 |
7604609 | Jervis | Oct 2009 | B2 |
7625617 | Anderson et al. | Dec 2009 | B1 |
7629015 | Anderson et al. | Dec 2009 | B2 |
7637896 | Voegele et al. | Dec 2009 | B2 |
7647083 | Al-Ali et al. | Jan 2010 | B2 |
7697972 | Verard et al. | Apr 2010 | B2 |
7751865 | Jascob et al. | Jul 2010 | B2 |
7763035 | Melkent et al. | Jul 2010 | B2 |
7774933 | Wilson et al. | Aug 2010 | B2 |
7797032 | Martinelli et al. | Sep 2010 | B2 |
7818044 | Dukesherer et al. | Oct 2010 | B2 |
7840253 | Tremblay et al. | Nov 2010 | B2 |
7844319 | Susil et al. | Nov 2010 | B2 |
7971341 | Dukesherer et al. | Jul 2011 | B2 |
7979032 | Lomnitz | Jul 2011 | B2 |
8075969 | Anderson et al. | Dec 2011 | B2 |
8086298 | Whitmore, III et al. | Dec 2011 | B2 |
8105339 | Melkent et al. | Jan 2012 | B2 |
8147486 | Honour et al. | Apr 2012 | B2 |
8239001 | Verard et al. | Aug 2012 | B2 |
8251949 | Warnack | Aug 2012 | B2 |
8255027 | Al-Ali et al. | Aug 2012 | B2 |
8504139 | Jacobsen et al. | Aug 2013 | B2 |
8648605 | Nakamura et al. | Feb 2014 | B2 |
8674694 | Hyde et al. | Mar 2014 | B2 |
8862204 | Sobe et al. | Oct 2014 | B2 |
20010034549 | Bartholf et al. | Oct 2001 | A1 |
20020165448 | Ben-Haim et al. | Nov 2002 | A1 |
20030050552 | Vu | Mar 2003 | A1 |
20030187347 | Nevo et al. | Oct 2003 | A1 |
20040116803 | Jascob et al. | Jun 2004 | A1 |
20040199072 | Sprouse et al. | Oct 2004 | A1 |
20050027339 | Schrom et al. | Feb 2005 | A1 |
20050027340 | Schrom et al. | Feb 2005 | A1 |
20050027341 | Schrom et al. | Feb 2005 | A1 |
20050060885 | Johnson et al. | Mar 2005 | A1 |
20050085715 | Dukesherer et al. | Apr 2005 | A1 |
20050105212 | Sato | May 2005 | A1 |
20050137576 | Packard | Jun 2005 | A1 |
20050154294 | Uchiyama et al. | Jul 2005 | A1 |
20050171508 | Gilboa | Aug 2005 | A1 |
20050215922 | Tsonton et al. | Sep 2005 | A1 |
20050222554 | Wallace et al. | Oct 2005 | A1 |
20060025677 | Verard et al. | Feb 2006 | A1 |
20060036189 | Martinelli et al. | Feb 2006 | A1 |
20060084867 | Tremblay et al. | Apr 2006 | A1 |
20060129061 | Kaneto et al. | Jun 2006 | A1 |
20060206039 | Wilson et al. | Sep 2006 | A1 |
20060206170 | Denker et al. | Sep 2006 | A1 |
20060224142 | Wilson et al. | Oct 2006 | A1 |
20060235314 | Migliuolo et al. | Oct 2006 | A1 |
20070088416 | Atalar et al. | Apr 2007 | A1 |
20070157828 | Susel et al. | Jul 2007 | A1 |
20070197899 | Ritter et al. | Aug 2007 | A1 |
20070208252 | Makower | Sep 2007 | A1 |
20070220746 | Anderson et al. | Sep 2007 | A1 |
20080097195 | Urquhart et al. | Apr 2008 | A1 |
20080097347 | Arvanaghi | Apr 2008 | A1 |
20080119727 | Barbagli et al. | May 2008 | A1 |
20080119919 | Atalar et al. | May 2008 | A1 |
20080132909 | Jascob et al. | Jun 2008 | A1 |
20080171934 | Greenan et al. | Jul 2008 | A1 |
20080171937 | Dukesherer et al. | Jul 2008 | A1 |
20080172069 | Dukesherer et al. | Jul 2008 | A1 |
20090088728 | Dollar et al. | Apr 2009 | A1 |
20090118742 | Hartmann et al. | May 2009 | A1 |
20090171187 | Gerhart et al. | Jul 2009 | A1 |
20090204023 | Goldenberg | Aug 2009 | A1 |
20090209947 | Gordin et al. | Aug 2009 | A1 |
20100063383 | Anderson et al. | Mar 2010 | A1 |
20100081965 | Mugan et al. | Apr 2010 | A1 |
20100130852 | Neidert et al. | May 2010 | A1 |
20100185083 | Neidert et al. | Jul 2010 | A1 |
20100210939 | Hartmann et al. | Aug 2010 | A1 |
20100228117 | Hartmann | Sep 2010 | A1 |
20100234724 | Jacobsen et al. | Sep 2010 | A1 |
20100253361 | Nakamura et al. | Oct 2010 | A1 |
20100280363 | Skarda et al. | Nov 2010 | A1 |
20100331763 | Wilson et al. | Dec 2010 | A1 |
20110014705 | Leach et al. | Jan 2011 | A1 |
20110060214 | Makower | Mar 2011 | A1 |
20110066029 | Lyu et al. | Mar 2011 | A1 |
20110118592 | Sobe et al. | May 2011 | A1 |
20110251519 | Romoscanu | Oct 2011 | A1 |
20110258842 | Dukesherer et al. | Oct 2011 | A1 |
20110270081 | Burg et al. | Nov 2011 | A1 |
20120172696 | Kallback et al. | Jul 2012 | A1 |
20120197108 | Hartmann et al. | Aug 2012 | A1 |
20120197109 | Hartmann et al. | Aug 2012 | A1 |
20120197110 | Hartmann et al. | Aug 2012 | A1 |
20120245665 | Friedman et al. | Sep 2012 | A1 |
20120271135 | Burke et al. | Oct 2012 | A1 |
20120283570 | Tegg | Nov 2012 | A1 |
20130066194 | Seter et al. | Mar 2013 | A1 |
20130137954 | Jacobsen et al. | May 2013 | A1 |
20130317355 | Jacobsen et al. | Nov 2013 | A1 |
20140158555 | Nakamura et al. | Jun 2014 | A1 |
20140276004 | Strupeck et al. | Sep 2014 | A1 |
20150005625 | Sobe et al. | Jan 2015 | A1 |
Number | Date | Country |
---|---|---|
2011245296 | Dec 2012 | AU |
2797359 | Nov 2011 | CA |
102009030731 | Dec 2010 | DE |
0425319 | May 1991 | EP |
1302172 | Apr 2003 | EP |
1552795 | Jul 2005 | EP |
1658818 | May 2006 | EP |
1743591 | Jan 2007 | EP |
1806756 | Jul 2007 | EP |
2123220 | Nov 2009 | EP |
2563260 | Mar 2013 | EP |
2000151041 | May 2000 | JP |
03-207344 | Sep 2001 | JP |
2006167119 | Jun 2006 | JP |
2007-527296 | Sep 2007 | JP |
2008-155033 | Jul 2008 | JP |
2008194475 | Aug 2008 | JP |
2010082446 | Apr 2010 | JP |
WO-9632060 | Oct 1996 | WO |
WO-9729682 | Aug 1997 | WO |
WO-9729684 | Aug 1997 | WO |
WO-9940856 | Aug 1999 | WO |
WO-0038571 | Jul 2000 | WO |
WO-2006096685 | Sep 2006 | WO |
WO-2006116597 | Nov 2006 | WO |
WO-2008105874 | Sep 2008 | WO |
WO-2009152486 | Dec 2009 | WO |
WO-2010049834 | May 2010 | WO |
WO-2010124285 | Oct 2010 | WO |
WO-2010144419 | Dec 2010 | WO |
WO-2011137301 | Nov 2011 | WO |
WO-2012103304 | Aug 2012 | WO |
WO-2012103407 | Aug 2012 | WO |
WO-2012103410 | Aug 2012 | WO |
WO-2013062869 | May 2013 | WO |
Entry |
---|
“InstaTrak 3500 Plus. Applications: ENT. Cranial.” http://www.gehealthcare/usen/xr/surgery/products/nav.html (printed Dec. 14, 2009). |
“InstaTrak™ 3500 plus—Cranial. Multi-application electromagnetic surgical navigation system for ENT, Cranial, and Spine procedures.” GE Healthcare http://www.gehealthcare.com/euen/surgery/products/instatrak-3500-plus-cranial/index.html (printed Dec. 14, 2009). |
“InstaTrak™ 3500 plus—ENT. Multi-application electromagnetic surgical navigation system for ENT and Cranial.” GE Healthcare http://www.gehealthcare.com/euen/surgery/products/instatrak-3500-plus-ent/index.html (printed Dec. 14, 2009). |
“InstaTrak® Image Guided Sinus Surgery, Introduction to the InstaTrak System.” Sinus-Clear.com http:/www.sinus-clear.com/instatrak.htm (printed Dec. 14, 2009). |
“Mayfield® Skull Clamps and Headrest Systems,” Mayfield® Surgical Devices Product Index, pp. 1-6, Dec. 2004 Integra LifeSciences Corporation. |
“Medtronic O-Arm Multi-Dimensional Surgical Imaging System”; Brochure, 24pp, 2009. |
“StealthStation—S7—System® Information Center in the OR,” (2009) Medtronic, Inc. |
“StealthStation® TRIA™ plus Treatment Guidance System,” brochure, Medtronic Surgical Navigation Technologies (2004) 2 pages. |
“The doctor can see you now” brochure. GE Medical Systems (2003) General Electric Company. |
“TREON, StealthStation,” brochure, Medtronic Surgical Navigation Technologies (2001) 8 pages. |
Acclarent™ “Instructions for Use. Balloon Sinuplasty™ System. Relieva™ Devices, ReliENT™ Navigation System, and OptiLINK™ Extension.” (Aug. 21, 2009) pp. 1-13. |
Acclarent™ “Instructions for Use. Relieva Flex™ Sinus Guide Catheter, Relieva® Sinus Guide Catheter.” (Sep. 19, 2009) pp. 1-6. |
International Preliminary Report on Patentability mailed Nov. 15, 2012 for PCT/US2011/34475 claiming benefit of U.S. Appl. No. 13/097,243, filed Apr. 29, 2011. |
International Search Report and Written Opinion mailed Feb. 6, 2013 for PCT/US2012/061086 claiming benefit of U.S. Appl. No. 13/281,001, filed Oct. 25, 2011. |
International Search Report and Written Opinion mailed Jul. 6, 2012 for PCT/US2012/022840 claiming benefit to U.S. Appl. No. 13/016,762, filed Jan. 28, 2011. |
International Search Report and Written Opinion mailed May 9, 2012 for PCT/US2012/022676 claiming benefit of U.S. Appl. No. 13/016,740, filed Jan. 28, 2011. |
International Search Report and Written Opinion mailed May 9, 2012 for PCT/US2012/022846 claiming benefit of U.S. Appl. No. 13/016,765, filed Jan. 28, 2011. |
International Search Report and Written Opinion mailed Oct. 31, 2011, claiming benefit of U.S. Appl. No. 13/097,243, filed Apr. 29, 2011. |
Medtronic Navigation, “StealthStation® AXIEM™ Electromagnetic Navigation . . . ”, 2005, www.stealthstation.com/physician/spine/library/axiem—ent.jsp, printed Aug. 19, 2006 (2 pages). |
Examiner's Report dated Dec. 18, 2013 for Canadian Application No. 2,797,359 claiming benefit of U.S. Appl. No. 13/097,243, filed Apr. 29, 2011. |
http://oxforddictionaries.com/definition/english/barrel (accessed Dec. 3, 2012). |
International Preliminary Report on Patentability mailed Aug. 8, 2013 for PCT/US2012/022676 claiming benefit of U.S. Appl. No. 13/016,740, filed Jan. 28, 2011. |
International Preliminary Report on Patentability mailed Aug. 8, 2013 for PCT/US2012/022840 claiming benefit of U.S. Appl. No. 13/016,762, filed Jan. 28, 2011. |
International Preliminary Report on Patentability mailed Aug. 8, 2013 for PCT/US2012/022846 claiming benefit of U.S. Appl. No. 13/016,765, filed Jan. 28, 2011. |
Japanese Office Action dated Jan. 7, 2014 for Japan Application No. 2013-508273 claiming benefit of U.S. Appl. No. 13/097,243, filed Apr. 29, 2011. |
Chinese Office Action dated Sep. 3, 2014 for Chinese Application No. 201180031075.0 claiming benefit of PCT/US2011/034475 filed Apr. 29, 2011, claiming benefit from U.S. Appl. No. 61/330,024, filed Apr. 30, 2010 and U.S. Appl. No. 13/097,243, filed Apr. 29, 2011. |
International Search Report and Written Opinion mailed Oct. 27, 2014 for PCT/US2014/028100 claiming benefit of U.S. Appl. No. 14/209,696, filed Mar. 13, 2014. |
Invitation to Pay Additional Fees and Where Applicable, Protest Fee mailed Aug. 14, 2014 for PCT/US2014/028100 claiming benefit of U.S. Appl. No. 14/209,696, filed Mar. 13, 2014. |
“Flexible electronics,” Dec. 19, 2012 (Dec. 19, 2012), XP055112518, en.wikipedia.org. Retrieved form the Internet: <URL:http://en.wikipedia.orc/w/index.php?title=Flexible—electronics&oldid=528841651> [retrieved on Apr. 7, 2014]. (6 sheets). |
“Flexible Printed Circuit Manufacturer—Capabilities,” Aug. 16, 2012 (Aug. 16, 2012), XP055112534, fpcexpress.com. Retrieved from the Internet: URL: <http://web.archive.org/web/20120816030431/http://fpcexpress.com/capabilities.htm1>. [retrieved on Apr. 7, 2014][retrieved on May 8, 2014]. (3 sheets). |
“Minco Bulletin FC-3,” Jul. 31, 2002 (Jul. 31, 2002). XP055115671, Retrieved from the Internet: <URL:http://www.temflexcontrols.com/pdf/fc3.pdf> [retrieved on Apr. 29, 2014]. (1 sheet). |
“Sectional design standard for flexible printed boards,” Internet Citation, Nov. 30, 1998 (Nov. 30, 1998), pp. 1-35, XP002691487, Retrieved form the Interent: <URL:http://222.184.16.210/smt/tzxt/bz/IPC-2223.pdf>. [retrieved on Feb. 1, 2013]. |
International Preliminary Report on Patentability and Written Opinion mailed May 8, 2014 for PCT/US2012/061086 claiming benefit of U.S. Appl. No. 13/281,001, filed Oct. 25, 2011. |
International Search Report and Written Opinion mailed Apr. 23, 2014 for PCT/US2014/012786 claiming benefit of U.S. Appl. No. 13/748,150, filed Jan. 23, 2013. |
International Search Report and Written Opinion mailed May 12, 2014 for PCT/US2014/012967 claiming benefit of U.S. Appl. No. 13/751,032, filed Jan. 25, 2013. |
Japanese Office Action dated Aug. 29, 2016 for JP Application No. 2015-555345 corresponding to PCT/US2014/012967 which claims benefit of U.S. Appl. No. 13/751,032, filed Jan. 25, 2013. |
Japanese Office Action dated Sep. 13, 2016 for JP Application No. 2016-510697 corresponding to PCT/US2014/034022 which claims benefit of U.S. Appl. No. 13/871,616, filed Apr. 26, 2013. |
Communication pursuant to Article 94(3) EPC dated Nov. 24, 2016 for European Application No. 107084790 corresponding to PCT/US2010-026655 claiming benefit of U.S. Appl. No. 12/400,951, filed Mar. 10, 2009. |
Communication pursuant to Article 94(3) EPC dated Feb. 1, 2017 for European Application No. 117199331 corresponding to PCT/US2011/034475 filed Apr. 29, 2011. |
International Preliminary Report on Patentability and Written Opinion maile don Aug. 6, 2015 for PCT/US2014/012967 claiming benefit of U.S. Appl. No. 13/751,032, filed Jan. 25, 2013. |
International Preliminary Report on Patentability and Written Opinion mailed on Aug. 6, 2015 for PCT/US2014/012786 claiming benefit of U.S. Appl. No. 13/748,150, filed Jan. 23, 2013. |
Chinese Office Action dated Apr. 3, 2015 for Chinese Application No. 201180031075.0 claiming benefit of PCT/US2011/034475 filed Apr. 29, 2011, claiming benefit from U.S. Appl. No. 61/330,024, filed Apr. 30, 2010 and U.S. Appl. No. 13/097,243, filed Apr. 29, 2011. |
Communication pursuant to Article 94(3) EPC for European Application No. 12703208.4-1654 dated Apr. 24, 2015. |
International Preliminary Report on Patentability and Written Opinion mailed Sep. 24, 2015 for PCT/US2014/028100 claiming benefit to U.S. Appl. No. 14/209,696, filed Mar. 13, 2014. |
International Preliminary Report on Patentability mailed Oct. 27, 2015 for PCT/US2014/034022 claiming benefit of U.S. Appl. No. 13/871,616, filed Apr. 26, 2013. |
Chinese Office Action dated Feb. 4, 2017 for Chinese Application No. 2014800059516. |
Chinese Office Action dated Mar. 9, 2017 for Chinese Application No. 201480004264.2. |
European Office Action dated Mar. 1, 2017 for European Application No. 12709722.8. |
Japanese Office Action dated May 19, 2017 for Japanese Application No. 2016-510697 corresponding to PCT/US2014/034022 which claims benefit of U.S. Appl. No. 13/871,616 filed Apr. 26, 2013. |
Number | Date | Country | |
---|---|---|---|
20130102878 A1 | Apr 2013 | US |