The disclosed technology relates generally to electrified roadway systems, and electric vehicles configured to operate on the roadway systems.
Battery-powered electric vehicles are gaining in popularity and use. Due to their zero emission of greenhouse gases and other airborne pollutants, electric vehicles are gaining widespread recognition as an environmentally friendly means of personal transportation that can reduce the carbon footprint of the user and combat global warming.
Electric vehicles currently use batteries as their source of electric power. Batteries provide electric vehicles with full mobility, and allow the vehicles to operate on existing roadway systems. Any battery, however, has a finite energy-storage capacity, and needs to be recharged upon being drawn down to a low charge state. Recharging can be a time-consuming process, often taking hours to accomplish. While overnight charging may be a convenient means of charging a battery after normal daily use, the need to recharge one or more times during a long-distance trip can add significantly to time required to complete the trip. Also, the need to locate and drive to a suitable charging station can further prolong the time needed to complete the trip.
Recent advances in battery technology have resulted in increases in the storage capacity of batteries, yielding improved driving ranges for electric vehicles. Even with such advances, however, any battery will have a finite limitation on its capacity to store electricity. Thus, the range of any electric vehicle using a battery as its sole power source always will be limited by the storage capacity of the battery.
Providing power to electric automobiles and other electric vehicles during travel along a roadway can provide the vehicles with virtually unlimited range. Supplying electricity to a moving automobile or like vehicle, however, presents substantial challenges. These challenges are due, in part, to the inherently de-centralized nature of automobile travel. Specifically, an automobile by its nature provides transportation for a very limited number of people, and typically is used transport drivers and passengers directly to their desired destination. Thus, thousands or even tens of thousands of automobiles, each traveling to a different destination, may be operating on a roadway system at any given time. Electrifying a roadway system to simultaneously power such large numbers of vehicles, most of which are traveling to different places, presents challenges relating to power distribution; power management; the safety of drivers, passengers, and pedestrians; etc. Thus, some of the primary advantages of the automobile actually make it difficult to transfer power to an automobile while it is motion.
Although electrified railway systems have been operating successfully for decades, automobile travel is markedly different than rail travel due to the centralized nature of rail travel. For example, the TGV family of high-speed passenger trains in France carry up to several hundred people on a single train, and transport passengers between a limited number of stations. Each train draws up to several megawatts of electricity from an overhead catenary wire system; and the train's electrically-conductive metal wheels permit the underlying rails to act as a ground source, eliminating any need for a separate ground or return wire in the catenary wire system. Also, the high transmission voltages result in a relatively low current through the catenary wires. Thus, the catenary wires can have a relatively small cross-sectional area without sacrificing transmission efficiency, which in turn helps to minimize the cost of the wires. Also, the catenary wires are positioned above the train and well above the ground, keeping the wires out of the normal reach of pedestrians. An electrified roadway system for automobiles, by contrast, would need to supply relatively small amounts of electricity to thousands or tens of thousands of vehicles at the same time, with most of the vehicles traveling to different destinations; with the power-supplying means being located in proximity to the driver, passengers, and pedestrians; and with the vehicles being electrically-isolated from the ground by their non-conductive rubber tires.
The present disclosure relates generally to electrified roadway systems and electric vehicles configured to operate on the roadway systems. In one aspect, the disclosed technology relates to electrified roadway systems having a roadway. The roadway includes a base, an electrically-conductive first rail mounted on the base, and an electrically-conductive second rail mounted on the base. The first rail is configured to be electrically connected to a source of electric power, and the second rail is configured to be electrically connected to an electrical ground.
The roadway systems also include a vehicle having a plurality of non-electrically-conductive tires; and an electric motor mechanically connected to, and configured to rotate at least one of the tires to propel the vehicle along the roadway. The vehicle also has a first and a second electrical pickup each being electrically connected to the electric motor. The first and second electrical pickups are configured to move between a deployed position at which the first and second electrical pickups contact the respective first and second rails when the vehicle is located on the roadway, and a retracted position at which the first and second electrical pickups are out of contact with the respective first and second rails when the vehicle is located on the roadway.
In another aspect of the disclosed technology, the roadway has an electrified first portion and a non-electrified second portion; and the first and second rails are located only on the first portion of the roadway.
In another aspect of the disclosed technology, the second portion of the roadway includes an entrance to, or an exit from the roadway.
In another aspect of the disclosed technology, the vehicle further includes a control unit communicatively coupled to the first and second electrical pickups, and the control unit is configured to cause the first and second electrical pickups to assume the retracted position as the vehicle travels over the second portion of the roadway.
In another aspect of the disclosed technology, the second portion of the roadway is a downhill portion of the roadway.
In another aspect of the disclosed technology, the first rail has electrically conducive first and second elements positioned in a side by side relationship; the first element of the first rail has a height greater than the second element of the first rail so that only the first element of the first rail contacts the first electrical pickup; the second rail has electrically conductive first and second elements positioned in a side by side relationship; and the first element of the second rail has a height greater than the second element of the second rail so that only the first element of the second rail contacts the second electrical pickup.
In another aspect of the disclosed technology, the systems further include a first and a second support each mounted on the base. The first rail has one or more electrically conductive elements positioned in a side by side relationship in the first support; the second rail has one or more of the electrically conductive elements positioned in a side by side relationship in the section support; and the first and second supports each have a substantially U-shaped cross section.
In another aspect of the disclosed technology, the first and second rails each include a first number of the electrically conductive elements along a first portion of the roadway; and the first and second rails each include a second number of the electrically conductive elements along a second portion of the roadway, the second number being greater than the first number.
In another aspect of the disclosed technology, the second portion of the roadway is an uphill portion of the roadway.
In another aspect of the disclosed technology, an average traffic volume on the second portion of the roadway is greater than an average traffic volume on the first part of the roadway.
In another aspect of the disclosed technology, a current-carrying capacity of the respective first and second rails in the second portion of the roadway is greater than a current-carrying capacity of the respective first and second rails in the first portion of the roadway.
In another aspect of the disclosed technology, the first and second supports each define a volume that receives the respective first and second rails; and the volumes of the first and second supports have a width approximately equal to a width of the respective first and second rails.
In another aspect of the disclosed technology, the roadway includes a plurality of track sections each comprising one of the first rails, one of the second rails, and one of the bases; and the first and second rails are configured so that ends of the respective first and second rails of adjacent track sections are spaced apart by a gap.
In another aspect of the disclosed technology, the vehicle further includes a control unit communicatively coupled to the first and second electrical pickups, and the control unit is configured to raise the first and second electrical pickups as the vehicle travels over the gaps.
In another aspect of the disclosed technology, each of the track sections further includes two electrically conductive third rails secured to and electrically connected to the respective first and second rails of the track section. The third rails span the gaps between the first and second rails of the track section, and the respective first and second rails of an adjacent one of the track sections.
In another aspect of the disclosed technology, the third rails are mechanically coupled to the respective first and second rails of the adjacent track section by an electrically-insulating coupling configured to permit the first and second rails of the adjacent track sections to translate in relation to the third rails.
In another aspect of the disclosed technology, the systems also include a central controller configured to de-energize portions of the roadway on a selective basis.
In another aspect of the disclosed technology, the systems also include a plurality of electrical substations, and the roadway includes a plurality of track sections each having one of the first rails, one of the second rails, and one of the bases. The first and second rails of the track sections are electrically isolated from the respective first and second rails of adjacent track sections; the first and second rails of each of the track sections are connected to, and energized by a respective one of the electrical substations; and the electrical substations are communicatively coupled to the central controller. The central controller is further configured to de-energize the track sections on an individual basis by interrupting the supply of electric power between the first and second rails of the track sections and the substations electrically connected to first and second rails of the respective track sections.
In another aspect of the disclosed technology, the central controller is further configured to de-energize track sections on which a vehicle is not present.
In another aspect of the disclosed technology, the central controller is further configured to energize a track section on which one or more of the vehicles are present, and a track section immediately ahead of the track section on which the one or more vehicles are present.
In another aspect of the disclosed technology, the central controller is further configured to de-energize track sections on which a vehicle is present and not in motion.
In another aspect of the disclosed technology, the central controller is further configured to de-energize track sections on which a vehicle having an open exterior access point is present.
In another aspect of the disclosed technology, the first and the second rails are formed from aluminum and comprise a wear-resistant coating forming a contact surface between the first and the second rails and the respective first and second electrical pickups.
In another aspect of the disclosed technology, the first and the second rails are formed from aluminum, and the system further includes a first and a second cover positioned on the respective first and second rails and forming contact surfaces between the first and the second rails and the respective first and second electrical pickups.
In another aspect of the disclosed technology, the first and second electrical pickups are positioned on an underside of the vehicle.
In another aspect of the disclosed technology, the first and second electrical pickups each include a rigid arm; and an electrically-conductive brush mounted on the arm and configured to contact the first or the second rail.
In another aspect of the disclosed technology, the vehicle further includes a control unit; and the first and second electrical pickups each further includes an actuator. The actuator is mechanically connected to the arm of the first or the second electrical pickup, is communicatively coupled to control unit, and is configured to move the first or the second electrical pickup between the deployed and the retracted positions in response to inputs from the control unit.
In another aspect of the disclosed technology, the electrical substations are configured to provide 1,000 volts direct current to the first and second rails of each of the track sections.
In another aspect of the disclosed technology, the central controller is further configured to prohibit operation of the vehicle on the roadway until a predetermined set of security-related criteria are met.
In another aspect of the disclosed technology, the central controller is further configured to direct the vehicle off of the roadway upon detection of a fire in the vehicle or on the roadway.
The accompanying drawings, which are incorporated herein and constitute part of this specification, are illustrative of particular embodiments of the present disclosure and do not limit the scope of the present disclosure. The drawings are not to scale and are intended for use in conjunction with the explanations in the following detailed description.
The following discussion omits or only briefly describes conventional features of the disclosed technology that are apparent to those skilled in the art. It is noted that various embodiments are described in detail with reference to the drawings, in which like reference numerals represent like parts and assemblies throughout the several views. Reference to various embodiments does not limit the scope of the claims appended hereto. Additionally, any examples set forth in this specification are intended to be non-limiting and merely set forth some of the many possible embodiments for the appended claims. Further, particular features described herein can be used in combination with other described features in each of the various possible combinations and permutations.
a. Introduction
A tracked electric vehicle system 10 is disclosed. The system 10 comprises an electrified highway, or tracked electric vehicle (TEV) track 12, made up of sections of electrified track 14 as shown in
The vehicle 16 is configured to be controlled on a fully autonomous basis whenever the vehicle 16 is operating on the TEV track 12. The position of the vehicle 16 in relation to the TEV track 12, and in relation to other vehicles 16 operating on the TEV track 12, is controlled via a central controller 18 of the system 10, depicted schematically in
Multiple TEV tracks 12 can be installed in a parallel arrangement, with each of the individual TEV tracks 12 forming a lane of the system 10 as shown schematically in
Alternative embodiments of the system 10 can include more than two TEV tracks 12, to provide multiple lanes in each direction of traffic flow. For example,
The system 15 can be configured to have having express and local tracks. The inner tracks can be designated express tracks 12a, and can be used by vehicles 16 traveling at high speeds, such as 120 miles per hour (193 kilometers per hour). The outer tracks can be designated local tracks 12b, and can accommodate vehicles 16 operating a lower speeds. Vehicles 16 can enter the express tracks 12a from the local tracks 12b; and the vehicles 16 can exit the express tracks 12a onto the local tracks 12b.
Access to the TEV tracks 12 can be restricted by centrally-controlled gates 150 located at the various entrances 40 to the TEV tracks 12. One of the gates 150 is depicted schematically in
The system 10, and its various alternative embodiments, can be used to transport people and light freight, such as parcel freight. The vehicles 16 can be cars, small vans, and other vehicles configured to have relatively low aerodynamic resistance. These limitations help to minimize the energy requirements of the system 10. Alternative embodiments of the system 10 can be configured to accommodate larger vehicles such as semi-trailer trucks, tall delivery vans, etc. Because the vehicles 16 are non-polluting electric vehicles, the vehicles 16 do not contribute to carbon dioxide production and global warming when the electricity consumed by the vehicles 16 is generated from a green, or non-polluting source.
Because the vehicles 16 do not stop on the TEV track 12, the TEV track 12 can accommodate a continuous flow of vehicles 16. Also, the TEV track 12 can be configured with many exits and entrances 40 to permit a high degree of flexibility in the locations at which the vehicles 16 can enter and exit the TEV track 12. In a typical high-speed rail system, by contrast, trains must stop for at least several minutes at the stations along their routes, which can limit the capacity of the system to twelve trains or less per hour in each direction; also, the limited number of stations give passengers relatively limited options for the locations at which they can embark and disembark. Also, while high-speed trains may boast a top speed of 180 miles per hour (290 kilometers per hour), the average speed of such trains typically is about 124 miles per hour (200 kilometers per hour) or less. By contrast, because it is anticipated that vehicle traffic on the TEV track 12 can remain moving at all times at speeds of about 120 miles per hour (193 kilometers per hour), it is believed that a typical TEV track 12 can have ten or more times the passenger-carrying capacity per track or lane than a high-speed train.
b. Vehicle
Each vehicle 16 can include an electric drive motor 100, a battery 102, and a power regulator 104 electrically connected to the drive motor 100 and the battery 102, as depicted schematically in
Because the battery 102 is a secondary power source that is used primarily when the vehicle 16 is being operated on conventional roads; and because the battery 102 can be recharged when the vehicle 16 is operating on the TEV track 12, the battery 102 can be smaller, lighter, and less expensive; and can have a longer service life than the battery of a conventional electric car. Alternative embodiments of the vehicle 16 can include more than one drive motor 100 and more than one battery 102.
Referring to
The control unit 112 comprises a processor, such as a microprocessor; a memory device communicatively coupled to the processor via an internal bus; and computer-executable instructions stored on the memory device and executable by the processor. The control unit 112 also comprises an input-output bus, and an input-output interface communicatively coupled to the processor by way of the input-output bus. The computer-executable instructions are configured so that the computer-executable instructions, when executed by the processor, cause the control unit 112 to carry out the various logical functions described herein. The above details of the control unit 112 are presented for illustrative purposes only. The control unit 112 can have components in addition to those described above, and can have an internal architecture other than that descried above.
The control unit 112 is communicatively coupled to, and can control the operation of the steering mechanism 140, brakes 142, and accelerator 144 of the vehicle 16. The vehicle 16 can be operated manually, by the driver; or automatically, without driver input, as discussed below.
The control unit 112 can control the operation of the vehicle 16 on both a partially-autonomous basis, and a fully-autonomous basis. When operating on a partially-autonomous basis, the control unit 112 can control the direction of travel, speed, and braking of the vehicle 16; overall control of vehicle navigation, including turning onto different streets, entering and exiting highways, changing lanes, etc., remains with the driver. The partially-autonomous mode of operation can be used during operation of the vehicle 16 off the TEV track 12. Alternatively, the vehicle 16 can be controlled exclusively by the driver when the vehicle 16 is being operated off the TEV track 12.
When operating on a fully-autonomous basis, the control unit 112, in conjunction with the central controller 18 of the system 10, exercises full control of the position, steering, braking, speed, and navigation of the vehicle 16 via control of the steering mechanism 140, brakes 142, and accelerator 144. This mode of operation is used only when, and whenever the vehicle 16 is being operated on the TEV track 12. Fully autonomous control is feasible under these conditions because the central controller 18 knows the locations, speeds, directions of travel, and destinations of the vehicle 16, and all the other vehicles 16 operating on the TEV track 12. The central controller 18 thus can exercise simultaneous control over all of the vehicles 16 through the respective control units 112 of each vehicle 16. The location, speed, and direction of travel of the vehicle 16 can be sensed by a GPS navigation device, or other suitable means, on the vehicle 16; and can be transmitted to the central controller 18 by way of the transceiver 114 and the transceiver 33. Alternatively, or in addition, the TEV track 12 can be equipped with sensors (not shown) that detect the location, speed, and direction of travel of each vehicle 16, and relay that information to the central controller 18.
Each of the vehicles 16 can be assigned a unique identifier that is transmitted to the central controller 18, and is used by the controller 18 to track and guide each individual vehicle 16. The identifier also can be used for billing-related purposes such as monitoring the amount of energy used by a particular vehicle 16; and tracking the movement of the vehicle 16 to assess any tolls that may be due.
Each vehicle 16 includes two retractable electrical pickups 116, depicted in
Each electrical pickup 116 includes an arm 117, and a brush 118. A first end of the arm 117 is connected to a rotatable coupling 119. The coupling 119 is mounted on the underside 21 of the vehicle 16, so that the arm 117 can rotate in relation to the underside 21 as shown in
The brush 118 is secured to a second end of the arm 117, and extends in a direction substantially perpendicular to the longitudinal axis of the arm 117. Each brush 118 contacts an upper surface of an electrically conductive first or second rail 30, 32 of the TEV track 12, when the electrical pickups 116 are in their deployed position. The brushes 118 are elongated, as shown in
The brushes 118 can be formed from carbon; the brushes 118 can be formed from other electrically-conductive materials in the alternative. Each brush 118 is electrically connected to the power regulator 104 of the vehicle 16 by way of its associated arm 117, and the cable that electrically connects the arm 117 to the power regulator 104. The electrical pickups 116, when in their deployed position, establish electrical contact between the vehicle 16 and the first and second rails 30, 32, and thereby permit electric current to flow between the vehicle 16 and the TEV track 12. As can be seen in
The actuators 120 can be communicatively coupled to, and controlled by the control unit 112 of the vehicle 16, so that the control unit 112 can command the extension and retraction of the electrical pickups 116. The commands can be generated by the control unit 112 automatically, or in response to inputs from the driver. For example, as discussed below, the control unit 112 can automatically command the extension and retraction of the electrical pickups 116 to cause the electrical pickups 116 to “jump” over a damaged portion of the first or second rails 30, 32; or to jump over a gap between the first or second rails 30, 32 of adjacent track sections 30, 32, as depicted in
The electrical pickups 116 can be configured to extend in a consistent, predetermined manner. For example, the control unit 112 can be configured to command the actuator 120 to undergo its full deflection during extension of the electrical pickup 116. Alternatively, a force sensor (not shown) can be mounted on the arm 117 or the actuator 120, and can be communicatively coupled to the control unit 112. The control unit 112 can use the reading from the force sensor to continuously control the position of the actuator 120 so as to cause the brush 118 to contact the first or second rail 30, 32 with a consistent force sufficient to ensure adequate power transfer to the vehicle 16, but low enough to avoid excessive wear of the brush 118 and/or the first or second rail 30, 32.
In alternative embodiments, shoes or other suitable contacting means for transferring power between the vehicle 16 and the first and second rails 30, 32 can be used in lieu of the brushes 118. Also, the actuator 120 can be further configured to cause the electrical pickups 116 to slowly oscillate side to side, i.e., in a direction substantially perpendicular to the first and second rails 30, 32, when the electrical pickups 116 are in their deployed position, to help equalize wear on the brushes 118. The above-noted configuration of the electrical pickups 116 is disclosed for illustrative purposes only; the electrical pickups 116 can have other configurations in alternative embodiments.
The maximum power consumption of the vehicle 16, when powered by direct current as described herein, is estimated to be about 40 kiloWatts (kW) when the vehicle 16 is traveling at 120 miles per hour (193 kilometers per hour). It is believed that this amount of power can be transferred by a brush 118 having an overall contact area of only about 0.9 square inches (about six square centimeters). This relatively low level of required power transfer is a result of the decentralized power management inherent in the use of relatively small, stand-alone vehicles each propelled by its own drive motor 100. High-speed trains, by contrast, typify centralized power management in a transportation vehicle. The peak power transfer to a high-speed train can be as high as several megawatts, which necessitates a larger and more complex power-transfer interface and power management system than that required by the vehicle 16.
The system 10 can be equipped with security measures to enhance the safety, security, and confidence of drivers and passengers. Because the system 10 and the vehicles 16 are centrally controlled, it is believed that such security measures can be implemented with relative ease, with little or no inconvenience to drivers and passengers, and with minimal added expense.
For example, the vehicles 16 can be equipped with a facial recognition system that ties the vehicle 16 to its owner or to a pre-approved driver, thereby reducing the risk that stolen vehicles 16 will be driven onto the system 10. Also, drivers of rented vehicles 16 can be made to undergo a security check at the rental counter, before the driver is given access to the vehicle 16. The check can include taking photographs of the driver; and obtaining approval for the driver from a data base to verify, for example, that the driver is licensed and is not subject to any outstanding warrants. Also, the system 10 can be configured to initiate a telephone call directly to the driver. The call can be made by a machine or a human, and the driver can be asked a salient question about his or her trip to help verify that that the driver intends to use the roadway system 10 for a legitimate, legal purpose. Also, rental vehicles 16 and other vehicles not being operated by or on behalf by the owner can be equipped with a sniffer located, for example, in the trunk of the vehicle 16, to detect contraband or explosives. Other types of security checks can be evolved over time.
c. TEV Track
Each TEV track 12 preferably is constructed on a modular basis, from individual sections of electrified track 14. Referring to
The base 29 can be formed from a durable, high-strength, relatively low cost material. For example, each base 29 can be made from concrete covered with tarmac. Alternatively, the base 29 can be formed from sheet steel strips coated with tungsten carbide grit. The strips can be cut at a slant in 50-foot (15-meter) sections, and can be bolted down onto suitable anchors. The strips can be replaced when worn by automated pick and place machines. The base 29 can be formed from other materials in the alternative.
The first and second rails 30, 32 are mounted on the base 29, as discussed in detail below. The first and second rails 30, 32 are elongated rails each having a substantially rectangular cross section. The first and second rails 30, 32 can have other types of cross sections, and other overall configurations in alternative embodiments. The first rail 30 provides electric power to the vehicle 16, while the second rail 32 provides a return path, or ground, for the electric current. This two-conductor arrangement is necessary because the vehicle 16 has rubber-based tires 108 that, in contrast to the metal wheels of an electrically-powered train, do not provide a return path for the electric current supplied to the vehicle 16. In alternative embodiments, the second rail 32 can provide electric power to the vehicle 16, while the first rail 30 acts as a ground.
As can be seen in
The first and second rails 30, 32 each can have a length of about 2,460 feet (about 750 meters). The first and second rails 30, 32 can have a length that is greater, or less than this value. Longer-length rails, in general, will have a lower cost per unit length than comparable shorter rails, but the longer length can make the rails difficult to transport, store, and handle. Also, longer-length rails may need to be formed from a more expensive higher-conductivity material than shorter rails, to offset the greater resistive losses associated with transmitting electricity over the increased length of the longer rails.
Referring to
Referring to
The first and second rails 30, 32 are mounted in respective supports 206. The supports 206 are secured to the middle portion 208 of the upper surface 210 of the base 29, by a suitable means such as fasteners (not shown). The supports 206 can be formed from a high-strength material, such as steel, coated with an electrically-insulating material. The supports 206 can have a U-shaped cross section, as shown in
The first and second rails 30, 32 are restrained from vertical movement in relation to their associated support 206 by their own weight, and by friction between the contacting vertical surfaces of the support 206 and the first and second rails 30, 32. In alternative embodiments, the supports 206 can be equipped with provisions to restrain the first and second rails 30, 32 vertically, while permitting the first and second rails 30, 32 to move longitudinally, i.e., in the lengthwise direction, to accommodate thermally-induced expansion of the first and second rails 30, 32 in relation to the supports 206. Such restraint can be provided, for example, by bolts (not shown) that span width of the supports 206. The bolts can extend through circular holes in opposite sides of the supports 206, and through longitudinally-oriented slots in the first and second rails 30, 32. The orientation of the slots permits the first and second rails 30, 32 to move longitudinally in relation to the bolt and the support 206, while the bolt and the support 206 prevent substantial movement of the first or second rail 30, 32 in the vertical direction.
The middle portion 208 of the upper surface 210 of the base 29 has provisions that promote the drainage of the middle portion 208, to prevent accumulation of water and other liquids around the first and second rails 30, 32. These provisions can take the form of, for example, channels or drain holes (not shown).
Each track section 14 also includes two friction strips 211. The friction strips 211 are secured to the respective outer portions 212 of the upper surface 210 of the base 29, and shown in
The first and second rails 30, 32 can be mounted in other ways in alternative embodiments. For example,
In other alternative embodiments (not shown), the first and second rails 30, 32 can be mounted on insulators that are secured to, and positioned above the upper surface 210 of the base 29. This non-recessed mounting arrangement can help to reduce stray electrical currents under wet conditions.
The first and second rails 30, 32 can be formed from an electrically-conductive material such as copper, aluminum, steel, etc. While aluminum is less expensive than copper and steel, aluminum is less resistant to the normal wear that can result from the movement of the brushes 118 over the first and second rails 30, 32. The rate of such wear may be acceptable due the relatively low contact forces between the brushes 118 and the first and second rails 30, 32 in comparison to the contact forces exerted by, for example, a typical electrical pickup on a high-speed train. If it is necessary or otherwise desirable to reduce the wear rate on the first and second rails 30, 32, however, such reductions can be achieved, for example, by coating the upper, or contact surfaces of the first and second rails 30, 32 with a relatively hard, wear-resistant material such as stainless steel; by installing a protective covering, formed from a relatively hard, wear-resistant material, on the contact surfaces; or by forming the first and second rails 30, 32 from an aluminum alloy with greater wear resistance than pure aluminum. For example,
It is believed that the cost of the first and second rails 30, 32, when formed from aluminum with a stainless-steel coating or covering, will be less than half the cost of comparable conductors formed from steel or copper. Also, aluminum is readily available, and can be formed into desired shapes through a relatively simple extrusion process that can be performed in most countries throughout the world. Also, the use of aluminum allows the first and second rail 30, 32 to be recycled upon reaching the end of their service life.
Each of the first and second rails 30, 32 can be formed as a single piece, as depicted, for example, in
The support 206 defines a space, or volume 207 that accommodates the elements 33a, 33b, 33c. The volume 207 has a width that is approximately equal to the combined width of the first, second, and third elements 33a, 33b, 33c, so that the first, second, and third elements 33a, 33b, 33c are restrained from substantial lateral, or side-to-side movement, in relation to the support 206.
The elements 33a, 33b, 33c are restrained by the support 206 in the longitudinal, or lengthwise direction by an amount sufficient to permit the elements 33a, 33b, 33c to resist longitudinal movement in response to friction with the brushes 118 of the electrical pickups 116, while allowing the elements 33a, 33b, 33c to expand and contract in the longitudinal direction in response to changes in temperature. The longitudinal restraint of the first and second rails 30b, 32b can be provided, for example, by friction between the contacting surfaces of the support 206 and the first and second rails 30b, 32b. If necessary, excessive movement of the first and second rails 30b, 32b in the longitudinal direction can be prevented by the optional bolts that engage the supports 206, and the horizontally-oriented slots in the first and second rails 30b, 32b as discussed above.
If necessary, the supports 206 and the first and second rails 30b, 32b can be equipped with friction-reducing features that facilitate longitudinal deflection of the first and second rails 30b, 32b, to help ensure that the first and second rails 30b, 32b can expand and contract in response to changes in temperature. For example, the first and second rails 30b, 32b can rest on rollers; and/or an anti-friction coating can be applied to the contacting surfaces of the supports 206 and the first and second rails 30b, 32b.
Because the third element 33c has a greater height than the first and second elements 33a, 33b, the electrical pickups 116 contact the first and second rails 30, 32 exclusively by way of the third elements 33c, as can be seen in
Because the current-carrying capacity of the first and second rails 30b, 32b is related to the number of individual conductive elements within each of the first and second rails 30b, 32b, the current-carrying capacity can be tailored to the requirements for a particular section of the TEV track 12 by varying the number of conductive elements. For example, a greater number of conductive elements can be used on uphill sections of the TEV track 12, where the power requirements of the vehicles 16 are relatively high. Conversely, a lesser number of conductive elements, or no conductive elements at all, can be used on downhill sections, where power requirements are lower. The ability to tailor the current-carrying capacity of the first and second rails 30b, 32b in this manner can help avoid the unnecessary expenditure of capital resulting from equipping portions of the TEV track 12 with greater current-carrying capacity than necessary.
Also, this modular configuration for the first and second rails 30b, 32b can facilitate expansion of the TEV track 12 to accommodate increases in traffic volume over time. For example, the first and second rails 30b, 32b each can be equipped with only one conductive element when the system 10 initially is brought on line and the traffic volume is expected to be relatively low. Additional elements can be added as the traffic volume, and the associated power requirements, increase over time. For example, an initial increase in traffic can be accommodated by adding a second conductive element. If the conductive elements are two inches (five centimeters) wide by four inches (ten centimeters) tall, the addition of the second conductive element would increase the respective cross sectional areas of the first and second rails 30b, 32b from eight square inches to 16 square inches (103 square centimeters), and would double the currently-carrying capability of the first and second rails 30b, 32b. Further increases in traffic could be accommodated by adding a third conductive element, increasing the cross sectional areas of the first and second rails 30b, 32b to 24 square inches (155 square centimeters). The relatively wide, unobstructed area beneath the vehicle 16 can facilitate the installation of additional conductive elements to accommodate further increases in traffic volume.
Thus, the initial capital expenditure for the system 10 can be tailored to the anticipated initial traffic volume, instead of requiring an initial outlay of capital for traffic capacity that may not be needed until well into the future, if ever. Also, vehicles powered by internal combustion engines can be allowed to operate on the system 10 during its initial period of operation; and the revenue collected from the operators of such vehicles can be used to finance expansion of the system 10.
As can be seen in
Also, the relative flexibility of the thin conductive elements 33a, 33b, 33c allows the conductive elements to be bent into shallow curvilinear shapes by hand, or with simple tooling. Curved sections of the TEV track 12 can be formed, for example, by placing one of the conductive elements 33a, 33b, 33c, such as the third conductive element 33c, on a curved base 29; shaping the third conductive element 33c into a desired shape; and then securing the third conductive element 33c in position on the base 29. The first and second conductive elements 33a, 33b then can be secured to the third conductive element 33c, and to the base 29. The ability to easily form the first and second rails 30, 32 into curved shapes in this manner can help minimize the different types of conductive elements that that need to be procured, and maintained in inventory, as the roadway 10 is constructed.
Unlike the overhead catenary of an electrified rail system, the first and second rails 30, 32 (and their alternative embodiments) are supported from below along their entire length; and the surfaces that contact the electrical pickups 116 face upward. Thus, there is no need to tension the first and second rails 30, 32, using large weights and pulleys or other measures, to prevent the first and second rails 30, 32 from sagging. Also, due to the positive lateral restraint provided by the supports 206, the first and second rails 30, 32 do not move substantially in the lateral, i.e., side to side, direction; and can adhere very closely to the curvature of the roadway. In the TGV high-speed train system, by contrast, a 0.6 inch (15 millimeter) overhead copper power wire has two grooves so that it can be supported by clamps hung from a cantenary wire and drop wires located every few meters. The power wire requires this support to prevent it from sagging; thus, the power and cantenary wires always are under a powerful and controlled tension provided by large and unsightly weights and pulleys mounted on trackside poles.
Thermally-induced expansion and contraction of the first and second rails 30, 32 (and their alternative embodiments) can be accommodated by providing a gap 209 between the ends of the first rails 30 of adjacent track sections 14; and another gap 209 between the ends of the second rails 32 of the adjacent track sections 14. The gaps 209 are depicted in
The gap 209 can be achieved by sizing the first and second rails 30, 32 so that each end of the first and second rails 30, 32 is located about 40 inches (about one meter) from the adjacent end of its associated base 29, as depicted in
Also, the gaps 209 electrically isolate each first rail 30 from its adjacent first rails 30; and electrically isolate each second rail 32 from its adjacent second rails 32. As discussed below, this feature can allow portions of the TEV track 12 to be de-energized, while other portions of the TEV track 12 remain energized and able to accommodate vehicle traffic.
The vehicle 16 can be configured so that the electrical pickups 116 are partially retracted, or raised, on a momentary basis, by an amount sufficient to prevent the brushes 118 from contacting the exposed ends of the first and second rails 30, 32 on either side of the gaps 209. This feature can help to prevent damage to the brushes 118 that otherwise could occur when the brushes 118 contact the exposed ends of the first and second rails 30, 32. The sequential raising and lowering of one of the electrical pickups 116 as the pickup 116 traverses the gap 209 is depicted in
The retraction and subsequent extension of the electrical pickups 116 can be controlled electronically, by the control unit 112 of the vehicle 16. The control unit 112 can be provided with information regarding the positions of the gaps 209 by, for example, physical or electronic markers located at a predetermined distance from the gaps 209. The vehicle 16 can be configured with suitable sensors (not shown) for sensing the presence of the markers. Upon sensing a marker, the control unit 112 can command the electrical pickups 116 to partially retract by, for example, about one-half inch (about 1.3 centimeters). The control unit 112 can command the electrical pickups 116 to return to their deployed positions once the electrical pickups 116 have traversed the gap 209. The “deploy” logical command can be issued, for example, after a predetermined time interval; this interval can be adjusted, i.e., shortened or lengthened, based on the speed of the vehicle 16, to help minimize the time over which the brushes 118 are out of contact with the first and second rails 30, 32. For example, if one-tenth of a second is required to retract the electrical pickups 116 and another one-tenth of a second is required to re-deploy the electrical pickups 116, and the vehicle 16 is traveling at 120 miles per hour (193 kilometers per hour), the vehicle 16 will travel at least 33 feet (10 meters) before contact is restored with the first and second rails 30, 32. The on-board battery 102 of the vehicle 16 can prevent the motor 100 and other electrical components of the vehicle 16 from dropping off line during the momentary interruption of power to the vehicle 16 as the electrical pickups 116 traverse the gaps 209.
The automatic retraction and extension of the electrical pickups 116 also can be applied to avoid contact between the electrical pickups 116 and damaged sections of the first and second rails 30, 32. The control unit 112 can be configured to raise the electrical pickups 116 when a sensor (not shown) on the vehicle 16 detects damage to the first or second rail 30, 32; or when the vehicle 16 is notified by the central controller 18 of the location of such damage. The control unit 112 can be configured to automatically report the location of the damage to the central controller 18, so that corrective action can be undertaken, and other vehicles 16 on the TEV track 12 can be notified of the location of the damage. Allowing the electrical pickups 116 to “jump” over damaged sections of the first and second rails 30, 32 in this manner can prevent damage or premature wear of the brushes 118, and other portions of the electrical pickups 116, that otherwise could result from contact with the damaged conductor sections.
In the alternative, the TEV track 12 and the electrical pickups 116 can be equipped with mechanical provisions (not shown) that: lift the electrical pickups 116 as the electrical pickups 116 approach a gap 209; maintain the electrical pickups 116 in a partially retracted position as the electrical pickups 116 traverse the gap 209; and return the electrical pickups 116 to their deployed positions after the electrical pickups 116 have traversed the gap 209.
As can be seen in
Because each of the first and second rails 30, 32 is electrically isolated from the first and second rails 30, 32 of adjacent track sections 14, portions of the TEV track 12 can be de-energized on a selective basis, while other portions of the TEV track 12 remain powered and capable of accommodating vehicle traffic. The ability to de-energize sections of the TEV track 12 not being used can lead to cost savings resulting from decreased consumption of electricity. For example, during periods of low vehicle traffic, such as late night, the central controller 18, which monitors the locations of every vehicle on the TEV track 12, can automatically de-energize sections of the TEV track 12 on which no vehicles 16 are present, while maintaining power to portions of the TEV track 12 on which any vehicles 16 are traveling. The controller 18 can be configured to energize the track sections 14 on which any vehicles 16 are located, and the track section 14 immediately ahead of the vehicles 16, to ensure that the vehicles 16 remain powered by the TEV track 12 at all times. A particular track section 14 can be energized and de-energized through commands, issued by the central controller 18 to an individual electrical sub-station 310 associated with that track section 14, to cut-off or restore power to the first rail 30 of the track section 14.
The ability to de-energize select portions of the TEV track 12 also can be used, for example, to de-energize sections 14 of the TEV track 12 on which a stopped vehicle 16, or a vehicle 16 with an open passenger door, window, or other exterior access point is located; damaged sections 14 of the TEV track 12; and sections 14 of the TEV track 12 undergoing maintenance.
The vehicles 16 can be configured so that the exterior access points of the vehicles 16 normally are locked in their closed positions when the vehicles 16 are located on the TEV track 12, thereby preventing drivers and passengers from exiting their vehicle 16 while the vehicle 16 is on the TEV track 12. Each vehicle 16 can transmit status information to the central controller 18. The status information can include, for example, an identifier unique to each vehicle 16; the location and speed of the vehicle 16; and an indication whether all of the exterior access points of the vehicle 16 are closed and locked. The controller 18 can be programmed to de-energize one or more sections 14 of the TEV track 12 upon receiving an indication that a vehicle 16 located on or near those sections 14 is stopped, and/or has one or more open exterior access points. This feature can reduce or eliminate the electrocution hazard to drivers and passengers who exit their vehicle 16 while the vehicle 16 is on the TEV track 12.
The vehicles 16 can be equipped with one or more sensors 123 that detect the presence of fire and smoke in or around the vehicle 16. The sensors 123 also can be installed on the TEV track 12. The sensors 123 can be the communicatively coupled to the central controller 18, as shown schematically in
The system 10 includes multiple substations 310 that supply the TEV tracks 12 with electric power drawn from the local electric grid or other sources. The substations 310 are shown in
The substation 310 supplies 400 volts direct current (VDC) power to the first rail 30, and the vehicle 16 draws power from the first rail 30 by way of the electrical pickup 116 in contact with the first rail 30. The second rail 32 acts as a ground that, along with the associated electrical pickup 116, completes the circuit between the vehicle 16 and the substation 310. In alternative embodiments, the substation 310 can supply power to the second rail 32; and the first rail 30 can act as a ground that completes the circuit between the vehicle 16 and the substation 310. Also, the supply voltage can be greater or less than 400 VDC; for example, alternative embodiments of the system 10 can operate at voltages of 750 VDC or 1,000 VDC. Also, AC power can be used in lieu of DC power in other alternative embodiments. Each substation 310 can be communicatively coupled to the central controller 18 of the system 10 by a suitable means such as radio-frequency (RF) transmission, Wi-Fi, a wired connection, etc.
Because each substation 310 supplies one track section 14, the spacing between adjacent substations 310 is about equal to the lengths of the individual first and second rails 30, 32. As discussed above, increasing the lengths of the first and second rails 30, 32 can necessitate forming the first and second rails 30, 32 from a higher-conductivity, and more expensive, material; and can make it difficult to transport, store, and handle the first and second rails 30, 32. On the other hand, longer-length rails increase the spacing between the substations 310, thereby reducing the costs associated with procuring, installing, and maintaining the substations 310. Thus, because the optimal length for the first and second rails 30, 32 is dependent upon these, and possibly other competing factors, the optimal length can vary between applications.
The system 10 can be configured to store energy produced by power plants or other sources at night or during other times of off-peak demand for electricity generation. The energy can be stored in large, stationary batteries 312 located in the substations 310. One of the batteries 312 is depicted in
As noted above, the TEV track 12 is configured to operate on direct-current (DC) electric power, with supply voltages as high as 1,000 VDC or greater. It is believed that this relatively high voltage can be used safely, i.e., with a low risk of electrocution to humans, due to the above-noted provisions that de-energize all or a portion of the TEV track 12 when a vehicle is stopped on the TEV track 12, or when a door or other exterior access point of a vehicle 16 on the TEV track 12 is opened; and because the TEV track 12 has provisions that restrict pedestrians from entering onto the TEV track 12.
The relatively high DC voltage, which results in a lower current flow through the first and second rails 30, 32, provides greater operating efficiency in comparison to a system that operates at a lower voltage, and can reduce the required size, and cost, of the first and second conductors 20. Operating voltages for DC-powered passenger trains, by contrast, typically do not exceed 750 VDC due to the proximity of the ground-mounted power-supply rail to humans.
In alternative embodiments, the vehicle 16 can be configured to operate on alternating current (AC) provided via the first and second rails 30, 32, or via AC induction hardware on the TEV track 12 and the vehicle 16. In such applications, the vehicle 16 can be equipped with a transformer-rectifier unit to transform the alternating current into direct current having a voltage, such as 400 VDC, suitable for the electric drive motor 100 and other electrical components of the vehicle 16.
The relatively high voltages that can be provided to an AC system can yield high operating efficiencies; and can reduce capital costs for the system 10 by allowing the first and second rails 30, 32 to have a smaller cross-sectional area in comparison to conductors in a lower-voltage, higher-current DC system of similar capacity. These advantages, however, can be offset by the requirement for a transformer-rectifier unit to transform the AC power into the lower-voltage DC power suitable for powering the drive motor 100 and the other electrical components of the vehicle 16. The presence of the transformer-rectifier can make the vehicle 16 substantially larger and heavier than a comparable DC-powered vehicle. The size and weight of the transformer-rectifier unit can be minimized, however, through the use of advanced power-conditioning electronics, and an aluminum-wound transformer with concentric windings. The size and weight of the transformer-rectifier also can be minimized by reducing the supply voltage of the AC power, in a trade-off between power-transmission efficiency, and the size and weight of the transformer-rectifier.
While high operating efficiencies can be achieved with operating voltages of 5,000 volts alternating current (VAC) to 15,000 VAC, voltages above 5,000 VAC can present a substantial electrocution hazard. Thus, an illustrative AC-based system may have a supply voltage of about 5,000 VAC; alternatively, the system can be configured to operate with a supply voltage of about 2,000 VAC, to facilitate the use of a smaller and lighter transformer-rectifier.
Due the electrocution hazard presented by the relatively high supply voltage of an AC-based system, a power-supplying system can be mounted above the roadway and the vehicle 16, in a manner similar to the overhead cable arrangements in high-speed rail systems.
Electrical pickups 116a, similar to the electrical pickups 116, are mounted on the roof of the vehicle 16, and are configured to extend upward, so as to contact the rods 302, 304, when the vehicle 16 is on a TEV track of the system 300.
The track sections 14 are relatively light, and thus can be stacked one on top of another in double-deck fashion using a suitable framework, thereby doubling the capacity the TEV track 12. Also, the track sections 14 can be raised or elevated above the ground, so that the TEV track 12 does not interfere with human traffic or the migration paths of animals; to avoid natural and man-made obstacles; to help minimize the impact of the TEV track 12 on environmentally sensitive areas such as wetlands; etc.
Because the vehicle 16 has an alternative power source in the form of the battery 102, the entire TEV track 12 does not need to be electrified. The vehicle 16 can be operated on a non-electrified portion of the TEV track 12 using its battery 102 as the sole power source for the drive motor 100. For example, track sections 14 on a downhill portion of the TEV track 12 do not need to be electrified, as gravity can provide the primary motive force for the vehicle 16 on such downhill portions; and the vehicle 16 itself, powered by the battery 102 and/or its own momentum, can provide any additional motive force that may be required.
The vehicle battery 102 can be used to supplement the power provided by the TEV track 12 on uphill sections of the roadway, and on other localized portions of the roadway at which the vehicle power demand is relatively high. The ability to supplement the power from the TEV track 12 using the on-board power of the vehicle 16 can eliminate the need for higher capacity, and more expensive, conductors on localized portions of the TEV track 12 at which the power demand is relatively high.
The entrances and exits 40 on the TEV track 12 are not electrified, to permit the vehicles 16 to freely enter and exit the roadway. In particular, the first and second rails 30, 32 are not installed at, and proximate the exits and entrances 40. For example, the first and second rails 30, 32 can be eliminated over a distance of about 200 meters (about 650 feet) at and near each entrance and exit 40, as shown in
A vehicle 16 can enter the TEV track 12 by driving onto the TEV track 12 by way of an entrance 40. The electrical pickups 116 of the vehicle 16 are maintained in their retracted, or stowed position, and the vehicle 16 is powered by its on-board battery 102 as the vehicle 16 enters the TEV track 12. Upon crossing onto the entrance 40, the vehicle 16 travels along a relatively short, non-electrified acceleration lane that forms part of the entrance 40. When positioned on the acceleration lane, the vehicle 16 can increase its speed prior to entering the TEV track 12. Once the vehicle 16 has entered onto the TEV track 12 and has advanced to a position where the vehicle 16 is positioned over the first and second rails 30, 32, the controller 18 can command the electrical pickups 116 to move into their deployed positions to establish electrical contact between the vehicle 16 and the TEV track 12, thereby allowing the vehicle 16 to draw power from the TEV track 12. The command to extend the electrical pickups 116 can be generated automatically, by the control unit 112 of the vehicle 16; or by an input from the driver.
When the vehicle 16 is approaching an exit 40, the control unit 112 can command the electrical pickups 116 to move into their retracted positions. The command to retract the electrical pickups 116 can be generated automatically, by the control unit 112; or by an input from the driver. Upon reaching the exit, the vehicle 16 can exit the TEV track 12 by driving across the unobstructed portion of the TEV track 12 resulting from the absence of the first and second rails 30, 32, and onto a relatively short, non-electrified deceleration lane that forms part of the exit 40. Once positioned on the deceleration lane, the vehicle 16 can reduce its speed through regenerative or other types of braking; the vehicle 16 then can exit the TEV track 12 under its own momentum, and if necessary, under the power of its battery 102.
The system 10 can be equipped with provisions, discussed above in relation to the gap 209, that lift and then lower the electrical pickups 116 of vehicles 16 that are not entering or exiting the roadway as those vehicles 116 traverse the non-electrified portions of the roadway, to prevent damage to the brushes 118. The through-traffic vehicles 16 can continue ahead on their momentum, and if necessary, using their on-board batteries 102, until the vehicles 16 establish contact with the first and second rails 30, 32 on the other side of non-electrified portion of the TEV track 12. Also, the through traffic does not need to slow down to permit the exiting vehicles 16 to leave the TEV track 12. High-speed trains, by contrast, must repeatedly slow down and stop at different stations for several minutes or more, and thereby lose much of their speed advantage. For example, vehicles 16 driving continuously at 120 miles per hour (193 kilometers per hour) have a similar average speed to that of high speed trains that can reach speeds of 180 miles per hour (290 kilometers per hour) but must stop intermittently to pick up and discharge passengers.
In multi-lane systems such as the system 15 shown in
As another example of non-electrified portions of the TEV track 12, minor portions of the TEV track 12 that interconnect major portions of the TEV track 12 and run several miles or more in length can be non-electrified. The vehicle 16 can traverse such minor sections using power from its battery 102, and/or its own momentum. The non-electrification of such light-duty portions of the TEV track 12 can eliminate the need to equip those sections of the TEV track 12 with the first and second rails 30, 32, thereby reducing the overall cost of the TEV track 12.
Upon reaching, or retuning to, an electrified portion of the TEV track 12, the vehicle 16 can draw its electric power from the TEV track 12 by way of the first and second rails 30, 32; and the battery 102 can be recharged by the electric power being drawn from the TEV track 12. Because the battery 102 is used as a secondary power source when the vehicle 16 is operating on the TEV track 12, the battery 102 does not need to be recharged immediately; hence, the charging process can occur relatively slowly, avoiding the inefficiencies and energy losses associated with fast charging.
Also, in contrast to a roadway system which is electrified intermittently in discrete sections spaced apart in a consistent, repetitive manner, most of the TEV track 12 is electrified. Consequently, most of the energy drawn by the vehicle 16 during long-distance cruise and other operating conditions is used directly by the drive motor 100; and little if any energy is lost to the recharging process for the battery 102. In an intermittently-electrified roadway, by contrast, the battery is constantly undergoing a discharge-recharge cycle. This can result in substantial energy losses associated with the recharging process, can reduce the service life of the battery 102, and can necessitate a larger and heavier battery 102 than otherwise would be needed.
The central controller 18 comprises a processor, such as a microprocessor; a memory device communicatively coupled to the processor via an internal bus; and computer-executable instructions stored on the memory device and executable by the processor. The controller 18 also comprises an input-output bus, and an input-output interface communicatively coupled to the processor by way of the input-output bus. The computer-executable instructions are configured so that the computer-executable instructions, when executed by the processor, cause the controller 18 to carry out the various logical functions described herein.
d. Operation
As discussed above, each vehicle 16 operates autonomously, under the control of the central controller 18 and without input from the driver, whenever the vehicle 16 is traveling on the TEV track 12. Because the controller 18 can simultaneously control the respective positions of all the vehicles 16 operating on the TEV track 12, the spacing between vehicles 16 operating in the same lane, i.e., on the same TEV track 12, can be minimal, while still maintaining a high standard of safety. For example, it is believed that the controller 18 can safely maintain a back-to-front spacing of about 24 inches (about 61 cm) under dry road conditions, and at speeds of about 60 miles per hour (96 kilometers per hour) to about 120 miles per hour (193 kilometers per hour), depending on whether a particular TEV track 12 is being used for express or local travel.
The ability to safely operate the vehicles 16 in close proximity to each other permits the vehicles 16 to be operated in tightly-spaced groups in the form of, for example, ten-vehicle platoons or 30-vehicle convoys. As an example,
Also, operating the vehicles 16 in platoons, convoys, or other closely-spaced groupings can substantially increase the traffic-carrying capacity of the TEV track 12. For example, if the fast lane of a normal three-lane highway were converted to an electrified TEV track 12 carrying only the autonomously-controlled vehicles 16, the TEV track 12 would be able to carry at least ten times more vehicles 16 than each of the conventional non-electrified lanes. This would allow the modified three-lane highway, i.e., a highway made up of three TEV tracks 12, to carry as much traffic as a conventional twelve-lane highway.
As noted above, it is believed that the vehicles 16 can be operated in a platooned or convoyed manner, under dry road conditions, at speeds of up to 120 miles per hour (193 kilometers per hour) on individual TEV tracks 12 dedicated to long-distance or express travel; and at speeds of up to 60 miles per hour (96 kilometers per hour) on TEV tracks 12 dedicated to shorter distance or local travel. These speeds can be reduced automatically, and in real-time, by the central controller 18 when road conditions are wet, snowy, or icy; or when maintenance, accidents, or other factors warrant reduced speeds.
The vehicle 16 can transmit its desired destination to the central controller 18 via the transceivers 33, 114. The vehicle 16 can include a user interface 160 communicatively coupled to the control unit 112, as shown in
The vehicle 16 can be driven onto the TEV track 12 using the power supplied by its internal battery 102, in substantially the same manner as when entering a conventional highway. The entrances 40 to the TEV track 12 can be equipped with a barrier, such as a gate 150, for preventing conventional vehicles from gaining access to the TEV track 12. The gate 150 is depicted in
The central controller 18 can assume control of the vehicle 16 as the central controller 18 commands the gate 150 to open. The controller 18, through inputs to the control unit 112, can guide the vehicle 16 onto the TEV track 12 in a manner that maintains separation between the vehicle 16 and the other vehicles 16 operating on the TEV track 12. The control unit 112 of the vehicle 16 can command the electrical pickups 116 to extend so that the attached brushes 118 contact the respective first and second rails 30, 32 once the electrical pickups 116 have aligned with the first and second rails 30, 32. The controller 18, via inputs to the control unit 112, subsequently can the guide the vehicle 16 so as to position the vehicle 16 in a platoon, convoy, or other type of grouping with other vehicles 16.
Because the vehicle 16 draws its power from the TEV track 12, and the driver does not need to drive or otherwise control the vehicle 16, the vehicle 16 in theory can travel an unlimited distance without stopping. From a practical standpoint, however, the non-stop range of the vehicle 16 is dictated by the needs of the driver and passengers for rest stops. In scenarios where the vehicle 16 is being ferried without a driver or passengers, the vehicle 16 can make a cross-country or other long-distance trip under the autonomous control of the central control unit 112, without stopping.
As the vehicle 16 reaches the exit 40 corresponding to its destination, the control unit 112 can command the electrical pickups 116 to retract; and the central controller 18, through inputs to the control unit 112, can guide the vehicle 16 to, and through the exit 40 in the manner described above. Because the vehicle 16 operates on conventional rubber-based automobile tires 108 without the use of rails, the exiting procedure is substantially equivalent to exiting a regular highway; and the exit can be performed without the use of complicated hardware like railway switches or points. Once the vehicle 16 has exited the TEV track 12, the vehicle 16 can be driven to its final destination under semi-autonomous control, or under fully manual control exercised by the driver.
The electrified TEV track 12 is believed to among the most efficient ways to propel electrically-powered vehicles “on the fly,” and thus has the potential to achieve substantial reductions in CO2 emissions world-wide, notwithstanding that reducing CO2 emissions from highway vehicles is a relatively difficult problem because motorized vehicles, by their nature, are mobile.
The cost of the electricity consumed by the vehicle 16 can be monitored and recorded by the central control unit 112 or other suitable means. The electricity cost can be automatically billed to, and paid by the owner of the vehicle 16, as in systems now in use on toll roads. Also, the ability to draw electric power from the TEV track 12 eliminates the need to fill up a gasoline tank at a gas station, and the need to stop to recharge the battery 102 using a stationary charger.
The system 10 provides the users with the ability to drive from home to a local entrance 40 for the TEV track 12 in the family car, i.e., the vehicle 16. Once travel is established on the TEV track 12, the driver and passengers can sleep while the vehicle 16 cruises safely at, for example, 120 miles per hour (193 kilometers per hour) for hundreds of miles. The driver and passengers can be woken up in time for a programmed exit from the TEV track 12. The remainder of the journey can be driven manually over non-electrified secondary roads to the final destination. In many if not all cases, it is believed that a door to door journey using the TEV track 12 will be quicker than that of a high-speed train, which typically is restricted to travel between a relatively small number of terminals located in large cities. Moreover, the vehicles 16 are believed to be more comfortable, convenient, quiet, and hygienic than trains.
Although the TEV track 12 is configured to accommodate the electric vehicles 16, vehicles powered by internal combustion engines also can operate on the TEV track 12, if such vehicles are configured to be autonomously controlled by the central controller 18; and subject to restrictions against operating in portions of the TEV track 12, such as tunnels, that may not be sufficiently ventilated to remove the exhaust gases generated by the internal combustion engines. As noted above, allowing vehicles powered by internal combustion engines to use the TEV track 12 can be implemented, for example, as a temporary measure to increase toll revenue during the early stages of operation of the TEV track 12.
It is believed that overall travel times on the TEV track 12 will be comparable to, or more favorable than those of high-speed trains. This is due, in part, to the ability to economically decentralize the TEV track 12 to reach a relatively large number of destinations, in comparison to the relatively limited number of centralized stations typically available to a high-speed rail system; and because the vehicles 16, after leaving the TEV track 12, can be driven directly to their final destinations using the internal battery 102 as their power source. Also, unlike most if not all high-speed rail systems, it is believed that the construction and operating costs for the TEV track 12 can be recovered entirely through toll revenues.
The TEV track 12 can accommodate both private and public service vehicles that meet the safety and size requirements for the TEV track 12. The vehicles 16 can be owned and operated by individuals; and by commercial enterprises such as taxi companies, courier delivery services, etc. Government ownership may be preferred in some countries, but private capital would generally be a preferred option in most of the world.
Due to the automated operation and modular construction of the TEV track 12, it is believed that the number of employees required to operate and maintain the TEV track 12 is a small fraction of that required by a rail system or a major highway system; this obviates the need to rely on large government-run agencies to maintain the TEV track 12 in an operational condition. Although government ownership for the TEV track 12 may be preferred in some countries, it is believed that funding by private capital, or public-private partnerships, would be the preferred option for initial funding in most of the world, with return revenue being generated by tolls once the TEV track 12 becomes operational.
In applications where the TEV track 12 is subject to an initial start-up and acceptance period, the first and second rails 30, 32 initially can be made relatively thin, to save costs. As time passes and more vehicles 16 begin to use the TEV track 12, the first and second rails 30, 32 be strengthened and made more durable by bolting on or otherwise adding more conductor material to the first and second rails 30, 32; or, in applications using modular rails such as the first and second rail 30b, 32b, by adding more electrically-conductive elements.
Portions of the TEV track 12 may be enclosed, and air may be partially or fully evacuated from the enclosed portions to reduce aerodynamic drag on the vehicle 16 and thereby save energy. Air also can be evacuated from underground tunnels traversed by the TEV track 12. The interior of the vehicle 16 can be pressurized for passenger comfort as the vehicle 16 passes through areas in which the air has been evacuated.
If a particular vehicle 16 breaks down or otherwise stops running on the TEV track 12, the vehicle or vehicles 16 located behind the disabled vehicle 16 can push the disabled vehicle 16 to the next exit 40, so that the disabled vehicle 16 can be removed from the TEV track 12 and repaired. The vehicles 16 can be equipped with bumpers to facilitate pushing other vehicles 16 in this manner This feature can help eliminate delays caused by disabled vehicles 16.
It is estimated that the vehicles 16 can come to a complete stop on the TEV track 12 in about 50 yards (46 meters), from a speed of 120 miles per hour (193 kilometers per hour) and under dry road conditions. High-speed trains, by contrast, may require one-half mile to stop under dry conditions, and even more under wet conditions. Thus, even if a portion of the TEV track 12 located 100 yards (91 meters) from a platoon or convoy of the vehicles 16 was intentionally or unintentionally damaged or blocked, the lead vehicle 16 in the platoon or convoy could brake heavily and stop well before the damaged section. Even if a vehicle 16 did reach a damaged or blocked portion of the TEV track 12, it is believed that the many effective safety features of modern automobiles, such as crumple zones, air bags, and safety belts, would protect the vehicle occupants from serious harm. By contrast, high-speed trains generally are not equipped with such features to protect passengers in the event of a crash.
The direct-current power supply of the system 10 is relatively simple, and utilizes existing technologies. Therefore, the system 10 can be implemented relatively quickly, thereby allowing major countries around the world to reduce their CO2 production from cars and similar vehicles relatively quickly. This is particularly significant in view of the present failure of hydrogen power to provide the earlier-predicted reductions in CO2 emissions.
This application claims the benefit of priority to U.S. Provisional Patent Application No. 62/785,499, filed Dec. 27, 2018, the disclosure of which is incorporated by reference herein in its entirety.
Number | Date | Country | |
---|---|---|---|
Parent | 62785499 | Dec 2018 | US |
Child | 16728416 | US |